Algorithm 2 M(«, D)
input Privacy parameter o > 0, database D € X™.
output Max estimate m € R.

1: Draw Z ~ Lap(1/a).

2: return V(D) + Z/n.

Algorithm 3 S(«, m, 01,0s,...,0k_1,D)

input Privacy parameter o > 0, max estimate m € R, thresholds 01,605,...,0x_1 € R, database
D e &xm.
output Rankr € {1,2,..., K}.

1: Draw G ~ Lap(2/a) and Z1, Zs, ..., Zk_1 ii~d Lap(4/«)

2. forr=1,2,..., K —1do

3 ifm— fOY(D) > (Z, + G)/n+ 6, then
4: return 7.

5 end if

6: end for

7: return K.

A Appendix

A.1 Privacy Analysis

In this section, we present the proof of Theorem[2} We rely on composition results for approximate
differential privacy to analyze the three parts of Algorithm I}

o Differential privacy of releasing m after Step

o Differential privacy of releasing /¢ after Step

e Approximate differential privacy of releasing I after Step[I3]
We make this explicit by encapsulating these parts in Algorithm [2| (M), Algorithm 3|(S), and Algo-
rithm E](A), SO we can write Algorithmas follows (after the definitions of 7(") and ¢(")):

1. m:= M(a/3, D).

2. 0:=S(a/3,m, TV TR .  TE-D D).

3. I:=A(«a/3,¢,D).

A.1.1 max Estimation

The first part of Algorithm [I]is a standard application of the Laplace mechanism; it is detailed in
Algorithm 2]

Lemma 1 ([17]). M(«, -) is a-differentially private.

Lemma 2. With probability at least 1 — 6,

1 1
M(a, D) < fO(D) + —In —.
no

Proof. This follows from the tail properties of the Laplace distribution. O

A.1.2 Certifying the Margin Condition

The second part of Algorithm [I]is an application of the “sparse vector technique” to certify the
margin condition; it is detailed in Algorithm 3]

Lemma 3. For any m,01,0s,...,0_1 € R, S(a,m, 601,02, ...,0x_1,-) is a-differentially pri-
vate.
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Proof. This is an application of the sparse vector technique from [22] that halts as soon as the first
“query” is answered positively. We give the privacy analysis for completeness. For clarity, we
suppress the dependence of S on all inputs except D, and define F"t1) := m — f"+1) — ¢ which
inherits the (1/n)-Lipschitz property from f("+1).
Pick any neighboring datasets D and D’, and pick any ¢ € {1,2,..., K}. We use the notation
Pr|(+) for conditional probabilities where the value of G is fixed, so Pr(-) = E(Pr|g(-)), where
the expectation is taken with respect to G. Observe that
-1
Prig(S(D) = £) = Pri(S(D) < (S(D) > £—1) H Pri¢(S(D) > r[S(D) >r—1). (3
r=1

From the definition of S and F("+1)
Z,+G

n

Pr(S(D) > r|S(D) >r —1) =Prg (F("+1)(D) < ) Vr e {1,2,...,0—1},

and

Pric(S(D) < ¢S(D) > £ — 1) = Prig (le)(D) N W) |

Write Z1.4—1 := (Z1,Z2,...,Z¢_1), and define for any g € R,

2,(D) = {z RV FOI(Dy < Y yreqra 0 1}},
n

so that
0—1 0—1
[[Pric(S(D) > r|S(D) >r—1) =[] Pric (F(”“)(D) < ZT; G)
r=1 r=1

= PI‘|G (Zl;g_l S Zg(D)) .
Hence, substituting into @), we have

Zr+ G

Pr¢(S(D) = ¢) = Prig (F“H)(D) > ) Prig(Z1.4-1 € Z¢(D)).

Letting p denote the density of GG, we have the following chain of inequalities:
Pr(S(D) = {) = E(Pr|¢(S(D) = {))

- /OO Pro (F““)(D) > Z"': g) Prig(Z1.0-1 € Z4(D))p(g)dg

— 00

< eXp(a/Z)/ Prig (F(“'D(D) > Zg: g) Prig(Z1.0-1 € 24(D))p(g + 1)dg “)
_ ~ (¢+1) Zetg—1
= exp(/2) Prig | F (D) > - Prig(Z1.0-1 € Z24-1(D))p(g)dg
e Z -1
<eplar2) [ Pra (FOND) > I Pra(Zus € 2,(00lads
> (0+1) [ 1yt Zit+g ’
< eXp(a)/ Pri¢ <F (D) > n) Pria(Z1.4-1 € Z4(D"))p(g9)dg (6)

= exp(a) Pr(S(D’) = ¢).

To prove (@), we use the fact p(g) < exp(a/2)p(g + 1) since p is the Laplace density with scale
parameter «/2. To prove (3), observe that for all € {1,2,...,¢—1}, the (1/n)-Lipschitz property

of FU"+1) implies

<9zl pesypy < 29

F(r+1)(D)
n n

11



Algorithm 4 A(a, ¢, D)

input Privacy parameter o > 0, number of items ¢ > 0, database D € X'™.

output Item I € Y.
1: Let U, be the set of £ items in I/ with highest f (i, D) value, ties broken arbitrarily.
2: Draw I ~ p where p; o< 1{i € Uy} exp(naf(i, D)/2).
3: return .

This, in turn, implies Z,_1(D) C Z,(D’), so (3) follows. To prove (6), we use the following.
Observe that p . p 5
S c+g-— — FHY(DY) > ctg-—

n n

F(é-‘rl) (D)

by the (1/n)-Lipschitz property of F(¢*1)_ Therefore

Z -1 Z -2
Priq (F(Hl)(D) > Hg) < Prig (F(”l)(D’) > M)
n n

Z
< exp(a/2)Pri (F(”l)(D’) > g+g)
n

where we use the fact that Z, ~ Lap(«/4) for the last step, so (6) follows. O
Lemma 4. With probability at least 1 — §, if S(a, m, 01,02, ...,0k_1,D) =1 then

1 4 1
,_7111@.

2
— 0+ (p |
m—f (D) > 0y nan6 no )

Proof. Using the tail bound for the Laplace distribution,

2 1 )
—_ — < —
Pr (G < In 6) 5

o
and 5
pr(z <-4 D) o
a 0 2r(r+1)

foreachr € {1,2,..., K — 1}. Therefore, by a union bound, with probability at least 1 — J,

2 1 4 1

G>——In- and Zrz——lnLHVre{1,27...,K—1}.

a o 1)

The claim follows. O

A.1.3 Restricted Exponential Mechanism

The third part of Algorithm |1} uses the exponential mechanism on the top ¢ items to select one of
these items; it is detailed in Algorithm[4]

Lemma 5. Assume D satisfies the ({,~)-margin condition with

52 (14 102

@
Then for any neighbor D' € X™ of D, and any S C U,
Pr(A(a, D) € S) < exp(a) - Pr(A(a, D') € S) + 8.

Proof. Forany r € {1,2,..., K} and dataset D e X", let Hp C U denote the r items of highest
G, b) value (ties broken arbitrarily). (In Algorithm we have Uy = Hp.) It suffices to show that
Pr(A(a,t,D") = i) < max {Pr(A(a, ¢, D) = i)exp(a), 8/}, Vi€ Hp.

This is because Pr(A(«, ¢, D’') ¢ Hp/) =0and |[Hp/| = ¢.
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Fix any i € Hp. Because f(j,-) is (1/n)-Lipschitz for every j € U, sois f(")(-) forevery r € [K].

Therefore , ;
;exp (57 w0) = Zlexp (57(D)) exp(—a/2).
Also by the (1/ n)Iipschitz property, -
exp (n2 f@@, D )) < exp( 5 1, D)) exp(a/2).
Therefore, combining the two displayed equations above gives
exp (5, D) _  exp (S0
Spovexp (B FO(D) T X exp (%

,D))
fO(D))

Pr(A(a,t,D") =1i) = exp(a). (7)

If i € Hp, then (7)) reads
Pr(A(a, ¢, D") = i) < Pr(A(a, £, D) = i) exp(a).
If i ¢ Hp, then the assumption that D satisfies the (¢, v)-margin condition implies
(i, D) < fM(D) = x;
so combining the above inequality with (7)), as well as the assumption v > (2/n)(1 + In(¢/8)/a),

gives
exp (5 (fV(D) —))
exp (%5 fM(D))

Pr(A(a,¢,D") =1i) < exp(a) < 5/¢. O

A.1.4 Privacy of Algorithm I

For clarity, we suppress the privacy parameter inputs to the algorithms. By standard composition
results for differential privacy [17], Lemma|[l] and Lemma[3] the release of M(D) and S(M(D), D)
is (2a¢/3)-differentially private. Define the shorthand MS(D) := (M(D),S(M(D), D)), and let uup
denote the corresponding probability measure over the range of MS(D).

For a dataset D € X, let Vp be set of (17, €~) pairs (i.e., possible outputs of MS) such that
3 12, 30(0+1) 6 3

3 ~ ~
n< fOD)+ =—In— and m— (D) >T17"O - =] — —Int.
m < fUD) + an25 and - m —f (D) > nan ) nan(5

If (m, {) € Vp, then the values of T(*) and t(¥) certify that D satisfies the (¢, t(*))-margin condition.
Lemma[2]and Lemma[4]imply that

20
up(Vp) >1— —

37
Also, observe that if 8 := § exp(—2a/3)/3, then
o _ 2 14 In(¢/B) .
n a/3
Therefore, for any neighbor D’ € X™ of D, and any S C U,

Pr(LMM(D) € §) = / Pr(A(l, D) € S|MS(D) = (m, £))dpun

26

< [ Pr{A.D) € SIMS(D) = (m. D) + 5

< / (ea/3 Pr(A(¢,D') € S|MS(D) = (m,£)) + ﬂ) 3 dup + %‘5
Vb

a/3 / / fe—2/3 20/3 20
= e 3Pr(A(¢,D") € S|MS(D") = (m,l)) + —5 )¢ dupr + 3
125)

—2a/3 .
< / <e°‘/3 Pr(A(¢, D) € S|MS(D') = (m, £)) + 563) > Bdup + )

=e*Pr(LMm(D’) € S) + 4.
Above, the second inequality follows from Lemma[5|and the (2c/3)-differential privacy of MS. [
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A.2 Utility Analysis

Proof of Theorem 3] Using tail bounds for the Laplace distribution, it follows that with probability
atleast 1 — /2,

12
zZ > —§1n§7 G< E1n§7 Zpe < —lni
a n a n a - n
,7*)-margin condition implies that

%

In this event, the assumption that D satisfies the (¢
(FOD) + 2/n) = D) > (Ze +G)fn+ T,

so the while-loop terminates with £ < ¢*. Also, the probability distribution p in Step [14] of Algo-
rithm assigns probability mass at most 7)/2 to the set of items ¢ with

In(2¢
f(i,D) < f(l)(D) _ M
no
Therefore, by a union bound, the item I returned by Algorithm [I]satisfies
61In(20*
£(1.0) > f0 (D) - S/
no
with probability at least 1 — 7). O

A.3 Proofs of Lower Bounds

Proof of Theorem[l] We construct the private maximization problem as follows. Let the domain
X := 24 (subsets of items), and define f : U x X™ — R by

1 n
D)= -5 1{i e D,}.
fp) = 3ot n)
In other words, the function f (i, -) is the fraction of entries containing i. It is easy to see that f(3, -)
is (1/n)-Lipschitz for all i € U.

Let m := min{n/2, log((¢ — 1)/2)/a}. We define a collection of ¢ datasets D', D2 ... D' ¢ X"
with the following properties:

1. For each i, the first n/2 entries of D" are equal to [¢] := {1,2,...,(}, the next n/2 — m
are equal of D" are equal to (), and the last m entries of D are equal to {¢}. Therefore

if j ¢ [,
if j € [0\ {i},
T4+ ifj =4,

so f(i,D") = f()(D?) and D’ satisfies the (£, m,/n)-margin condition.

= O

f(.]’Dz) =

2. For each i # j, the datasets D and D7 differ only in (the last) m entries.

Let A be («, 0)-approximate differentially private. Assume for sake of contradiction that

, . , 1

Pr (f(A(D), D) > fO(D) - 2) >

for all i € [¢]. Since only i satisfies f(i, D') > f(1)(D?) — m/n, this is the same as Pr(A(D?) =

i) > 1/2 for all ¢ € [¢]. This then implies the following chain of inequalities leading to a contradic-
tion:

% > Pr(A(D") # i)
> Y Pr(A(DY) =)
IHGNG!
. )
> > e Pr(ADY) =) - Fgp—
e}

vV

e-am 0 1
— _ > 2
(t=1) < 2 1-— e—o‘> -2
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The first inequality above is by assumption; the third inequality follows from Lemma 6} the fourth
inequality again uses the assumption; and the final inequality follows by the definition of m and
the condition on §. Since a contradiction is reached, there must exist some ¢ € [¢] such that
Pr(f(A(DY), D%) > fM(DY) —m/n) < 1/2. O
Lemma 6 ([11]). Let D and D' be any two datasets that differ in at most k entries, and let A be
any («, 6)-approximate differentially private algorithm with range S. Then, for any S C S,

]

1—e-a’

Pr(A(D) € §) > e " Pr(A(D') € S) —
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