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Abstract

We study the residual bootstrap (RB) method in the context of high-dimensional
linear regression. Specifically, we analyze the distributional approximation of lin-
ear contrasts c>(β̂ρ − β), where β̂ρ is a ridge-regression estimator. When regres-
sion coefficients are estimated via least squares, classical results show that RB
consistently approximates the laws of contrasts, provided that p � n, where the
design matrix is of size n × p. Up to now, relatively little work has considered
how additional structure in the linear model may extend the validity of RB to the
setting where p/n � 1. In this setting, we propose a version of RB that resamples
residuals obtained from ridge regression. Our main structural assumption on the
design matrix is that it is nearly low rank — in the sense that its singular values
decay according to a power-law profile. Under a few extra technical assump-
tions, we derive a simple criterion for ensuring that RB consistently approximates
the law of a given contrast. We then specialize this result to study confidence
intervals for mean response values X>i β, where X>i is the ith row of the de-
sign. More precisely, we show that conditionally on a Gaussian design with near
low-rank structure, RB simultaneously approximates all of the laws X>i (β̂ρ − β),
i = 1, . . . , n. This result is also notable as it imposes no sparsity assumptions on
β. Furthermore, since our consistency results are formulated in terms of the Mal-
lows (Kantorovich) metric, the existence of a limiting distribution is not required.

1 Introduction

Until recently, much of the emphasis in the theory of high-dimensional statistics has been on “first
order” problems, such as estimation and prediction. As the understanding of these problems has
become more complete, attention has begun to shift increasingly towards “second order” problems,
dealing with hypothesis tests, confidence intervals, and uncertainty quantification [1–6]. In this
direction, much less is understood about the effects of structure, regularization, and dimensionality
— leaving many questions open. One collection of such questions that has attracted growing interest
deals with the operating characteristics of the bootstrap in high dimensions [7–9] . Due to the fact
that bootstrap is among the most widely used tools for approximating the sampling distributions of
test statistics and estimators, there is much practical value in understanding what factors allow for
the bootstrap to succeed in the high-dimensional regime.

The regression model and linear contrasts. In this paper, we focus our attention on high-
dimensional linear regression, and our aim is to know when the residual bootstrap (RB) method
consistently approximates the laws of linear contrasts. (A review of RB is given in Section 2.)
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To specify the model, suppose that we observe a response vector Y ∈ Rn, generated according to

Y = Xβ + ε, (1)

where X ∈ Rn×p is the observed design matrix, β ∈ Rp is an unknown vector of coefficients, and
the error variables ε = (ε1, . . . , εn) are drawn i.i.d. from an unknown distribution F0, with mean
0 and unknown variance σ2 < ∞. As is conventional in high-dimensional statistics, we assume
the model (1) is embedded in a sequence of models indexed by n. Hence, we allow X , β, and p to
vary implicitly with n. We will leave p/n unconstrained until Section 3.3, where we will assume
p/n � 1 in Theorem 3, and then in Section 3.4, we will assume further that p/n is bounded strictly
between 0 and 1. The distribution F0 is fixed with respect to n, and none of our results require F0

to have more than four moments.

Although we are primarily interested in cases where the design matrix X is deterministic, we will
also study the performance of the bootstrap conditionally on a Gaussian design. For this reason,
we will use the symbol E[. . . |X] even when the design is non-random so that confusion does not
arise in relating different sections of the paper. Likewise, the symbol E[. . . ] refers to unconditional
expectation over all sources of randomness. Whenever the design is random, we will assumeX ⊥⊥ ε,
denoting the distribution of X by PX , and the distribution of ε by Pε.

Within the context of the regression, we will be focused on linear contrasts c>(β̂−β), where c ∈ Rp

is a fixed vector and β̂ ∈ Rp is an estimate of β. The importance of contrasts arises from the fact
that they unify many questions about a linear model. For instance, testing the significance of the ith
coefficient βi may be addressed by choosing c to be the standard basis vector c> = e>i . Another
important problem is quantifying the uncertainty of point predictions, which may be addressed by
choosing c> = X>i , i.e. the ith row of the design matrix. In this case, an approximation to the law
of the contrast leads to a confidence interval for the mean response value E[Yi] = X>i β. Further
applications of contrasts occur in the broad topic of ANOVA [10].

Intuition for structure and regularization in RB. The following two paragraphs explain the core
conceptual aspects of the paper. To understand the role of regularization in applying RB to high-
dimensional regression, it is helpful to think of RB in terms of two ideas. First, if β̂LS denotes the
ordinary least squares estimator, then it is a simple but important fact that contrasts can be written
as c>(β̂LS − β) = a>ε where a>:= c>(X>X)−1X>. Hence, if it were possible to sample directly
from F0, then the law of any such contrast could be easily determined. Since F0 is unknown, the
second key idea is to use the residuals of some estimator β̂ as a proxy for samples from F0. When
p � n, the least-squares residuals are a good proxy [11, 12]. However, it is well-known that least-
squares tends to overfit when p/n � 1. When β̂LS fits “too well”, this means that its residuals are
“too small”, and hence they give a poor proxy for F0. Therefore, by using a regularized estimator β̂,
overfitting can be avoided, and the residuals of β̂ may offer a better way of obtaining “approximate
samples” from F0.

The form of regularized regression we will focus on is ridge regression:

β̂ρ := (X>X + ρIp×p)
−1X>Y, (2)

where ρ > 0 is a user-specificed regularization parameter. As will be seen in Sections 3.2 and 3.3,
the residuals obtained from ridge regression lead to a particularly good approximation of F0 when
the design matrix X is nearly low-rank, in the sense that most of its singular values are close to
0. In essence, this condition is a form of sparsity, since it implies that the rows of X nearly lie
in a low-dimensional subspace of Rp. However, this type of structural condition has a significant
advantage over the the more well-studied assumption that β is sparse. Namely, the assumption that
X is nearly low-rank can be inspected directly in practice — whereas sparsity in β is typically
unverifiable. In fact, our results will impose no conditions on β, other than that ‖β‖2 remains
bounded as (n, p) → ∞. Finally, it is worth noting that the occurrence of near low-rank design
matrices is actually very common in applications, and is often referred to as collinearity [13, ch.
17].

Contributions and outline. The primary contribution of this paper is a complement to the work of
Bickel and Freedman [12] (hereafter B&F 1983) — who showed that in general, the RB method fails

2



to approximate the laws of least-squares contrasts c>(β̂LS − β) when p/n � 1. Instead, we develop
an alternative set of results, proving that even when p/n � 1, RB can successfully approximate the
laws of “ridged contrasts” c>(β̂ρ − β) for many choices of c ∈ Rp, provided that the design matrix
X is nearly low rank. A particularly interesting consequence of our work is that RB successfully
approximates the law c>(β̂ρ − β) for a certain choice of c that was shown in B&F 1983 to “break”
RB when applied to least-squares. Specifically, such a c can be chosen as one of the rows of X with
a high leverage score (see Section 4). This example corresponds to the practical problem of setting
confidence intervals for mean response values E[Yi] = X>i β. (See [12, p. 41], as well as Lemma 2
and Theorem 4 in Section 3.4). Lastly, from a technical point of view, a third notable aspect of our
results is that they are formulated in terms of the Mallows-`2 metric, which frees us from having to
impose conditions that force a limiting distribution to exist.

Apart from B&F 1983, the most closely related works we are aware of are the recent papers [7]
and [8], which also consider RB in the high-dimensional setting. However, these works focus on
role of sparsity in β and do not make use of low-rank structure in the design, whereas our work deals
only with structure in the design and imposes no sparsity assumptions on β.

The remainder of the paper is organized as follows. In Section 2, we formulate the problem of
approximating the laws of contrasts, and describe our proposed methodology for RB based on ridge
regression. Then, in Section 3 we state several results that lay the groundwork for Theorem 4, which
shows that that RB can successfully approximate all of the laws L(X>i (β̂ρ − β)|X), i = 1, . . . , n,
conditionally on a Gaussian design. Due to space constraints, all proofs are deferred to material that
will appear in a separate work.

Notation and conventions. If U and V are random variables, then L(U |V ) denotes the law of U ,
conditionally on V . If an and bn are two sequences of real numbers, then the notation an . bn
means that there is an absolute constant κ0 > 0 and an integer n0 ≥ 1 such that an ≤ κ0bn for all
n ≥ n0. The notation an � bn means that an . bn and bn . an. For a square matrix A ∈ Rk×k
whose eigenvalues are real, we denote them by λmin(A) = λk(A) ≤ · · · ≤ λ1(A) = λmax(A).

2 Problem setup and methodology

Problem setup. For any c ∈ Rp, it is clear that conditionally on X , the law of c>(β̂ρ − β) is
completely determined by F0, and hence it makes sense to use the notation

Ψρ(F0; c) := L
(
c>(β̂ρ − β)

X). (3)

The problem we aim to solve is to approximate the distribution Ψρ(F0; c) for suitable choices of c.

Review of the residual bootstrap (RB) procedure. We briefly explain the steps involved in the
residual bootstrap procedure, applied to the ridge estimator β̂ρ of β. To proceed somewhat indirectly,
consider the following “bias-variance” decomposition of Ψρ(F0; c), conditionally on X ,

Ψρ(F0; c) = L
(
c>
(
β̂ρ − E[β̂ρ|X]

)X)︸ ︷︷ ︸
=: Φρ(F0;c)

+ c>
(
E[β̂ρ|X]− β

)︸ ︷︷ ︸
=: bias(Φρ(F0;c))

. (4)

Note that the distribution Φ(F0; c) has mean zero, and so that the second term on the right side is
the bias of Φρ(F0; c) as an estimator of Ψρ(F0; c). Furthermore, the distribution Φρ(F0; c) may be
viewed as the “variance component” of Ψρ(F0; c). We will be interested in situations where the
regularization parameter ρ may be chosen small enough so that the bias component is small. In this
case, one has Ψρ(F0; c) ≈ Φρ(F0; c), and then it is enough to find an approximation to the law
Φρ(F0; c), which is unknown. To this end, a simple manipulation of c>(β̂ρ − E[β̂ρ]) leads to

Φρ(F0; c) = L(c>(X>X + ρIp×p)
−1X>ε

X). (5)

Now, to approximate Φρ(F0; c), let F̂ be any centered estimate of F0. (Typically, F̂ is obtained by
using the centered residuals of some estimator of β, but this is not necessary in general.) Also, let
ε∗ = (ε∗1, . . . , ε

∗
n) ∈ Rn be an i.i.d. sample from F̂ . Then, replacing ε with ε∗ in line (5) yields

Φρ(F̂ ; c) = L(c>(X>X + ρIp×p)
−1X>ε∗

X). (6)
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At this point, we define the (random) measure Φρ(F̂ ; c) to be the RB approximation to Φρ(F0; c).
Hence, it is clear that the RB approximation is simply a “plug-in rule”.

A two-stage approach. An important feature of the procedure just described is that we are free
to use any centered estimator F̂ of F0. This fact offers substantial flexibility in approximating
Ψρ(F0; c). One way of exploiting this flexibility is to consider a two-stage approach, where a “pilot”
ridge estimator β̂% is used to first compute residuals whose centered empirical distribution function
is F̂%, say. Then, in the second stage, the distribution F̂% is used to approximate Φρ(F0; c) via the
relation (6). To be more detailed, if (ê1(%), . . . , ên(%)) = ê(%) := Y −Xβ̂% are the residuals of β̂%,
then we define F̂% to be the distribution that places mass 1/n at each of the values êi(%)− ē(%) with
ē(%) := 1

n

∑n
i=1 êi(%). Here, it is important to note that the value % is chosen to optimize F̂% as an

approximation to F0. By contrast, the choice of ρ depends on the relative importance of width and
coverage probability for confidence intervals based on Φρ(F̂%; c). Theorems 1, 3, and 4 will offer
some guidance in selecting % and ρ.

Resampling algorithm. To summarize the discussion above, if B is user-specified number of
bootstrap replicates, our proposed method for approximating Ψρ(F0; c) is given below.

1. Select ρ and %, and compute the residuals ê(%) = Y −Xβ̂%.

2. Compute the centered distribution function F̂%, putting mass 1/n at each êi(%)− ē(%).

3. For j = 1, . . . , B:

• Draw a vector ε∗ ∈ Rn of n i.i.d. samples from F̂%.
• Compute zj := c>(X>X + ρIp×p)

−1X>ε∗.

4. Return the empirical distribution of z1, . . . , zB .

Clearly, as B → ∞, the empirical distribution of z1, . . . , zB converges weakly to Φρ(F̂%; c), with
probability 1. As is conventional, our theoretical analysis in the next section will ignore Monte Carlo
issues, and address only the performance of Φρ(F̂%; c) as an approximation to Ψρ(F0; c).

3 Main results

The following metric will be central to our theoretical results, and has been a standard tool in the
analysis of the bootstrap, beginning with the work of Bickel and Freedman [14].

The Mallows (Kantorovich) metric. For two random vectors U and V in a Euclidean space, the
Mallows-`2 metric is defined by

d2
2(L(U),L(V )) := inf

π∈Π

{
E
[
‖U − V ‖22

]
: (U, V ) ∼ π

}
(7)

where the infimum is over the class Π of joint distributions π whose marginals are L(U) and L(V ).
It is worth noting that convergence in d2 is strictly stronger than weak convergence, since it also
requires convergence of second moments. Additional details may be found in the paper [14].

3.1 A bias-variance decomposition for bootstrap approximation

To give some notation for analyzing the bias-variance decomposition of Ψρ(F0; c) in line (4), we
define the following quantities based upon the ridge estimator β̂ρ. Namely, the variance is

vρ = vρ(X; c) := var(Ψρ(F0; c)|X) = σ2‖c>(X>X + ρIp×p)
−1X>‖22.

To express the bias of Φρ(F0; c), we define the vector δ(X) ∈ Rp according to

δ(X) := β − E[β̂ρ] =
[
Ip×p − (X>X + ρIp×p)

−1X>X
]
β, (8)
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and then put

b2ρ = b2ρ(X; c) := bias2(Φρ(F0; c)) = (c>δ(X))2. (9)

We will sometimes omit the arguments of vρ and b2ρ to lighten notation. Note that vρ(X; c) does not
depend on β, and b2ρ(X; c) only depends on β through δ(X).

The following result gives a regularized and high-dimensional extension of some lemmas in Freed-
man’s early work [11] on RB for least squares. The result does not require any structural conditions
on the design matrix, or on the true parameter β.

Theorem 1 (consistency criterion). Suppose X ∈ Rn×p is fixed. Let F̂ be any estimator of F0, and
let c ∈ Rp be any vector such that vρ = vρ(X; c) 6= 0. Then with Pε-probability 1, the following
inequality holds for every n ≥ 1, and every ρ > 0,

d2
2

(
1√
vρ

Ψρ(F0; c), 1√
vρ

Φρ(F̂ ; c)
)
≤ 1

σ2 d
2
2(F0, F̂ ) +

b2ρ
vρ
. (10)

Remarks. Observe that the normalization 1/
√
vρ ensures that the bound is non-trivial, since the

distribution Ψρ(F0; c)/
√
vρ has variance equal to 1 for all n (and hence does not become degenerate

for large n). To consider the choice of ρ, it is simple to verify that the ratio b2ρ/vρ decreases mono-
tonically as ρ decreases. Note also that as ρ becomes small, the variance vρ becomes large, and
likewise, confidence intervals based on Φρ(F̂ ; c) become wider. In other words, there is a trade-off
between the width of the confidence interval and the size of the bound (10).

Sufficient conditions for consistency of RB. An important practical aspect of Theorem 1 is that
for any given contrast c, the variance vρ(X; c) can be easily estimated, since it only requires an
estimate of σ2, which can be obtained from F̂ . Consequently, whenever theoretical bounds on
d2

2(F0, F̂ ) and b2ρ(X; c) are available, the right side of line (10) can be controlled. In this way,
Theorem 1 offers a simple route for guaranteeing that RB is consistent. In Sections 3.2 and 3.3 to
follow, we derive a bound on E[d2

2(F0, F̂ )|X] in the case where F̂ is chosen to be F̂%. Later on in
Section 3.4, we study RB consistency in the context of prediction with a Gaussian design, and there
we derive high probability bounds on both vρ(X; c) and b2ρ(X; c) where c is a particular row of X .

3.2 A link between bootstrap consistency and MSPE

If β̂ is an estimator of β, its mean-squared prediction error (MSPE), conditionally on X , is defined
as

mspe(β̂ |X) := 1
nE
[
‖X(β̂ − β)‖22

X]. (11)
The previous subsection showed that in-law approximation of contrasts is closely tied to the approx-
imation of F0. We now take a second step of showing that if the centered residuals of an estimator
β̂ are used to approximate F0, then the quality of this approximation can be bounded naturally in
terms of mspe(β̂ |X). This result applies to any estimator β̂ computed from the observations (1).

Theorem 2. Suppose X ∈ Rn×p is fixed. Let β̂ be any estimator of β, and let F̂ be the empirical
distribution of the centered residuals of β̂. Also, let Fn denote the empirical distribution of n i.i.d.
samples from F0. Then for every n ≥ 1,

E
[
d2

2(F̂ , F0)
X] ≤ 2 mspe(β̂ |X) + 2E[d2

2(Fn, F0)] + 2σ2

n . (12)

Remarks. As we will see in the next section, the MSPE of ridge regression can be bounded in a
sharp way when the design matrix is approximately low rank, and there we will analyze mspe(β̂%|X)
for the pilot estimator. Consequently, when near low-rank structure is available, the only remaining
issue in controlling the right side of line (12) is to bound the quantity E[d2

2(Fn, F0)|X]. The very
recent work of Bobkov and Ledoux [15] provides an in-depth study of this question, and they derive
a variety bounds under different tail conditions on F0. We summarize one of their results below.
Lemma 1 (Bobkov and Ledoux, 2014). If F0 has a finite fourth moment, then

E[d2
2(Fn, F0)] . log(n)n−1/2. (13)
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Remarks. The fact that the squared distance is bounded at the rate of log(n)n−1/2 is an indica-
tion that d2 is a rather strong metric on distributions. For a detailed discussion of this result, see
Corollaries 7.17 and 7.18 in the paper [15]. Although it is possible to obtain faster rates when more
stringent tail conditions are placed on F0, we will only need a fourth moment, since the mspe(β̂|X)
term in Theorem 2 will often have a slower rate than log(n)n−1/2, as discussed in the next section.

3.3 Consistency of ridge regression in MSPE for near low rank designs

In this subsection, we show that when the tuning parameter % is set at a suitable rate, the pilot ridge
estimator β̂% is consistent in MSPE when the design matrix is near low-rank — even when p/n is
large, and without any sparsity constraints on β. We now state some assumptions.

A1. There is a number ν > 0, and absolute constants κ1, κ2 > 0, such that

κ1i
−ν ≤ λi(Σ̂) ≤ κ2i

−ν for all i = 1, . . . , n ∧ p.

A2. There are absolute constants θ, γ > 0, such that for every n ≥ 1, %n = n−θ and ρ
n = n−γ .

A3. The vector β ∈ Rp satisfies ‖β‖2 . 1.

Due to Theorem 2, the following bound shows that the residuals of β̂% may be used to extract a
consistent approximation to F0. Two other notable features of the bound are that it is non-asymptotic
and dimension-free.

Theorem 3. Suppose thatX ∈ Rn×p is fixed and that Assumptions 1–3 hold, with p/n � 1. Assume
further that θ is chosen as θ = 2ν

3 when ν ∈ (0, 1
2 ), and θ = ν

ν+1 when ν > 1
2 . Then,

mspe(β̂%|X) .

{
n−

2ν
3 if ν ∈ (0, 1

2 ),

n−
ν
ν+1 if ν > 1

2 .
(14)

Also, both bounds in (14) are tight in the sense that β can be chosen so that β̂% attains either rate.

Remarks. Since the eigenvalues λi(Σ̂) are observable, they may be used to estimate ν and guide
the selection of %/n = n−θ. However, from a practical point of view, we found it easier to select %
via cross-validation in numerical experiments, rather than via an estimate of ν.

A link with Pinsker’s Theorem. In the particular case when F0 is a centered Gaussian distribu-
tion, the “prediction problem” of estimatingXβ is very similar to estimating the mean parameters of
a Gaussian sequence model, with error measured in the `2 norm. In the alternative sequence-model
format, the decay condition on the eigenvalues of 1

nX
>X translates into an ellipsoid constraint on

the mean parameter sequence [16, 17]. For this reason, Theorem 3 may be viewed as “regression
version” of `2 error bounds for the sequence model under an ellipsoid constraint (cf. Pinsker’s The-
orem, [16, 17]). Due to the fact that the latter problem has a very well developed literature, there
may be various “neighboring results” elsewhere. Nevertheless, we could not find a direct reference
for our stated MSPE bound in the current setup. For the purposes of our work in this paper, the more
important point to take away from Theorem 3 is that it can be coupled with Theorem 2 for proving
consistency of RB.

3.4 Confidence intervals for mean responses, conditionally on a Gaussian design

In this section, we consider the situation where the design matrix X has rows X>i ∈ Rp drawn
i.i.d. from a multivariate normal distribution N(0,Σ), with X ⊥⊥ ε. (The covariance matrix Σ may
vary with n.) Conditionally on a realization of X , we analyze the RB approximation of the laws
Ψρ(F0;Xi) = L(X>i (β̂ρ − β)|X). As discussed in Section 1, this corresponds to the problem of
setting confidence intervals for the mean responses E[Yi] = X>i β. Assuming that the population
eigenvalues λi(Σ) obey a decay condition, we show below in Theorem 4 that RB succeeds with high
PX -probability. Moreover, this consistency statement holds for all of the laws Ψρ(F0;Xi) simul-
taneously. That is, among the n distinct laws Ψρ(F0;Xi), i = 1, . . . , n, even the worst bootstrap
approximation is still consistent. We now state some population-level assumptions.
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A4. The operator norm of Σ ∈ Rp×p satisfies ‖Σ‖op . 1.

Next, we impose a decay condition on the eigenvalues of Σ. This condition also ensures that Σ is
invertible for each fixed p — even though the bottom eigenvalue may become arbitrarily small as p
becomes large. It is important to notice that we now use η for the decay exponent of the population
eigenvalues, whereas we used ν when describing the sample eigenvalues in the previous section.

A5. There is a number η > 0, and absolute constants k1, k2 > 0, such that for all i = 1, . . . , p,

k1i
−η ≤ λi(Σ) ≤ k2i

−η.

A6. There are absolute constants k3, k4 ∈ (0, 1) such that for all n ≥ 3, we have the bounds
k3 ≤ p

n ≤ k4 and p ≤ n− 2.

The following lemma collects most of the effort needed in proving our final result in Theorem 4.
Here it is also helpful to recall the notation ρ/n = n−γ and %/n = n−θ from Assumption 2.

Lemma 2. Suppose that the matrix X ∈ Rn×p has rows X>i drawn i.i.d. from N(0,Σ), and that
Assumptions 2–6 hold. Furthermore, assume that γ chosen so that 0 < γ < min{η, 1}. Then, the
statements below are true.

(i) (bias inequality)
Fix any τ > 0. Then, there is an absolute constant κ0 > 0, such that for all large n, the following
event holds with PX -probability at least 1− n−τ − ne−n/16,

max
1≤i≤n

b2ρ(X;Xi) ≤ κ0 · n−γ · (τ + 1) log(n+ 2). (15)

(ii) (variance inequality)
There are absolute constants κ1, κ2 > 0 such that for all large n, the following event holds with
PX -probability at least 1− 4n exp(−κ1n

γ
η ),

max
1≤i≤n

1
vρ(X;Xi)

≤ κ2n
1− γη . (16)

(iii) (mspe inequalities)
Suppose that θ is chosen as θ = 2η/3 when η ∈ (0, 1

2 ), and that θ is chosen as θ = η
1+η when

η > 1
2 . Then, there are absolute constants κ3, κ4, κ5, κ6 > 0 such that for all large n,

mspe(β̂%|X) ≤

{
κ4n

− 2η
3 with PX -probability at least 1− exp(−κ3n

2−4η/3), if η ∈ (0, 1
2 )

κ6n
− η
η+1 with PX -probability at least 1− exp(−κ5n

2
1+η ), if η > 1

2 .

Remarks. Note that the two rates in part (iii) coincide as η approaches 1/2. At a conceptual level,
the entire lemma may be explained in relatively simple terms. Viewing the quantities mspe(β̂%|X),
b2ρ(X;Xi) and vρ(X;Xi) as functionals of a Gaussian matrix, the proof involves deriving concen-
tration bounds for each of them. Indeed, this is plausible given that these quantities are smooth
functionals of X . However, the difficulty of the proof arises from the fact that they are also highly
non-linear functionals of X . We now combine Lemmas 1 and 2 with Theorems 1 and 2 to show that
all of the laws Ψρ(F0;Xi) can be simultaneously approximated via our two-stage RB method.

Theorem 4. Suppose that F0 has a finite fourth moment, Assumptions 2–6 hold, and γ is chosen
so that η

1+η < γ < min{η, 1}. Also suppose that θ is chosen as θ = 2η/3 when η ∈ (0, 1
2 ), and

θ = η
η+1 when η > 1

2 . Then, there is a sequence of positive numbers δn with limn→∞ δn = 0, such
that the event

E
[

max
1≤i≤n

d2
2

(
1√
vρ

Ψρ(F0;Xi),
1√
vρ

Φρ(F̂%;Xi)
)X] ≤ δn (17)

has PX -probability tending to 1 as n→∞.

Remark. Lemma 2 gives explicit bounds on the numbers δn, as well as the probabilities of the
corresponding events, but we have stated the result in this way for the sake of readability.
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4 Simulations

In four different settings of n, p, and the decay parameter η, we compared the nominal 90% con-
fidence intervals (CIs) of four methods: “oracle”, “ridge”, “normal”, and “OLS”, to be described
below. In each setting, we generated N1 := 100 random designs X with i.i.d. rows drawn from
N(0,Σ), where λj(Σ) = j−η , j = 1, . . . , p, and the eigenvectors of Σ were drawn randomly by
setting them to be the Q factor in a QR decomposition of a standard p × p Gaussian matrix. Then,
for each realization of X , we generated N2 := 1000 realizations of Y according to the model (1),
where β = 1/‖1‖2 ∈ Rp, and F0 is the centered t distribution on 5 degrees of freedom, rescaled to
have standard deviation σ = 0.1. For each X , and each corresponding Y , we considered the prob-
lem of setting a 90% CI for the mean response value X>i?β, where X>i? is the row with the highest
leverage score, i.e. i? = argmax1≤i≤nHii and H := X(X>X)−1X>. This problem was shown in
B&F 1983 to be a case where the standard RB method based on least-squares fails when p/n � 1.
Below, we refer to this method as “OLS”.

To describe the other three methods, “ridge” refers to the interval [X>i? β̂ρ − q̂0.95, X
>
i? β̂ρ − q̂0.05],

where q̂α is the α% quantile of the numbers z1, . . . , zB computed in the proposed algorithm in
Section 2, with B = 1000 and c> = X>i? . To choose the parameters ρ and % for a given X and Y ,
we first computed r̂ as the value that optimized the MSPE error of a ridge estimator β̂r with respect
to 5-fold cross validation; i.e. cross validation was performed for every distinct pair (X,Y ). We then
put % = 5r̂ and ρ = 0.1r̂, as we found the prefactors 5 and 0.1 to work adequately across various
settings. (Optimizing %with respect to MSPE is motivated by Theorems 1, 2, and 3. Also, choosing ρ
to be somewhat smaller than % conforms with the constraints on θ and γ in Theorem 4.) The method
“normal” refers to the CI based on the normal approximation L(X>i?(β̂ρ−β)|X) ≈ N(0, τ̂2), where
τ̂2 = σ̂2‖X>i?(X>X+ρIp×p)

−1X>‖22, ρ = 0.1r̂, and σ̂2 is the usual unbiased estimate of σ2 based
on OLS residuals. The “oracle” method refers to the interval [X>i? β̂ρ − q̃0.95, X

>
i? β̂ρ − q̃0.05], with

ρ = 0.1r̂, and q̃α being the empirical α% quantile of X>i (β̂ρ − β) over all 1000 realizations of Y
based on a given X . (This accounts for the randomness in ρ = 0.1r̂.)

Within a given setting of the triplet (n, p, η), we refer to the “coverage” of a method as the fraction of
theN1×N2 = 105 instances where the method’s CI contained the parameterX>i?β. Also, we refer to
“width” as the average width of a method’s intervals over all of the 105 instances. The four settings of
(n, p, η) correspond to moderate/high dimension and moderate/fast decay of the eigenvalues λi(Σ).
Even in the moderate case of p/n = 0.45, the results show that the OLS intervals are too narrow
and have coverage noticeably less than 90%. As expected, this effect becomes more pronounced
when p/n = 0.95. The ridge and normal intervals perform reasonably well across settings, with
both performing much better than OLS. However, it should be emphasized that our study of RB
is motivated by the desire to gain insight into the behavior of the bootstrap in high dimensions
— rather than trying to outperform particular methods. In future work, we plan to investigate the
relative merits of the ridge and normal intervals in greater detail.

Table 1: Comparison of nominal 90% confidence intervals

oracle ridge normal OLS
setting 1 width 0.21 0.20 0.23 0.16

n = 100, p = 45, η = 0.5 coverage 0.90 0.87 0.91 0.81
setting 2 width 0.22 0.26 0.26 0.06

n = 100, p = 95, η = 0.5 coverage 0.90 0.88 0.88 0.42
setting 3 width 0.20 0.21 0.22 0.16

n = 100, p = 45, η = 1 coverage 0.90 0.90 0.91 0.81
setting 4 width 0.21 0.26 0.23 0.06

n = 100, p = 95, η = 1 coverage 0.90 0.92 0.87 0.42
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