
A Appendix

A.1 Selecting the ✏ parameter

Lemma 6. Assume T
↵

� 4. Then using the LEAP algorithm, in the presence of a truthful buyer,

ensures that with probability at least 1 � T�1/2

↵

for all t 2 {T
↵

+ 1, . . . , T} we have a
t

= 1 and

v
t

� p
t

 ✏ =
q

(624 log(

p
T↵ log(T↵))+1)G

2

�

2
T↵

.

Proof. Using Lemma 1, we have with probability at least 1� T�1/2

↵

for x 2 X

|w⇤·x�w

T↵ ·x| = |(w⇤�w

T↵)·x|  kw⇤�w

T↵kkxk  kw⇤�w

T↵k 

s

(624 log(

p
T
↵

log(T
↵

)) + 1)G2

�2T
↵

.

Therefore with probability 1� T�1/2

↵

for all t 2 {T
↵

+ 1, . . . , T}
w

⇤ · x
t

�w

T↵ · x
t

+ ✏ � 0 () a
t

= 1 and w

⇤ · x
t

�w

T↵ · x
t

� ✏  0 () v
t

� p
t

 ✏,

which completes the lemma.

A.2 Chernoff-style bound.

Lemma 7. Let S =

P

n

i=1

x
i

, where each x
i

2 {0, 1} is an independent random variable. Then the

following inequality holds for any 0 < ✏ < 1.

Pr(S > (1 + ✏)E[S])  e✏E[S]

(1 + ✏)(1+✏)E[S]

 exp

⇣�✏2E[S]

4

⌘

.

Proof. In what follows denote Pr(x
i

= 1) = p
i

. To show the first inequality, we follow standard
steps for arriving at a multiplicative Chernoff bound. For any t > 0 and using Markov’s inequality,
we have

Pr(S > (1 + ✏)E[S]) = Pr(exp(tS) > exp(t(1 + ✏)E[S]))  E[exp(tS)]

exp(t(1 + ✏)E[S])
. (2)

Now, noting that the random variables are independent, the numerator of this expression can be
bounded as follows

E[exp(tS)] = E

h

n

Y

i=1

exp(tx
i

)

i

=

n

Y

i=1

E[exp(tx
i

)] =

n

Y

i=1

p
i

et + (1� p
i

) =

n

Y

i=1

p
i

(et � 1) + 1


n

Y

i=1

exp(p
i

(et � 1)) = exp

⇣

(et � 1)

n

X

i=1

p
i

⌘

= exp((et � 1)E[S]) ,

where the inequality uses the fact 1+x  ex. Plugging this back into (2) and setting t = log(1+ ✏)
results in

Pr(S > (1 + ✏)E[S])  exp((et � 1)E[S])

exp(t(1 + ✏)E[S])
=

exp((1 + ✏� 1)E[S])

(1 + ✏)(1+✏)E[S]

=

e✏E[S]

(1 + ✏)(1+✏)E[S]

,

which proves the first inequality. To prove the second inequality, it suffices to show that

(1 + ✏)�(1+✏)E[S]

= exp(� log(1 + ✏)(1 + ✏)E[S])  exp

⇣

� ✏E[S]� ✏2E[S]

4

⌘

() log(1 + ✏)(1 + ✏) � ✏+
✏2

4

. (3)

To prove this, note that for f(✏) = log(1 + ✏)(1 + ✏)� ✏� ✏2/4, we have
f(0) = 0

8✏ 2 [0, 1], f 0
(✏) = log(1 + ✏)� ✏/2 � ✏� ✏2/2� ✏/2 > 0 .

Thus, the function f is zero at zero and increasing between values zero and one, implying it is
positive between values zero and one and which proves the inequality in (3) and completes the
lemma.
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A.3 Proof of Lemma 2

Before we present the proof of Lemma 2 we define a couple variables and also present an interme-
diate lemma. Define the variable

M
⇢

=

T↵
X

t=1

1{|v
t

� p
t

| < ⇢}, (4)

as the number of times that the gap between the price offered and the buyer’s value is less than ⇢.
For � > 0, let

E
�,⇢

=

n

M
⇢

 2⇢T
↵

+

r

8⇢T
↵

log

1

�

o

, (5)

denote the event that there are not too many rounds on which this gap is smaller than ⇢. We first
prove the following lemma:
Lemma 8. For any � > 0 and 0 < ⇢ < 1 we have P (E

�,⇢

) � 1� �.

Proof. First notice that on lie rounds, the (undiscounted) surplus lost compared to the truthful buyer
is

1{p
t

 v
t

}(v
t

� p
t

)

| {z }

truthful surplus

�1{p
t

> v
t

}(v
t

� p
t

)

| {z }

untruthful surplus

= |v
t

� p
t

| .

Since each value v
t

2 [0, 1] and price p
t

2 [0, 1] is chosen i.i.d. during the first T
↵

rounds of the
algorithm and furthermore p

t

is chosen uniformly at random, we have that on any round Pr(|v
t

�
p
t

| < ⇢)  2⇢. Using this, we note

E[M
⇢

] = E

"

T↵
X

t=1

1{|v
t

� p
t

| < ⇢}
#

=

T↵
X

t=1

E[1{|v
t

� p
t

| < ⇢}] =
T↵
X

t=1

Pr(|v
t

� p
t

| < ⇢)  2⇢T
↵

.

Now, since M
⇢

is a sum of T
↵

independent random variables taking values in {0, 1}, Lemma 7 (in
the appendix) implies

Pr[M
⇢

� (1 + ✏)E[M
⇢

]]  exp

⇣�✏2E[M
⇢

]

4

⌘

.

After setting the right hand side equal to � and solving for ✏, we have with probability at least 1� �,

M
⇢

 E[M
⇢

]

 

1 +

s

4

E[M
⇢

]

log

1

�

!

= E[M
⇢

] +

r

4E[M
⇢

] log

1

�
 2⇢T

↵

+

r

8⇢T
↵

log

1

�
,

which completes the proof of the intermediate lemma.

We can now give the proof of Lemma 2, which shows if we select

⇢⇤ = 1/(8T
↵

log(1/�)), (6)

and the event E
�,⇢

⇤ occurs, then at least �

�L+3�1

8T↵ log(

1
� )

⇣

�

T↵

1��

⌘

surplus is lost compared to the truthful
buyer.

Proof of Lemma 2. Let M 0
=

⌃

2⇢T
↵

+

p

8⇢T
↵

log 1/�
⌥

. Lemma 8 guarantees that with at least
probability 1 � �, M 0 is the maximum number of rounds where |v

t

� p
t

|  ⇢ occurs. Thus, on
at least L

⇢

= L � M 0 of the lie rounds, at least ⇢ (undiscounted) surplus is lost compared to the
truthful buyer. Let L

⇢

denote the set of rounds where these events occur (so that |L
⇢

| = L
⇢

), then
since the discount sequence is decreasing the disounted surplus lost is at least

X

t2L⇢

�
t

|v
t

� p
t

| � ⇢
X

t2L⇢

�
t

� ⇢
T↵
X

t=T↵�L⇢

�
t

.
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We can continue to lower bound this quantity:

T↵
X

t=T↵�L⇢

�
t

�
T↵�1

X

t=0

�t �
T↵�L⇢�1

X

t=0

�t

=

1� �T↵

1� �
� 1� �T↵�L⇢

1� �
= (��L⇢ � 1)

�T↵

1� �
.

We also have that:

L
⇢

� L� d2⇢T
↵

+

p

8⇢T
↵

log(1/�)e � L� 2⇢T
↵

�
p

8⇢T
↵

log(1/�)� 1

where the first inequality follows from the definition of L
⇢

, the second from the fact that dne  n+1.
Therefore, defining L0

⇢

= L� 2⇢T
↵

�
p

8⇢T
↵

log(1/�)� 1, gives us that for any 0 < ⇢ < 1/2:

T↵
X

t=T↵�L⇢

�
t

� (��L

0
⇢ � 1)

�T↵

1� �
.

Selecting ⇢ = 1/(8T
↵

log(1/�)) gives us:

⇢
⇣

��L

0
⇢ � 1

⌘ �T↵

1� �
� (8 log(1/�))�1

1

T
↵

�

��L+3 � 1

� �T↵

1� �
,

which completes the lemma.

A.4 Proof of Lemma 3

Proof. Let S
1

and S
2

be the excess surplus that a surplus-maximizing buyer earns over the truthful
buyer during the learning and exploit phase of the LEAP algorithm, respectively. We have

S
2


T

X

t=T↵+1

�t�1

= �T↵

T�T↵�1

X

t=0

�t

=

�T↵

1� �
(1� �T�T↵

) . (7)

Indeed, this an upper bound on the total surplus any buyer can hope to achieve in the second phase.
Now observe that for any constants C > 0, �

0

> 0 and ⇢⇤ as defined in equation (6), we have

E[S
1

] = Pr[E
�0,⇢

⇤ ^ L � C]E[S
1

| E
�0,⇢

⇤ ^ L � C] + Pr[¬E
�0,⇢

⇤ _ L < C]E[S
1

| ¬E
�0,⇢

⇤ _ L < C]

 Pr[E
�0,⇢

⇤ ^ L � C]E[S
1

| E
�0,⇢

⇤ ^ L � C]

= Pr[E
�0,⇢

⇤
] Pr[L � C | E

�0,⇢
⇤
]E[S

1

| E
�0,⇢

⇤ ^ L � C]

 �(1� �
0

) Pr[L � C | E
�0,⇢

⇤
]

��C+3 � 1

8T
↵

log(1/�
0

)

✓

�T↵

1� �

◆

The steps follow respectively by the law of iterated expectation; because S
1

 0 with probability
1, since the truthful buyer strategy gives maximal revenue during the non-adaptive first phase; defi-
nition of conditional probability; and finally, applying Lemma 8 to lower bound Pr[E

�0,⇢
⇤
] and the

second half of the proof of Lemma 2 (shown in Section A.3) to upper bound E[S
1

| E
�0,⇢

⇤ ^L � C]

(which is a negative quantity).

Note, since we are assuming a surplus maximizing buyer, it must be the case that 0  E[S
1

+ S
2

].
Thus, using the upper bound on S

2

and the upper bound on E[S
1

], we can rewrite the fact 0 
E[S

1

+ S
2

] as:

Pr[L � C | E
�0,⇢

⇤
](1� �

0

)

��C+3 � 1

8T
↵

log(1/�
0

)

✓

�T↵

1� �

◆

 �T↵

1� �
(1� �T�T↵

)

() Pr[L � C | E
�0,⇢

⇤
]  8T

↵

log(1/�
0

)(1� �T�T↵
)/((1� �

0

)(��C+3 � 1))

Therefore, when

C =

log

✓

(

1��

T�T↵
)

8T↵ log(1/�0)

�0(1��0)
+ 1

◆

log(1/�)
� 3 we have Pr[L � C | E

�0,⇢
⇤
]  �

0

.
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Fixing this choice of C, lets us conclude:

Pr[L � C] = Pr[L � C | E
�0,⇢

⇤
] Pr[E

�0,⇢
⇤
] + Pr[L � C | ¬E

�0,⇢
⇤
] Pr[¬E

�0,⇢
⇤
]

 Pr[L � C | E
�0,⇢

⇤
] + Pr[¬E

�0,⇢
⇤
]  �

0

+ �
0

Thus, setting �
0

= �/2 tells us that Pr[L < C] � 1 � �. Finally, to complete the lemma, we upper
bound C by dropping the terms (1��T�T↵

) and �3, and using 1/(�
0

(1��
0

)) = 2/(�(1��/2)) 
4/�.

A.5 Results from Rakhlin et al. [14]

Let Z
t

= (rF (w

t

)� g

t

)

>
(w

t

�w

⇤
) and

Z(T ) =
2

�

T

X

t=2

Z
t

t

T

Y

t

0
=t+1

✓

1� 2

t0

◆

. (8)

Rakhlin et al. [14] proved the following upper bound on Z(T ) in the last half of the proof of their
Proposition 1. For convenience, we isolate it into a separate lemma.

Lemma 9. Let w

1

, . . . ,w
T

be any sequence of weight vectors. If E [g

t

] = rF (w

t

) and kg
t

k2 
G2

then for any � < 1/e and T � 2

Z(T ) 
16G

p

log(log(T )/�)

�(T � 1)T

v

u

u

t

T

X

t=2

(t� 1)

2kw
t

�w

⇤k2 + 16G2

log(log(T )/�)

�2T
.

Importantly, for the previous lemma to hold it is not necessary for the w

t

’s to have been generated
by stochastic gradient descent. The same remark applies to the next lemma, which gives a recursive
upper bound on kw

t+1

�w

⇤k2, and which was also proven by Rakhlin et al. [14] in the last half of
the proof of their Proposition 1.
Lemma 10. Let w

1

, . . . ,w
T+1

be any sequence of weight vectors. Suppose the following three

conditions hold:

1. kw
t

�w

⇤k2  a

t

for t 2 {1, 2},

2. kw
t+1

�w

⇤k2  b

(t�1)t

q

P

t

i=2

(i� 1)

2 kw
i

�w

⇤k2 + c

t

for t 2 {2, . . . , T}, and

3. a � 9b

2

4

+ 3c.

Then kw
T+1

�w

⇤k2  a

(T+1)

.

A.6 Proof of Lemma 4

Proof. Recall that F is �-strongly convex. A well-known property of �-strongly convex functions
is that

rF (w

0
)

>
(w

0 �w

00
) � F (w

0
)� F (w

00
) +

�

2

kw0 �w

00k2 (9)

for any weight vectors w0,w00 (for example, see [15]). Letting w

0
= w

⇤ and w

00
= w in Eq. (9) we

have

0 = rF (w

⇤
)

>
(w

⇤ �w) � F (w

⇤
)� F (w) +

�

2

kw⇤ �wk2

) F (w)� F (w

⇤
) � �

2

kw⇤ �wk2 (10)

where we used the fact that w⇤ minimizes F , and thus rF (w

⇤
) = 0. Now letting w

0
= w and

w

00
= w

⇤ in Eq. (9) and applying Eq. (10) proves

rF (w)

>
(w �w

⇤
) � � kw �w

⇤k2 . (11)
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Note that g̃
t

= g

t

± 1{t 2 L}x
t

, where the ± depends on the value of a
t

. Let Z
t

= (rF (w

t

) �
g

t

)

>
(w

t

�w

⇤
). We have

kw
t+1

�w

⇤k2 = kw
t

� ⌘
t

g̃

t

�w

⇤k2

= kw
t

�w

⇤k2 � 2⌘
t

g̃

>
t

(w

t

�w

⇤
) + ⌘2

t

kg̃
t

k2

= kw
t

�w

⇤k2 � 2⌘
t

g

>
t

(w

t

�w

⇤
)± 2⌘

t

1{t 2 L}x>
t

(w

t

�w

⇤
) + ⌘2

t

kg̃
t

k2

 kw
t

�w

⇤k2 � 2⌘
t

g

>
t

(w

t

�w

⇤
) + 4⌘

t

1{t 2 L}+ ⌘2
t

G2 (12)

= kw
t

�w

⇤k2 � 2⌘
t

rF (w

t

)

>
(w

t

�w

⇤
) + 2⌘

t

Z
t

+ 4⌘
t

1{t 2 L}+ ⌘2
t

G2

 kw
t

�w

⇤k2 � 2⌘
t

� kw
t

�w

⇤k2 + 2⌘
t

Z
t

+ 4⌘
t

1{t 2 L}+ ⌘2
t

G2 (13)

= (1� 2�⌘
t

) kw
t

�w

⇤k2 + 2⌘
t

Z
t

+ 4⌘
t

1{t 2 L}+ ⌘2
t

G2

where in Eq. (12) we used x

>
t

(w

t

�w

⇤
)  kx

t

k kw
t

�w

⇤k  2 and kg̃
t

k2  G2. In Eq. (13) we
used Eq. (11). For any T 0 2 {2, . . . , T

↵

} let Y
t

(T 0
) =

Q

T

0

t

0
=t+1

(1� 2�⌘
t

0
). Unrolling the above

recurrence till t = 2 yields

kw
T

0
+1

�w

⇤k2  Y
1

(T 0
) kw

2

�w

⇤k2+2

T

0
X

t=2

⌘
t

Z
t

Y
t

(T 0
)+4

T

0
X

t=2

⌘
t

1{t 2 L}Y
t

(T 0
)+G2

T

0
X

t=2

⌘2
t

Y
t

(T 0
).

Now substitute ⌘
t

=

1

�t

, and note that since (1 � 2�⌘
2

) = 0 and T 0 � 2 we have Y
1

(T 0
) = 0,

so the first term is zero. Also the second term is equal to Z(T 0
) by the definition in Eq. (8) in

Appendix A.5. Simplifying leads to

kw
T

0
+1

�w

⇤k2  Z(T 0
) +

4

�

T

0
X

t=2

1{t 2 L}Yt

(T 0
)

t
+

G2

�2

T

0
X

t=2

Y
t

(T 0
)

t2
. (14)

Now observe that for t � 2

log Y
t

(T 0
) =

T

0
X

t

0
=t+1

log

✓

1� 2

t0

◆

 �2

T

0
X

t

0
=t+1

1

t0
= �2

0

@

T

0
X

t

0
=1

1

t0
�

t

X

t

0
=1

1

t0

1

A  �2(log T 0�log t�1),

where the last inequality uses a lower bound on the t-th harmonic number and upper bound on the
T 0-th harmonic number. Thus, Y

t

(T 0
)  e

2
t

2

T

02 and plugging back into Eq. (14) yields

kw
T

0
+1

�w

⇤k2  Z(T 0
) +

4e2

�T 02

T

0
X

t=2

1{t 2 L}t+ e2G2

�2T 0  Z(T 0
) +

4e2L

�T 0 +

e2G2

�2T 0 .

where the second inequality follows from
P

T

0

t=2

1{t 2 L}t  LT 0. Now, to bound the term Z(T 0
),

we apply Lemma 9 from Appendix A.5 and conclude that for � 2 [0, 1/e], with probability at least
1� �, for all T 0 2 {2, . . . , T

↵

}

Z(T 0
) 

16G
p

log(log(T 0
)/�)

�(T 0 � 1)T 0

v

u

u

t

T

0
X

t=2

(t� 1)

2kw
t

�w

⇤k2 + 16G2

log(log(T 0
)/�)

�2T 0 .

Plugging this back in and simplifying we get, with probability at least 1��, for all T 0 2 {2, . . . , T
↵

}

kw
T

0
+1

�w

⇤k2 

16G
p

log(log(T 0
)/�)

�(T 0 � 1)T 0

v

u

u

t

T

0
X

t=2

(t� 1)

2kw
t

�w

⇤k2+ 1

T 0

⇣

(16 log(log(T 0
)/�) + e2)G2

�2

+

4e2L

�

⌘

.

In order to apply Lemma 10 in Appendix A.5 let

a =

(624 log(log(T
↵

)/�) + e2)G2

�2

+

4e2L

�
,

b =
16G

p

log(log(T 0
)/�)

�
, and

c =
(16 log(log(T 0

)/�) + e2)G2

�2

+

4e2L

�
.
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It is a straightforward calculation to show that a � 9b

2

4

+ 3c. Also for any T 0

G kw
T

0 �w

⇤k � krF (w

T

0
)k kw

T

0 �w

⇤k � rF (w

T

0
)

>
(w

T

0 �w

⇤
) � � kw

T

0 �w

⇤k2

where the last inequality follows from Eq. (11). Dividing both sides by � kw
T

0 �w

⇤k proves
kw

T

0 �w

⇤k  G

�

for all T 0, which implies kw
T

0 �w

⇤k2  a/T 0 for T 0 2 {1, 2}. Now we can
apply Lemma 10 in Appendix A.5 to show

kw
T↵+1

�w

⇤k2  1

T
↵

+ 1

⇣

(624 log(log(T
↵

)/�) + e2)G2

�2

+

4e2L

�

⌘

,

which completes the proof.

A.7 Proof of Proposition 2

Proof. We will use an inductive argument. Note that, before the projection step �
1

= 2a
1

/� and
after projection �

1

= a
1

/
p

K(x

1

,x
1

). Thus, w
1

= 0 and w

2

= �
1

�(x
1

) =

a1p
K(x1,x1)

�(x
1

)

match the hypotheses returned by the LEAP algorithm when operating in the feature space induced
by �(·) and using the projection ⇧W for W = {w : kwk

2

 1}. Now, assuming the inductive
hypothesis, we have w

t

=

P

t�1

i=1
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i

�(x
i

) and we have, before projection,
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and, after projection,
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(w

>
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)
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>
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)

⌘

= w

t+1

which proves the equivalence of the first phase of the two algorithms in the feature space induced
by �(·). Note, in the second phase neither � or w

T↵+1

is updated, and from the preceding argument
we have

p
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=
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X
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which shows the equivalence of the two algorithms in the second phase as well.

The bound kw
t

k  1 follows directly from the definition of the projection ⇧

K

. Using w
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=
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i=1
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i

�(x
i

), we have that the gradient is
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Finally, we can bound kg
t

k  2(|w>
t
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)| + 1)k�(x
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)k + 1)  4, which
follows from kw
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)k =

p
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,x
t

)  1.

A.8 Doubling trick

Corollary 2. Partition all T rounds into dlog
2

T e consecutive phases, where each phase i has length

T
i

= 2

i

. Run an independent instance of the LEAP algorithm in each phase, tuning ✏ and ↵ as in

Theorem 2, using horizon length T
i

. Against a surplus-maximizing buyer, the seller’s regret against

a surplus-maximizing buyer is R(T )  O
�

T 2/3

q

log(T )

log(1/�)

�

.

Proof. Since an independent instance of the algorithm is run in each phase, the buyer will behave so
as to maximize surplus in each phase independently, without regard to what occurs in other phases.
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Moreover, the discount factor for the sth round in any phase i is �ti+s

= �ti�s, where t
i

is the first
round of phase i. It is easy to see that the behavior of a surplus-maximizing buyer is unchanged if
we scale her surplus in every round by a constant. Therefore the analysis of Theorem 2 is directly
applicable to every phase, and we can combine the analysis for all phases using the doubling trick,
as follows.

Let R
i

be the seller’s strategic regret in phase i and n = dlog
2

T e. By Theorem 2 there exists a
constant C depending only on � such that

R(T ) =

dlog2 Te
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R
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⌘

i p
i (15)

Let S
r,n

=
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n
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p
i. Observe that
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Combining the previous two inequalities proves rn+1

p
n+ 1 + S
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� rS
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, which can be rear-
ranged to show

n

X
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p
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.

Applying the above inequality for n = dlog
2

T e and r = 2

2/3 proves
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i p
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2/3
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2
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p

log

2
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Combining the above with Eq (15) proves the corollary.
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