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Abstract

The class of shuffle ideals is a fundamental sub-family of regular languages. The
shuffle ideal generated by a string set U is the collection of all strings containing
some string v € U as a (not necessarily contiguous) subsequence. In spite of
its apparent simplicity, the problem of learning a shuffle ideal from given data is
known to be computationally intractable. In this paper, we study the PAC learn-
ability of shuffle ideals and present positive results on this learning problem under
element-wise independent and identical distributions and Markovian distributions
in the statistical query model. A constrained generalization to learning shuffle
ideals under product distributions is also provided. In the empirical direction, we
propose a heuristic algorithm for learning shuffle ideals from given labeled strings
under general unrestricted distributions. Experiments demonstrate the advantage
for both efficiency and accuracy of our algorithm.

1 Introduction

The learnablity of regular languages is a classic topic in computational learning theory. The ap-
plications of this learning problem include natural language processing (speech recognition, mor-
phological analysis), computational linguistics, robotics and control systems, computational biology
(phylogeny, structural pattern recognition), data mining, time series and music ([[7,/ 141820, 21]).
Exploring the learnability of the family of formal languages is significant to both theoretical and
applied realms.

Valiant’s PAC learning model introduces a clean and elegant framework for mathematical analysis
of machine learning and is one of the most widely-studied theoretical learning models ([22]]). In the
PAC learning model, unfortunately, the class of regular languages, or equivalently the concept class
of deterministic finite automata (DFA), is known to be inherently unpredictable ([|1,/9,/19]). In a
modified version of Valiant’s model which allows the learner to make membership queries, Angluin
[2]] has shown that the concept class of regular languages is PAC learnable.

Throughout this paper we study the PAC learnability of a subclass of regular languages, the class of
(extended) shuffle ideals. The shuffle ideal generated by an augmented string U 1is the collection of all
strings containing some u € U as a (not necessarily contiguous) subsequence, where an augmented
string is a finite concatenation of symbol sets (see Figure [T for an illustration). The special class
of shuffle ideals generated by a single string is called the principal shuffle ideals. Unfortunately,
even such a simple class is not PAC learnable, unless RP=NP ([3]]). However, in most application
scenarios, the strings are drawn from some particular distribution we are interested in. Angluin
et al. [3] prove under the uniform string distribution, principal shuffle ideals are PAC learnable.
Nevertheless, the requirement of complete knowledge of the distribution, the dependence on the
symmetry of the uniform distribution and the restriction of principal shuffle ideals lead to the lack
of generality of the algorithm. Our main contribution in this paper is to present positive results
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Figure 1: The DFA accepting precisely the shuffle ideal of U = (a|b|d)a(b|c) over ¥ = {a, b, ¢, d}.

on learning the class of shuffle ideals under element-wise independent and identical distributions
and Markovian distributions. Extensions of our main results include a constrained generalization
to learning shuffle ideals under product distributions and a heuristic method for learning principal
shuffle ideals under general unrestricted distributions.

After introducing the preliminaries in Section [2] we present our main result in Section 3} the ex-
tended class of shuffle ideals is PAC learnable from element-wise i.i.d. strings. That is, the dis-
tributions of the symbols in a string are identical and independent of each other. A constrained
generalization to learning shuffle ideals under product distributions is also provided. In Section 4}
we further show the PAC learnability of principal shuffle ideals when the example strings drawn
from X <" are generated by a Markov chain with some lower bound assumptions on the transition
matrix. In Section [5] we propose a greedy algorithm for learning principal shuffle ideals under
general unrestricted distributions. Experiments demonstrate the advantage for both efficiency and
accuracy of our heuristic algorithm.

2 Preliminaries

We consider strings over a fixed finite alphabet ¥. The empty string is A. Let ¥* be the Kleene
star of ¥ and X be the collection of all subsets of X.. As strings are concatenations of symbols, we
similarly define augmented strings as concatenations of unions of symbols.

Definition 1 (Alphabet, simple string and augmented string) Ler 3 be a non-empty finite set of
symbols, called the alphabet. A simple string over X is any finite sequence of symbols from ., and
>* is the collection of all simple strings. An augmented string over X is any finite concatenation of
symbol sets from X%, and (XV)" is the collection of all augmented strings.

Denote by s the cardinality of 3. Because an augmented string only contains strings of the same
length, the length of an augmented string U, denoted by |U], is the length of any u € U. We use
exponential notation for repeated concatenation of a string with itself, that is, v¥ is the concatenation
of k copies of string v. Starting from index 1, we denote by v; the i-th symbol in string v and use
notation v[i, j] = v;...v; for 1 < i < j < |v|. Define the binary relation C on ((XY)*,X*) as
follows. For a simple string w, w C v holds if and only if there is a witness i = (i1 <ig < ...<
i||) such that v;; = w; for all integers 1 < j < |w|. For an augmented string W, W C v if and only
if there exists some w € W such that w C v. When there are several witnesses for W C v, we may
order them coordinate-wise, referring to the unique minimal element as the leftmost embedding. We
will write Iy, to denote the position of the last symbol of W in its leftmost embedding in v (if the
latter exists; otherwise, Iy, = 00).

Definition 2 (Extended/Principal Shuffle Ideal) The (extended) shuffle ideal of an augmented
string U € (39)" is a regular language defined as I(U) = {v € ©* | 3u € U,u C v} =
SHULEFULY" ... E*ULY*. A shuffle ideal is principal if it is generated by a simple string.

A shuffle ideal is an ideal in order theory and was originally defined for lattices. Denote by Lu the
class of principal shuffle ideals and by III the class of extended shuffle ideals. Unless otherwise
stated, in this paper shuffle ideal refers to the extended ideal. An example is given in Figure[I] The
feasibility of determining whether a string is in the class III(U) is obvious.

Lemma 1 Evaluating relation U T x and meanwhile determining Iyc,, is feasible in time O(|x)).

In a computational learning model, an algorithm is usually given access to an oracle providing
information about the sample. In Valiant’s work [22], the example oracle EX (¢, D) was defined,



where c is the target concept and D is a distribution over the instance space. On each call, EX (¢, D)
draws an input x independently at random from the instance space Z under the distribution D, and
returns the labeled example (x, ¢(x)).

Definition 3 (PAC Learnability: [22]) Let C be a concept class over the instance space T. We
say C is probably approximately correctly (PAC) learnable if there exists an algorithm A with the
following property: for every concept ¢ € C, for every distribution D on I, and for all 0 < e < 1/2
and 0 < § < 1/2, if A is given access to EX (¢, D) on T and inputs € and §, then with probability
at least 1 — 0, A outputs a hypothesis h € H satisfying Pryeplc(x) # h(x)] < e If A runs in time
polynomial in 1/¢, 1/§ and the representation size of ¢, we say that C is efficiently PAC learnable.

We refer to € as the error parameter and § as the confidence parameter. If the error parameter
is set to 0, the learning is exact ([6]]). Kearns [[11] extended Valiant’s model and introduced the
statistical query oracle STAT (¢, D). Kearns’ oracle takes as input a statistical query of the form
(x, 7). Here x is any mapping of a labeled example to {0,1} and 7 € [0, 1] is called the noise
tolerance. STAT (¢, D) returns an estimate for the expectation Ey, that is, the probability that y = 1
when the labeled example is drawn according to D. A statistical query can have a condition so Ex
can be a conditional probability. This estimate is accurate within additive error 7.

Definition 4 (Legitimacy and Feasibility: [11]) A statistical query x is legimate and feasible if
and only if with respect to 1 /¢, 1/1 and representation size of c:

1. Query x maps a labeled example (x,c(x)) to {0, 1};

2. Query x can be efficiently evaluated in polynomial time;

3. The condition of x, if any, can be efficiently evaluated in polynomial time;
4

. The probability of the condition of x, if any, should be at least polynomially large.

Throughout this paper, the learnability of shuffle ideals is studied in the statistical query model.
Kearns [11] proves that oracle STAT (¢, D) is weaker than oracle EX (¢, D). In words, if a concept
class is PAC learnable from STAT (¢, D), then it is PAC learnable from E X (¢, D), but not necessarily
vice versa.

3 Learning shuffle ideals from element-wise i.i.d. strings

Although learning the class of shuffle ideals has been proved hard, in most scenarios the string
distribution is restricted or even known. A very usual situation in practice is that we have some prior
knowledge of the unknown distribution. One common example is the string distributions where each
symbol in a string is generated independently and identically from an unknown distribution. It is
element-wise i.i.d. because we view a string as a vector of symbols. This case is general enough to
cover some popular distributions in applications such as the uniform distribution and the multinomial
distribution. In this section, we present as our main result a statistical query algorithm for learning
the concept class of extended shuffle ideals from element-wise i.i.d. strings and provide theoretical
guarantees of its computational efficiency and accuracy in the statistical query model. The instance
space is X". Denote by U the augmented pattern string that generates the target shuffle ideal and by
L = |U]| the length of U.

3.1 Statistical query algorithm

Before presenting the algorithm, we define function 6y ,(-) and query xv,, (-, -) for any augmented
string V € (£Y)=" and any symbol a € ¥ as as follows.

_Joa ifVIZz[l,n—1]
Ov,a(z) = { Trye,41 iV E z[1,n — 1]

1 .
5 (y+1) givenbyq(z) =a

Xv,a(T,y) =



where y = c(z) is the label of example string . More precisely, y = +1 if x € III(U) and

y = —1 otherwise. Our learning algorithm uses statistical queries to recover string U € (EU)L one
element at a time. It starts with the empty string V' = \. Having recovered V = U[1, {] where
0 < ¢ < L, we infer Uy as follows. For each a € ¥, the statistical query oracle is called with
the query xv,, at the error tolerance 7 claimed in Theorem E} Our key technical observation is
that the value of Exv,, effectively selects Uy1. The query results of xy,, will form two separate
clusters such that the maximum difference (variance) inside one cluster is smaller than the minimum
difference (gap) between the two clusters, making them distinguishable. The set of symbols in the
cluster with larger query results is proved to be Uy;. Notice that this statistical query only works
for 0 < £ < L. To complete the algorithm, the algorithm addresses the trivial case / = L with query
Pr[y = +1 | V C z] and halts if the query answer is close to 1.

3.2 PAC learnability of ideal 111

We show the algorithm described above learns the class of shuffle ideals from element-wise i.i.d.
strings in the statistical query learning model.

Theorem 1 Under element-wise independent and identical distributions over instance space T =
3", concept class 111 is approximately identifiable with O(sn) conditional statistical queries from
STAT(111, D) at tolerance

62

T 7 40sn? + 4e
or with O(sn) statistical queries from STAT(I11, D) at tolerance
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We provide the main idea of the proofs in this section and defer the details and algebra to Appendix
A. The proof starts from the legitimacy and feasibility of the algorithm. Since xv,, computes a
binary mapping from labeled examples to {0, 1}, the legitimacy is trivial. But xy,, is not feasible
for symbols in X of small occurrence probabilities. We avoid the problematic cases by reducing the
original learning problem to the same problem with a polynomial lower bound assumption Pr{z; =
a] > €/(2sn) — €2/(20sn? + 2¢) for any a € X and achieve feasibility.

The correctness of the algorithm is based on the intuition that the query result Exy,,, of a symbol
ay € Upyq should be greater than that of a symbol a— ¢ U4 and the difference is large enough
to tolerate the noise from the oracle. To prove this, we first consider the exact learning case. Define
an infinite string U’ = U[1, (JU[¢ 4- 2, L]U | and let 2’ = 23> be the extension of 2 obtained by
padding it on the right with an infinite string generated from the same distribution as x. Let Q(j, ¢)
be the probability that the largest g such that U’[1, g] C 2’[1, 7] is j, or formally

Q(j,1) =Pr[U'[1,5] C2'[1,i) AU'[1,5 + 1] Z 2[1,4]]
By taking the difference between Exv,,, and Exv,,_ interms of Q(j, ), we get the query tolerance

for exact learning.

Lemma 2 Under element-wise independent and identical distributions over instance space T =
3", concept class 111 is exactly identifiable with O(sn) conditional statistical queries from
STAT(111, D) at tolerance

1
7= gQ(L—l,n—l)

Lemma [2| indicates bounding the quantity Q(L — 1,n — 1) is the key to the tolerance for PAC
learning. Unfortunately, the distribution {Q(j,7)} doesn’t seem to have any strong properties we
know of providing a polynomial lower bound. Instead we introduce new quantity

R(j,1) =Pr[U'[1,7] E2'[1,i) AU'[1,5] Z 2'[1,i — 1]]

being the probability that the smallest g such that U’[1, j] C «’[1, g] is 4. An important property of
distribution { R(j,7)} is its strong unimodality as defined below.



Definition 5 (Unimodality: [8]) A distribution {P(i)} with all support on the lattice of integers is
unimodal if and only if there exists at least one integer K such that P(i) > P(i — 1) foralli < K
and P(i + 1) < P(3) for alli > K. We say K is a mode of distribution { P(i)}.

Throughout this paper, when referring to the mode of a distribution, we mean the one with the largest
index, if the distribution has multiple modes with equal probabilities.

Definition 6 (Strong Unimodality: [10]) A distribution {H (i)} is strongly unimodal if and only if
the convolution of { H (i)} with any unimodal distribution { P(i)} is unimodal.

Since a distribution with all mass at zero is unimodal, a strongly unimodal distribution is also uni-
modal. In this paper, we only consider distributions with all support on the lattice of integers. So the
convolution of {H (7)} and {P(4)} is

{H«P}(i)= > H({PGi-j)= Y H(i-jPQ)

j=—o0 j=—o0

We prove the strong unimodality of {R(j,¢)} with respect to ¢ via showing it is the convolution of
two log-concave distributions by induction. We do an initial statistical query to estimate Pr[y = +1]
to handle two marginal cases Pr[y = +1] < ¢/2 and Pr[y = +1] > 1—¢/2. After that an additional
query Prly = 4+1 | V C z] is made to tell whether £ = L. If the algorithm doesn’t halt, it means
¢ < L and both Pr[y = +1] and Pr[y = —1] are at least ¢/2 — 27. By upper bounding Pr[y = +1]
and Prly = —1] using linear sums of R(j,4), the strong unimodality of {R(j,4)} gives a lower
bound for R(L, n), which further implies one for Q(L — 1,n — 1) and completes the proof.

3.3 A generalization to instance space > ="

We have proved the extended class of shuffle ideals is PAC learnable from element-wise i.i.d. fixed-
length strings. Nevertheless, in many real-world applications such as natural language processing
and computational linguistics, it is more natural to have strings of varying lengths. Let n be the
maximum length of the sample strings and as a consequence the instance space for learning is X<
Here we show how to generalize the statistical query algorithm in Section [3.1] to the more general
instance space X <".

Let A; be the algorithm in Section [3.1] for learning shuffle ideals from element-wise i.i.d. strings of
fixed length . Because instance space £=" = [ J, ., £, we divide the sample S into n subsets {5, }
where S; = {x | |z| = i}. Aninitial statistical query then is made to estimate probability Pr[|x| = i]
for each ¢ < n at tolerance €/(8n). We discard all subsets .S; with query answer < 3¢/(8n) in the
learning procedure, because we know Pr{|xz| = i] < €/(2n). As there are at most (n — 1) such
S; of low occurrence probabilities. The total probability that an instance comes from one of these
negligible sets is at most €/2. Otherwise, Pr[|z| = ] > €/(4n) and we apply algorithm .4; on each
S; with query answer > 3e/(8n) with error parameter €/2. Because the probability of the condition
is polynomially large, the algorithm is feasible. Finally, the total error over the whole instance space
will be bounded by € and concept class I1I is PAC learnable from element-wise i.i.d. strings over
instance space X",

Corollary 1 Under element-wise independent and identical distributions over instance space T =
$=7 concept class 111 is approximately identifiable with O(sn?) conditional statistical queries from
STAT(111, D) at tolerance

€2

’r = —-—
160sn2 + 8¢

or with O(sn?) statistical queries from STAT(IL, D) at tolerance

_ ) € €
T = —
40sn? + 2¢ ) 512sn2(20sn? + ¢)



3.4 A constrained generalization to product distributions

A direct generalization from element-wise independent and identical distributions is product dis-
tributions. A random string, or a random vector of symbols under a product distribution has

element-wise independence between its elements. That is, Pr[X = z] = H‘f:ll Pr[X; = z;]. Al-
though strings under product distributions share many independence properties with element-wise
i.i.d. strings, the algorithm in Section is not directly applicable to this case as the distribution
{R(j,4)} defined above is not unimodal with respect to ¢ in general. However, the intuition that
given Iy, = h, the strings with x;, 1 € U4 have higher probability of positivity than that of the
strings with 25,11 & Up41 is still true under product distributions. Thus we generalize query xv.q,

and define for any V € (ZU)S", a€Yandh € [0,n—1],

Kvan(,9) = 5(y+1) given Iy, = hand oy =
where y = c(x) is the label of example string . To ensure the legitimacy and feasibility of the
algorithm, we have to attach a lower bound assumption that Pr[x; = a] > ¢ > 0, for V1 < i < nand
Va € ¥. Appendix C provides a constrained algorithm based on this intuition. Let P(+]a, h) denote
ExXv,q.n. If the difference P(+|a, h) — P(+]a—, h) is large enough for some h with nonnegligible
Pr{Iyc, = h], then we are able to learn the next element in U. Otherwise, the difference is very
small and we will show that there is an interval starting from index (h + 1) which we can skip
with little risk. The algorithm is able to classify any string whose classification process skips O(1)
intervals. Details of this constrained generalization are deferred to Appendix C.

4 Learning principal shuffle ideals from Markovian strings

Markovian strings are widely studied in natural language processing and biological sequence mod-
eling. Formally, a random string = is Markovian if the distribution of x;; only depends on the
value of x;: Prlx;y1 | 21 ...2;] = Prla;4q | ;] for any ¢ > 1. If we denote by 7 the distribution
of z; and define s X s stochastic matrix M by M (a1,a2) = Pr[z;41 = a1 | ©; = ag], then a
random string can be viewed as a Markov chain with initial distribution 7y and transition matrix
M. We choose ©=" as the instance space in this section and assume independence between the
string length and the symbols in the string. We assume Pr[|z| = k] > tforall 1 < k < n and
min{M(-,-), m(-)} > c for some positive ¢ and c. We will prove the PAC learnability of class Ll
under this lower bound assumption. Denote by u be the target pattern string and let L = |ul.

4.1 Statistical query algorithm

Starting with empty string v = A, the pattern string w is recovered one symbol at a time. Having
recovered v = u[l, £], we infer ug1 by ¥, o = Zzzhﬂ Exv,ak(x,y), where

1 .
Xv,a,k(xa y) = i(y + 1) given IvEm = h7 Th+1 = a and “Tl =k

0 < ¢ < L and h is chosen from [0, n — 1] such that the probability Pr[,-, = h] is polynomially
large. The statistical queries Y, o % are made at tolerance 7 claimed in Theorem and the symbol
with the largest query result of U, , is proved to be us1. Again, the case where ¢ = L is addressed
by query Prly = +1 | v C z]. The learning procedure is completed if the query result is close to 1.

4.2 PAC learnability of principal ideal L1

With query U, ,, we are able to recover the pattern string v approximately from STAT (wi(u), D) at
proper tolerance as stated in Theorem [2}

Theorem 2 Under Markovian string distributions over instance space T = Y=", given Pr[|x| =
k] >t > 0forVl <k <mnand min{M(-,-),m(-)} > ¢ > 0, concept class wi is approximately
identifiable with O(sn?) conditional statistical queries from STAT (., D) at tolerance

€

T:7
3n2 4+ 2n+2



or with O(sn?) statistical queries from STAT(w, D) at tolerance

3ctne?
(3n2 + 2n + 2)2

7=

Please refer to Appendix B for a complete proof of Theorem [2] Due to the probability lower bound
assumptions, the legitimacy and feasibility are obvious. To calculate the tolerance for PAC learning,
we first consider the exact learning tolerance. Let 2’ be an infinite string generated by the Markov
chain defined above. For any 0 < ¢ < L — j, we define quantity R,(j,) by

Ry(j, i) = Prlull+ 1,4+ 7] C &' [m+1,m+i Aull+1,0+j] Z 2 [m+1,m+i—1] |z}, = u

Intuitively, Ry (7, 7) is the probability that the smallest g such that u[¢ + 1,¢+ j] C 2'[m+1, m + ¢
is i, given z],, = uy. We have the following conclusion on the exact learning tolerance.

Lemma 3 Under Markovian string distributions over instance space T = %.=", given Pr[|z| =
k] >t > 0forvl < k < nand min{M(-,-),mo(-)} > ¢ > 0, the concept class w1 is exactly
identifiable with O(sn?) conditional statistical queries from STAT (w1, D) at tolerance

RN S S 0 lk—h—
T‘o@%{g(nh) Z Ry (L—0—1,k—h 1)}

k=h+1

The algorithm first deals with the marginal case where Py = +1] < e through query Pr[y = +1].
If it doesn’t halt, we know Pr[y = +1] is at least (3n% + 2n)e/(3n? + 2n + 2). We then make a
statistical query x/,(z,y) = 3(y + 1) - L7, —p) for each h from £ to n — 1. It can be shown that
at least one h will give an answer > (3n + 1)e/(3n? + 2n + 2). This implies lower bounds for
Pr{l,c, = h] and Prly = +1 | I,c, = h]. The former guarantees the feasibility while the latter
can serve as a lower bound for the sum in Lemma 3| after some algebra and completes the proof.

The assumption on M and 7 can be weakened to M (ugy1,ug) = Prlze = upq1 | 21 = ug] > ¢
and mo(uy) > cforall 1 < ¢ < L — 1. We first make a statistical query to estimate M (a, uy)
for £ > 1 or mp(a) for £ = 0 for each symbol a € ¥ at tolerance ¢/3. If the result is < 2¢/3
then M (a,uy) < cor mp(a) < ¢ and we won’t consider symbol a at this position. Otherwise,
M (a,ug) > ¢/3 or mp(a) > ¢/3 and the queries in the algorithm are feasible.

Corollary 2 Under Markovian string distributions over instance space T = =", given Pr||z| =
k] >t > 0forvV1 <k <mn, mo(u1) > cand M(ups1,u¢) > ¢ > 0forV1 < ¢ < L — 1, concept
class w1 is approximately identifiable with O(sn?) conditional statistical queries from STAT (L1, D)
at tolerance

) € ¢
7T=mind —mM =
3n2+2n+23

or with O(sn?) statistical queries from STAT(w, D) at tolerance

_ . ctne? tnec?
T = min
(3n2 +2n+2)27 3(3n2 + 2n + 2)

S Learning shuffle ideals under general distributions

Although the string distribution is restricted or even known in most application scenarios, one might
be interested in learning shuffle ideals under general unrestricted and unknown distributions without
any prior knowledge. Unfortunately, under standard complexity assumptions, the answer is negative.
Angluin et al. [3] have shown that a polynomial time PAC learning algorithm for principal shuffle
ideals would imply the existence of polynomial time algorithms to break the RSA cryptosystem,
factor Blum integers, and test quadratic residuosity.

Theorem 3 ([3]) For any alphabet of size at least 2, given two disjoint sets of strings S, T C X=",
the problem of determining whether there exists a string u such that v = x for each x € S and
u IZ x for each x € T is NP-complete.



As ideal L is a subclass of ideal ITI, we know learning ideal I1T is only harder. Is the problem easier
over instance space X" ? The answer is again no.

Lemma 4 Under general unrestricted string distributions, a concept class is PAC learnable over
instance space X=" if and only if it is PAC learnable over instance space ¥.".

The proof of Lemma [] is presented in Appendix D using the same idea as our generalization in
Section [3.3] Note that Lemma [ holds under general string distributions. It is not necessarily true
when we have assumptions on the marginal distribution of string length.

Despite the infeasibility of PAC learning a shuffle ideal in theory, it is worth exploring the possi-
bilities to do the classification problem without theoretical guarantees, since most applications care
more about the empirical performance than about theoretical results. For this purpose we propose a
heuristic greedy algorithm for learning principal shuffle ideals based on reward strategy as follows.
Upon having recovered v = u[1, ¢], for a symbol a € X and a string z of length n, we say a con-
sumes k elements in z if min{/, oy, n + 1} — I, = k. The reward strategy depends on the ratio
r4/r_: the algorithm receives r_ reward from each element it consumes in a negative example or
r4 penalty from each symbol it consumes in a positive string. A symbol is chosen as gy if it
brings us most reward. The algorithm will halt once & exhausts any positive example and makes a
false negative error, which means we have gone too far. Finally the ideal wu (u[1, £ — 1]) is returned
as the hypothesis. The performance of this greedy algorithm depends a great deal on the selection of
parameter 1 /7_. A clever choice is ry /r_ = #(—)/#(+), where #(+) is the number of positive
examples x such that ¥ T x and #(—) is the number of negative examples z such that u C z.
A more recommended but more complex strategy to determine the parameter 7 /r_ in practice is
cross validation.

A better studied approach to learning regular languages, especially the piecewise-testable ones, in
recent works is kernel machines ([[12,/13]]). An obvious advantage of kernel machines over our
greedy method is its broad applicability to general classification learning problems. Nevertheless,
the time complexity of the kernel machine is O(N® + n?>N?) on a training sample set of size N
(I51), while our greedy method only takes O(snN) time due to its great simplicity. Because N
is usually huge for the demand of accuracy, kernel machines suffer from low efficiency and long
running time in practice. To make a comparison between the greedy method and kernel machines
for empirical performance, we conducted a series of experiments on a real world dataset [4]] with
string length n as a variable. The experiment results demonstrate the empirical advantage on both
efficiency and accuracy of the greedy algorithm over the kernel method, in spite of its simplicity.
As this is a theoretical paper, we defer the details on the experiments to Appendix D, including the
experiment setup and figures of detailed experiment results.

6 Discussion

We have shown positive results for learning shuffle ideals in the statistical query model under
element-wise independent and identical distributions and Markovian distributions, as well as a con-
strained generalization to product distributions. It is still open to explore the possibilities of learning
shuffle ideals under less restricted distributions with weaker assumptions. Also a lot more work
needs to be done on approximately learning shuffle ideals in applications with pragmatic approaches.
In the negative direction, even a family of regular languages as simple as the shuffle ideals is not
efficiently properly PAC learnable under general unrestricted distributions unless RP=NP. Thus, the
search for a nontrivial properly PAC learnable family of regular languages continues. Another the-
oretical question that remains is how hard the problem of learning shuffle ideals is, or whether PAC
learning a shuffle ideal is as hard as PAC learning a deterministic finite automaton.
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