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Model specification

The model is a standard linear model of the form

y = Ax+ e (1)

where y ∈ RN ,x ∈ RD,A ∈ RN×D and eRN . The noise in the system is assumed to be
i.i.d. Gaussian distributed

p(y
∣∣x) = N

(
y|Ax, σ2

0I
)

(2)

and we impose a spike and slab model on the prior

p(xi|zi) = (1− zi) δ (xi) + ziN
(
xi
∣∣0, τ) (3)

The support variables z = {z1, z2, ..., zD} is assumed to be Bernoulli distribution

p(zi
∣∣γi) = Ber

(
zi
∣∣φ (γi)

)
(4)

where φ : R→ (0, 1) is the standard normal CDF function. Finally, we impose a multivariate
Gaussian density on γ = {γ1, γ2, ..., γD}

p(γ) = N
(
γ
∣∣µ0,Σ0

)
(5)

The joint posterior over x, z and γ

p
(
x, z,γ

∣∣y) =
1

Z
N
(
y|Ax, σ2

0I
) D∏
i=1

[
(1− zi) δ (xi) + ziN

(
xi
∣∣0, τ)] D∏

i=1

Ber
(
zi
∣∣φ (γi)

)
N
(
γ
∣∣µ0,Σ0

)
(6)

Variational distribution for Expectation propagation

The joint variational distribution is of the form

Q (x, z,γ) = N
(
x
∣∣m̃, Ṽ

) D∏
i=1

Ber
(
zi
∣∣φ (γ̂i)

)
N
(
γ
∣∣µ̃, Σ̃)

= f̃1 (x) f̃2 (z) f̃3 (z,γ) f̃4 (γ)

= N
(
x
∣∣m̃1, Ṽ1

)
︸ ︷︷ ︸

f̃1

N
(
x
∣∣m̃2, Ṽ2

) D∏
i=1

Ber
(
zi
∣∣φ (γ̃2,i)

)
︸ ︷︷ ︸

f̃2

D∏
i=1

Ber
(
zi
∣∣φ (γ̃3,i)

)
N
(
γ
∣∣µ̃3, Σ̃3

)
︸ ︷︷ ︸

f̃3

N
(
γ
∣∣µ̃4, Σ̃4

)
︸ ︷︷ ︸

f̃4

(7)
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where Ṽ2 is diagonal with elements {ṽ2,j} and similar for Σ̃3. We immediately make the

following identifications. The first approximation term f̃1 corresponds to the likelihood term
and the fourth term f̃4 corresponds to the prior on γ. Thus, we only have to approximate
the parameters in the second and third term, i.e. f̃2 and f̃3 .

Computing joint approximation Q from f̃a

Given f̃i for i = 1, 2, 3, 4, we get:

Ṽ =
(
Ṽ −11 + Ṽ −12

)−1
(8)

m̃ =
(
Ṽ −11 m̃1 + Ṽ −12 m̃2

)
(9)

Σ̃ =
(
Σ̃−13 + Σ̃−14

)−1
(10)

µ̃ = Σ̃
(
Σ̃−13 µ̃3 + Σ̃−14µ̃4

)
(11)

γ̃j = t (γ̃2,j , γ̃3,j) , ∀j ∈ {1, .., D} (12)

We have defined the following auxilary functions

d (x, y) = φ−1

[(
(1− φ(x))φ(y)

(1− φ(y))φ(x)
+ 1

)−1]
, t (x, y) = φ−1

[(
(1− φ(x)) (1− φ(y))

φ(x)φ(y)
+ 1

)−1]
where φ−1(x) is the probit function. The function t(·, ·) amounts to computing the product
of two Bernoulli densities parametrized using φ (·) and d(·, ·) is the corresponding function
for quotients of Bernoulli densities.

Computing the cavity distributions for f̃2

Q\2,j(x, z,γ) =
Q(x, z,γ)

f2,j(xj , zj)
=
N
(
x
∣∣m̃, Ṽ

)∏D
i=1 Ber

(
zi
∣∣φ (γ̃i)

)
N
(
γ̃
∣∣µ̃, Σ̃)

Ber
(
zj
∣∣φ (γ̃2,j)

)
N
(
xj
∣∣m̃2,j , ṽ2,j

) (13)

The parameters for the j’th marginal cavity distribution then becomes:

v
\2,j
j =

((
Ṽjj

)−1
− ṽ−12,j

)−1
(14)

m
\2,j
j = v

\2,j
j

((
Ṽjj

)−1
m̃j − ṽ−12,j m̃2,j

)
, (15)

γ\2,j = d (γ̃j , γ̃2,j) (16)

Moment matching for the second term

Computing the normalization for f2,jQ
\2,j :

Z2,j =
∑
z

∫ ∫
f2,j(xj , zj)Q

\2,j (x, z,γ) dγdx

=
∑
zj

∫
f2,j(xj , zj)

∑
z\j

∫ ∫
Q\2,j (x, z,γ) dγdx\jdxj (17)

Plugging in the densities

Z2,j =
∑
zj

∫ [
(1− zj)δ(xj) + zjN

(
xj
∣∣0, τ)]∑

z\j

∫ ∫
N
(
x
∣∣m\2,j ,V \2,j) D∏

i=1

Ber
(
zi
∣∣φ(γ\2,ji

))
N
(
γ
∣∣µ̃, Σ̃)dγdx\jdxj

=
∑
zj

∫ [
(1− zj)δ(xj) + zjN

(
xj
∣∣0, τ)]Ber

(
zj
∣∣φ(γ\2,jj

))
N
(
xj
∣∣m\2,jj , v

\2,j
j

)
dxj

=
(

1− φ
(
γ
\2,j
j

))
N
(

0
∣∣m\2,jj , v

\2,j
jj

)
+ φ

(
γ
\2,j
j

)
N
(
xj
∣∣m\2,jj , τ + v

\2,j
j

)
(18)
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For the moment matching, we need the following moments:

Ef2,jQ\2,j [x] , Ef2,jQ\2,j
[
xxT

]
, & Ef2,jQ\2,j [z] (19)

The moment matching results in the following update equations:

vnewjj =
aj

aj + bj


(
m
\2,j
j τ

)2
(
v
\2,j
j + τ

)2 +
v
\2,j
j τ

v
\2,j
j + τ

−

[
aj

aj + bj

m
\2,j
j τ

v
\2,j
j + τ

]2

ṽnew2,j =

[(
vnewjj

)−1 −
(
v
\2,j
j

)−1
]−1

(20)

mnew
j =

aj
aj + bj

m
\2,j
j τ

v
\2,j
j + τ

(21)

m̃new
2,j = vnew2,j

((
vnewj

)−1
mnew

j −
(
v
\2,j
j

)−1

m
\2,j
j

)
(22)

γ̃new
j = φ−1

(
aj

aj + bj

)
(23)

γ̃new
j = d

(
γ̃new
j , γ

\2,j
j

)
(24)

where

aj = φ
(
γ
\2,j
j

)
N
(

0
∣∣m\2,jj , τ + v

\2,j
j

)
(25)

bj =
(

1− φ
(
γ
\2,j
j

))
N
(

0
∣∣m\2,jj , v

\2,j
jj

)
(26)

Computing the cavity distributions for the third term

Q\3,j(x, z,γ) =
Q(x, z,γ)

f3,j(zj , γj)
=
N
(
x
∣∣m̃, Ṽ

)∏D
i=1 Ber

(
zi
∣∣φ (γ̃i)

)
N
(
γ
∣∣µ̃, Σ̃)

Ber
(
zj
∣∣φ (γ̃3,j)

)
N
(
γj
∣∣µ̃3,j , Σ̃3,j

) (27)

The parameters for the j’th marginal cavity distribution then becomes

Σ
\3,j
j =

((
Ṽjj

)−1
−
(

Σ̃3,j

)−1)−1
(28)

µ
\3,j
j = Σ

\3,j
j

((
Ṽjj

)−1
m̃j −

(
Σ̃3,j

)−1
µ̃3,j

)
, (29)

γ
\3,j
j = d (γ̃j , γ̃3,j) (30)

Moment matching for the third term

We need to following moments

Ef3,jQ\3,j [γ] , Ef3,jQ\3,j
[
γγT

]
, & φ (γ)

new
= Ef3,jQ\3,j [z] (31)

Computing the normalization for f3,jQ
\3,j

Z3,j =
∑
z

∫ ∫
f3,j(zj , γj)Q

\3,j (x, z,γ) dγdx

=
∑
zj

∫
f3,j(zj , γj)

∑
z\j

∫ ∫
Q\3,j (x, z,γ) dxdγ\jdγj

=
∑
zj

∫
f3,j(zj , γj)Q

\3,j (zj , γj) dγj (32)
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where x, z\j and γ\j are marginalized out. Plugging in the densities

Z3,j =
∑
zj

∫
Ber

(
zj
∣∣φ (γj)

)
Ber

(
zj
∣∣φ(γ\3,jj

))
N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj (33)

Carrying out the sum

Z3,j =

∫ [
(1− φ (γj))

(
1− φ

(
γ
\3,j
j

))
+ φ (γj)φ

(
γ
\3,j
j

)]
N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj (34)

Applying linearity of integrals

Z3,j =
(

1− φ
(
γ
\3,j
j

))∫
(1− φ (γj))N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

+ φ
(
γ
\3,j
j

)∫
φ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj (35)

The integral evaluate to∫
φ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj = φ

 µ
\3,j
j√

1 + Σ
\3,j
j

 = φ(z) ≡ C3,j (36)

where we have defined z as

z =
µ
\3,j
j√

1 + Σ
\3,j
j

(37)

Therefore, the normalization becomes

Z3,j =
(

1− φ
(
γ
\3,j
j

))
(1− C3,j) + φ

(
γ
\3,j
j

)
C3,j (38)

Similarly, we compute the first moment of z

φ (γj)
new

=
1

Z3,j

∑
zj

∫
zj · f3,j(zj , γj)Q\3,j (zj , γj) dγj

=
1

Z3,j

∑
zj

∫
zjBer

(
zj
∣∣φ (γj)

)
Ber

(
zj
∣∣φ(γ\3,jj

))
N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

=
1

Z3,j
φ
(
γ
\3,j
j

)∫
φ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

=
1

Z3,j
φ
(
γ
\3,j
j

)
C3,j (39)

where the result in eq. (36) is used. Therefore

γnewj = φ−1
(

1

Z3,j
φ
(
γ
\3,j
j

)
C3,j

)
(40)

Hence, the update becomes

γ̃3,j = d
(
γnewj , γ

\3,j
j

)
(41)

Similarly, the first moment w.r.t. γj evaluates to

µnew
j =

1

Z3,j

∑
zj

∫
γjBer

(
zj
∣∣φ (γj)

)
Ber

(
zj
∣∣φ(γ\3,jj

))
N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

=
1

Z3,j

∫
γj

[
(1− φ (γj))

(
1− φ

(
γ
\3,j
j

))
+ φ (γj)φ

(
γ
\3,j
j

)]
N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

=
1

Z3,j

(
1− φ

(
γ
\3,j
j

))∫
γj (1− φ (γj))N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

+
1

Z3,j
φ
(
γ
\3,j
j

)∫
γjφ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj (42)
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Using the the results from ch. 3.9 in the Gaussian process book (www.gpml.org), we have
the following result:∫

γjφ (γj)N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj = C3,j

µ\3,jj +
Σ
\3,j
j N

(
z
∣∣0, 1)

C3,j

√
1 + Σ

\3,j
j

 (43)

Note, that the scaling C3,j is necessary since the integral is not normalized. Now define

W3,j = C3,jµ
\3,j
j +

Σ
\3,j
j N

(
z
∣∣0, 1)√

1 + Σ
\3,j
j

(44)

and inserting this result yields the expression for the first moment

µnew
j =

1

Z3,j

[(
1− φ

(
γ
\3,j
j

)) [
µ
\3,j
j −W3,j

]
+ φ

(
γ
\3,j
j

)
W3,j

]
(45)

And for the second moment, we get

Ef3,jQ\3,j
[
γ2j
]

=
1

Z3,j

∑
zj

∫
γ2j Ber

(
zj
∣∣φ (γj)

)
Ber

(
zj
∣∣φ(γ\3,jj

))
N
(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

=
1

Z3,j

(
1− φ

(
γ
\3,j
j

))[∫
γ2jN

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj −

∫
γ2jφ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj

]
+

1

Z3,j
φ
(
γ
\3,j
j

)∫
γ2jφ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj (46)

Using the same result for the integral, we get the following result

∫
γ2jφ (γj)N

(
γj
∣∣µ\3,jj ,Σ

\3,j
j

)
dγj = 2µ

\3,j
j W3,j + C3,j

[
Σ
\3,j
j −

(
µ
\3,j
j

)2]
−

(
Σ
\3,j
j

)2
zN

(
z
∣∣0, 1)(

1 + Σ
\3,j
j

) ≡M3,j

Inserting M3,j :

Ef3,jQ\3,j
[
γ2j
]

=
1

Z3,j

[(
1− φ

(
γ
\3,j
j

))[(
µ
\3,j
j

)2
+ Σ

\3,j
j −M3,j

]
+ φ

(
γ
\3,j
j

)
M3,j

]
(47)

Finally, we obtain the variance as:

Σnew
j = Ef3,jQ\3,j

[
γ2j
]
− Ef3,jQ\3,j [γj ]

2
(48)

The update equations for the mean and variance are then given by:

Σ̃new
3,j =

[(
Σnew

j

)−1 − (Σ\3,j
)−1]−1

(49)

µ̃new
3,j = Σ̃new

3,j

((
Σnew

j

)−1
µnew
j −

(
Σ\3,j

)−1
µ
\3,j
j

)
(50)
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Figure 1: Illustration of the properties of the low rank approximation of Σ0. Data are
generated the way as described for experiment 1 in the paper, except that A ∈ R125×500

and the sparsity level is fixed at K/D = 0.1.

Experiment: Effect of low rank approximation

This experiment is designed to investigate the properties and implications of the low rank
approximation of Σ0. We generate the problems in the same ways as in the first experiment
(described in the paper), but now sweep over the rank R of the approximation of Σ0 with
fixed problem size, i.e. N = 125 and D = 500. The results are shown in figure 1. For the
specific choice of covariance function, figure 1(b)-(c) shows that a 40-rank approximation
does not introduce significant errors in terms of NMSE and F-measure. but the run time is
reduced by a factor ≈ 3.5. The reduction is expected to become even more significant as D
increases.

Experiment: Shepp Logan Recovery

We have also recreated the Shepp-Logan Phantom experiment from [1] with D = 104 un-
knowns, K = 1723 non-zero weights, N = 2K observations and SNR = 10dB. That is,
we generated a set of measurements using the model y = Ax0 + e, where the true signal
x0 is the Shepp-Logan Phantom image (see figure 2a). For the EP method, we imposed a
squared exponential covariance function with length-scale 8 for γ defined on the 100× 100
image grid. We use three methods for reconstruction x0: Our proposed method, BG-AMP
[2] and an oracle estimator, which computes a least squares estimate based on knowledge of
the true support. We consider the Normalized Mean Square Error (NMSE) of the estimated
coefficients x̂ as well as the F-measure of the estimated support ẑ. The reconstructions are
shown in figure 2, where the first row shows the reconstructed coefficients and the second row
shows the reconstructed support. Our proposed method yields Fsq = 0.994 and NMSEsq

= 0.336 for this experiment, whereas BG-AMP yields F = 0.624 and NMSE = 0.717. For
reference, the oracle estimator yields NMSE = 0.326.
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(a) True coefficients x0 (b) x̂EP (c) x̂BG-AMP (d) x̂oracle

(e) True support z0 (f) ẑEP (g) ẑBG-AMP (h) ẑoracle

Figure 2: Recovery of the Shepp-Logan Phantom. The first row shows the reconstructed
coefficients x̂ and the second row shows the reconstructed support ẑ.
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