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Lemma 2. The function g : v — ?f; is decreasing over the interval (0, 1).

Proof. This can be straightforwardly established:
1- 1 1
— ey lg(1-[1-3]) (-9 (-9 -(1-1)
(1—=9)? (1 —=7)? (1 =7)?
using the inequality log(1 — z) < —z valid for all z < 0. O

g(v) = =0,

Lemma 3. Lera > 0andlet g: D C R — [a,00) be a decreasing and differentiable function.
Then, the function F': R — R defined by

F(y)=9() = Vg(y)? b

is increasing for all values of b € [0, a).

Proof. We will show that F’() > 0 for all v € D. Since F' = ¢'[1 — g(g®> —b)~"/?]and ¢’ <0
by hypothesis, the previous statement is equivalent to showing that /g2 — b < g which is trivially
verified since b > 0. O

Theorem 1. Let 1/2 < <7< 1and r* = [argminr>1 r+ (1_73/5;%
- 0
if T > 4, the regret of PFS,.« satisfies

Reg(PFS,+,v) < (2v0y0T, logcT + 14 v)(logylogy T + 1) + 4T,

—‘ . For any v € [0, 1],

where ¢ = 41log 2.

r

Proof. 1t is not hard to verify that the function r» — r + a is convex and approaches

YT
e . , L —0)(1=v0) :
infinity as » — oo. Thus, it admits a minimizer ¥* whose explicit expression can be found by
solving the following equation

d YT > 71 log Yo
0= —(r+—T0" ) —14 .
dr ( (1 =9)(1 =5) (1 —=70)(1 —15)?

Solving the corresponding second-degree equation yields

2
) 2+T1c1g_%w>\/(2+mig_%w> .y

Yo = 5 =: F(v0)-
By Lemmas 2 and 3, the function F thereby defined is increasing. Therefore, v < lim,, 1 F(70)
and
o 24T —\/(24+T)2-4 4 2
Yo = ( ) = < = ®)
2 22+ T++/(2+T1T)2—-4) T
By the same argument, we must have 7§ > F(1/2), that is
. 24 2Tlog2 — /(24 2T 10g2)? — 4
> P(12) = VL )
_ 4
2(2 + 2T log 2 + /(2 + 2T log 2)2 — 4)
2 1
> > .
T 4+4Tlog2 — 4T log?2
Thus,
log(1/F(1/2 log(4T log 2
o ey < B W/FQ/2) | los(dTlog2) o

log(1/v0) ~ logl/vo
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Combining inequalities (8) and (9) with (7) gives
log(4T log 2) (14+~0)T

log 1/ (1 =75)(T—-2)
< (2uyTh, log(cT) + 1 4 v)([logy logy T + 1) + 4T,

Reg(PFS,~,v) < <v +1+ v) ([logylog, T+ 1) +

using the inequality log(%) > 12*—77 valid for all v € (1/2,1). O

8.1 Lower bound for monotone algorithms

Lemma 4. Let (p;)]_, be a decreasing sequence of prices. Assume that the seller faces a truthful
buyer. Then, if v is sampled uniformly at random in the interval [%, 1], the following inequality

holds:
1

S SR

Proof. Since the buyer is truthful, x*(v) = & if and only if v € [p,;, p,,—1]. Thus, we can write

Rmax Rmax Dr—1 Kmax (p,q/_]_ _ pﬁ)g
E[’U - pn*} = Z ]E{]lve[p,i,pﬁ,l](v - pn):| = Z / (U - pli) dv = Z D) )
Kr=2 K

Kr=2 r=2

where Kmax = m*(%) Thus, by the Cauchy-Schwarz inequality, we can write

K" i K*
an—l - p;-;| S E K* Z(prz—l - pn)Z
r=2 k=2

E

RKmax
S E K* Z (pﬁ—l _pn)Q
K=2

=E [ 2k*Efv — pn*]}
< VERTVIER = 7,

where the last step holds by Jensen’s inequality. In view of that, since v > p,+, it follows that:

*

Z =E[v] > E[p:<] = E [an — Dr—1

K=2

+p1 > —VE[*]V/2E[v — pe-] + 1.

Solving for E[k*] concludes the proof. O

The following lemma characterizes the value of x* when facing a strategic buyer.

Lemma 5. Forany v € [0,1], k* satisfies v — p« > C’Lj*(p,g* — Drrt1) With C’i’;‘* = %
Furthermore, when k* < 1+ /T, T andT > T, + %, C’:;”* can be replaced by the universal

constant C., = ﬁ

Proof. Since an optimal strategy is played by the buyer, the surplus obtained by accepting a price

at time x* must be greater than the corresponding surplus obtained when accepting the first price at
time k* + 1. It thus follows that:

T T
AT wape) = D> AT = peega)

t=Kr* t=r*+1

T
- - g
= T w=pe) > Y AT (Per — Pre1) =

v

(pm* - pm*+1)~

11



Dividing both sides of the inequality by v* ! yields the first statement of the lemma. Let us
verify the second statement. A straightforward calculation shows that the conditions on 7" imply

T—-\IT,> 108(2/7) therefore

log(1/7)”
_ log(2/v)
N ,y_,yT VI,T - vy — /M ’}/ % _ v
T 1=y T 1=y 1=y 2(1-9)
O
Proposition 5. For any convex decreasing sequence (p;)L_q, if T > T, + %, then there

exists a valuation vg € [%, 1] for the buyer such that

Reg(Aum,vo) > max é T-VT,,|C, (T — TVT) (; - %) = QT + /T, T).

Proof. In view of Proposition 1, we only need to verify that there exists vy € [%, 1] such that

1 C
Reg(Anm,v0) > 4| Cy (T— \/ﬁ) <2 _ 17)

Let Kmin = £*(1), and Kmax = K ( ). If Kmin > 14+ +/T, T, then Reg(A,, 1) > 1+ /T, T, from
which the statement of the proposition can be derived stra1ghtf0rwardly Thus in the f0110w1ng we

will only consider the case kmin < 14 /7,7 Since, by definition, the inequality % > Dip.ay DOlds,
we can write

1 RKmax
3 2 Primax = > (P = Pre1) + Prin = Fmax (Prin 41 = Prisuin) + Priyin
K=Kmin+1

where the last inequality holds by the convexity of the sequence and the fact that p,;_ ., — Dwpin—

0. The inequality is equivalent to p,,_ . — P, 41 > omis t . Furthermore, by Lemma 5, we have

Kmax

m?‘x Reg(Am7 U) Z max (K'rnaxv (T - Iinlln)(pﬁxnin - pﬁtnin"rl))

’Ue[g, ]
(T - "{min)(pnman - é))

K/max

> max (Iimax, cy

The right-hand side is minimized for Kmax = \/ Co(T = Fmin)(Pimin — 3)- Thus, there exists a
valuation vy for which the following inequality holds:

Reg(A,,,vg) > \/C’,Y(T - limin)(pnmi,, - ;) > \/ny (T - \/ﬁ) (pf@min - %)

Furthermore, we can assume that p,, . > 1 — \/% otherwise Reg(A,,,1) > (T'—1),/C,/T,
which is easily seen to imply the desired lower bound. Thus, there exists a valuation vy such that

1 C
Reg(Apm,v0) > | Cy (T — m) <2 _ /I"Y>’

which concludes the proof. O

9 Simulations

Here, we present the results of more extensive simulations for PFS, and the monotone algorithm.
Again, we consider two different scenarios. Figure 3 shows the experimental results for an agnostic
scenario where the value of the parameter v remains unknown to both algorithms and where the
parameter r of PFS,. is set to log(T"). The results reported in Figure 4 correspond to the second
scenario where the discounting factor -y is known to the algorithms and where the parameter (3 for
the monotone algorithm is set to 1 — 1/, /T'T’,. The scale on the plots is logarithmic in the number
of rounds and in the regret.
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Figure 3: Regret curves for PFS,. and monotone for different values of v and . The value of - is

not known to the algorithms.
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Figure 4: Regret curves for PFS,. and monotone for different values of v and . The value of - is
known to both algorithms.
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