
Algorithm 2 M(α,D)

input Privacy parameter α > 0, database D ∈ Xn.
output Max estimate m ∈ R.

1: Draw Z ∼ Lap(1/α).
2: return f (1)(D) + Z/n.

Algorithm 3 S(α,m, θ1, θ2, . . . , θK−1, D)

input Privacy parameter α > 0, max estimate m ∈ R, thresholds θ1, θ2, . . . , θK−1 ∈ R, database
D ∈ Xn.

output Rank r ∈ {1, 2, . . . ,K}.
1: Draw G ∼ Lap(2/α) and Z1, Z2, . . . , ZK−1

iid∼ Lap(4/α)
2: for r = 1, 2, . . . ,K − 1 do
3: if m− f (r+1)(D) > (Zr +G)/n+ θr then
4: return r.
5: end if
6: end for
7: return K.

A Appendix

A.1 Privacy Analysis

In this section, we present the proof of Theorem 2. We rely on composition results for approximate
differential privacy to analyze the three parts of Algorithm 1:

• Differential privacy of releasing m after Step 3.

• Differential privacy of releasing ` after Step 12.

• Approximate differential privacy of releasing I after Step 15.

We make this explicit by encapsulating these parts in Algorithm 2 (M), Algorithm 3 (S), and Algo-
rithm 4 (A), so we can write Algorithm 1 as follows (after the definitions of T (r) and t(r)):

1. m := M(α/3, D).

2. ` := S(α/3,m, T (1), T (2), . . . , T (K−1), D).

3. I := A(α/3, `,D).

A.1.1 max Estimation

The first part of Algorithm 1 is a standard application of the Laplace mechanism; it is detailed in
Algorithm 2.

Lemma 1 ([17]). M(α, ·) is α-differentially private.

Lemma 2. With probability at least 1− δ,

M(α,D) ≤ f (1)(D) +
1

nα
ln

1

2δ
.

Proof. This follows from the tail properties of the Laplace distribution.

A.1.2 Certifying the Margin Condition

The second part of Algorithm 1 is an application of the “sparse vector technique” to certify the
margin condition; it is detailed in Algorithm 3.

Lemma 3. For any m, θ1, θ2, . . . , θK−1 ∈ R, S(α,m, θ1, θ2, . . . , θK−1, ·) is α-differentially pri-
vate.
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Proof. This is an application of the sparse vector technique from [22] that halts as soon as the first
“query” is answered positively. We give the privacy analysis for completeness. For clarity, we
suppress the dependence of S on all inputs except D, and define F (r+1) := m− f (r+1)− θr, which
inherits the (1/n)-Lipschitz property from f (r+1).

Pick any neighboring datasets D and D′, and pick any ` ∈ {1, 2, . . . ,K}. We use the notation
Pr|G(·) for conditional probabilities where the value of G is fixed, so Pr(·) = E(Pr|G(·)), where
the expectation is taken with respect to G. Observe that

Pr|G(S(D) = `) = Pr|G(S(D) ≤ `|S(D) > `− 1)

`−1∏
r=1

Pr|G(S(D) > r|S(D) > r − 1). (3)

From the definition of S and F (r+1),

Pr|G(S(D) > r|S(D) > r − 1) = Pr|G

(
F (r+1)(D) ≤ Zr +G

n

)
∀r ∈ {1, 2, . . . , `− 1},

and

Pr|G(S(D) ≤ `|S(D) > `− 1) = Pr|G

(
F (`+1)(D) >

Z` +G

n

)
.

Write Z1:`−1 := (Z1, Z2, . . . , Z`−1), and define for any g ∈ R,

Zg(D) :=

{
z ∈ R`−1 : F (r+1)(D) ≤ zr + g

n
∀r ∈ {1, 2, . . . , `− 1}

}
,

so that
`−1∏
r=1

Pr|G(S(D) > r|S(D) > r − 1) =

`−1∏
r=1

Pr|G

(
F (r+1)(D) ≤ Zr +G

n

)
= Pr|G (Z1:`−1 ∈ ZG(D)) .

Hence, substituting into (3), we have

Pr|G(S(D) = `) = Pr|G

(
F (`+1)(D) >

Z` +G

n

)
Pr|G(Z1:`−1 ∈ ZG(D)).

Letting p denote the density of G, we have the following chain of inequalities:

Pr(S(D) = `) = E(Pr|G(S(D) = `))

=

∫ ∞
−∞

Pr|G

(
F (`+1)(D) >

Z` + g

n

)
Pr|G(Z1:`−1 ∈ Zg(D))p(g)dg

≤ exp(α/2)

∫ ∞
−∞

Pr|G

(
F (`+1)(D) >

Z` + g

n

)
Pr|G(Z1:`−1 ∈ Zg(D))p(g + 1)dg (4)

= exp(α/2)

∫ ∞
−∞

Pr|G

(
F (`+1)(D) >

Z` + g − 1

n

)
Pr|G(Z1:`−1 ∈ Zg−1(D))p(g)dg

≤ exp(α/2)

∫ ∞
−∞

Pr|G

(
F (`+1)(D) >

Z` + g − 1

n

)
Pr|G(Z1:`−1 ∈ Zg(D′))p(g)dg (5)

≤ exp(α)

∫ ∞
−∞

Pr|G

(
F (`+1)(D′) >

Z` + g

n

)
Pr|G(Z1:`−1 ∈ Zg(D′))p(g)dg (6)

= exp(α) Pr(S(D′) = `).

To prove (4), we use the fact p(g) ≤ exp(α/2)p(g + 1) since p is the Laplace density with scale
parameter α/2. To prove (5), observe that for all r ∈ {1, 2, . . . , `−1}, the (1/n)-Lipschitz property
of F (r+1) implies

F (r+1)(D) ≤ Zr + g − 1

n
=⇒ F (r+1)(D′) ≤ Zr + g

n
.
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Algorithm 4 A(α, `,D)

input Privacy parameter α > 0, number of items ` > 0, database D ∈ Xn.
output Item I ∈ U .

1: Let U` be the set of ` items in U with highest f(i,D) value, ties broken arbitrarily.
2: Draw I ∼ p where pi ∝ 1{i ∈ U`} exp(nαf(i,D)/2).
3: return I .

This, in turn, implies Zg−1(D) ⊆ Zg(D′), so (5) follows. To prove (6), we use the following.
Observe that

F (`+1)(D) >
Z` + g − 1

n
=⇒ F (`+1)(D′) >

Z` + g − 2

n

by the (1/n)-Lipschitz property of F (`+1). Therefore

Pr|G

(
F (`+1)(D) >

Z` + g − 1

n

)
≤ Pr|G

(
F (`+1)(D′) >

Z` + g − 2

n

)
≤ exp(α/2)Pr|G

(
F (`+1)(D′) >

Z` + g

n

)
where we use the fact that Z` ∼ Lap(α/4) for the last step, so (6) follows.

Lemma 4. With probability at least 1− δ, if S(α,m, θ1, θ2, . . . , θK−1, D) = r then

m− f (r+1)(D) > θr −
2

nα
ln

1

δ
− 4

nα
ln
r(r + 1)

δ
.

Proof. Using the tail bound for the Laplace distribution,

Pr

(
G < − 2

α
ln

1

δ

)
≤ δ

2

and

Pr

(
Zr < −

4

α
ln
r(r + 1)

δ

)
≤ δ

2r(r + 1)

for each r ∈ {1, 2, . . . ,K − 1}. Therefore, by a union bound, with probability at least 1− δ,

G ≥ − 2

α
ln

1

δ
and Zr ≥ −

4

α
ln
r(r + 1)

δ
∀r ∈ {1, 2, . . . ,K − 1}.

The claim follows.

A.1.3 Restricted Exponential Mechanism

The third part of Algorithm 1 uses the exponential mechanism on the top ` items to select one of
these items; it is detailed in Algorithm 4.

Lemma 5. Assume D satisfies the (`, γ)-margin condition with

γ ≥ 2

n

(
1 +

ln(`/β)

α

)
.

Then for any neighbor D′ ∈ Xn of D, and any S ⊆ U ,

Pr(A(α,D) ∈ S) ≤ exp(α) · Pr(A(α,D′) ∈ S) + β.

Proof. For any r ∈ {1, 2, . . . ,K} and dataset D̃ ∈ Xn, let HD̃ ⊆ U denote the r items of highest
f(·, D̃) value (ties broken arbitrarily). (In Algorithm 4, we have U` = HD.) It suffices to show that

Pr(A(α, `,D′) = i) ≤ max {Pr(A(α, `,D) = i) exp(α), β/`} , ∀i ∈ HD′ .

This is because Pr(A(α, `,D′) /∈ HD′) = 0 and |HD′ | = `.
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Fix any i ∈ HD′ . Because f(j, ·) is (1/n)-Lipschitz for every j ∈ U , so is f (r)(·) for every r ∈ [K].
Therefore ∑̀

r=1

exp
(nα

2
f (r)(D′)

)
≥
∑̀
r=1

exp
(nα

2
f (r)(D)

)
exp(−α/2).

Also by the (1/n)-Lipschitz property,

exp
(nα

2
f(i,D′)

)
≤ exp

(nα
2
f(i,D)

)
exp(α/2).

Therefore, combining the two displayed equations above gives

Pr(A(α, `,D′) = i) =
exp

(
nα
2 f(i,D′)

)∑`
r=1 exp

(
nα
2 f

(r)(D′)
) ≤ exp

(
nα
2 f(i,D)

)∑`
r=1 exp

(
nα
2 f

(r)(D)
) exp(α). (7)

If i ∈ HD, then (7) reads
Pr(A(α, `,D′) = i) ≤ Pr(A(α, `,D) = i) exp(α).

If i /∈ HD, then the assumption that D satisfies the (`, γ)-margin condition implies

f(i,D) ≤ f (1)(D)− γ;

so combining the above inequality with (7), as well as the assumption γ ≥ (2/n)(1 + ln(`/β)/α),
gives

Pr(A(α, `,D′) = i) ≤
exp

(
nα
2

(
f (1)(D)− γ

))
exp

(
nα
2 f

(1)(D)
) exp(α) ≤ β/`.

A.1.4 Privacy of Algorithm 1

For clarity, we suppress the privacy parameter inputs to the algorithms. By standard composition
results for differential privacy [17], Lemma 1, and Lemma 3, the release of M(D) and S(M(D), D)
is (2α/3)-differentially private. Define the shorthand MS(D) := (M(D),S(M(D), D)), and let µD
denote the corresponding probability measure over the range of MS(D).

For a dataset D ∈ Xn, let VD be set of (m̃, ˜̀) pairs (i.e., possible outputs of MS) such that

m̃ ≤ f (1)(D) +
3

nα
ln

3

2δ
and m̃− f (˜̀+1)(D) > T (˜̀) − 12

nα
ln

3˜̀(˜̀+ 1)

δ
− 6

nα
ln

3

δ
.

If (m, `) ∈ VD, then the values of T (`) and t(`) certify thatD satisfies the (`, t(`))-margin condition.
Lemma 2 and Lemma 4 imply that

µD(VD) ≥ 1− 2δ

3
.

Also, observe that if β := δ exp(−2α/3)/3, then

t(`) =
2

n

(
1 +

ln(`/β)

α/3

)
.

Therefore, for any neighbor D′ ∈ Xn of D, and any S ⊆ U ,

Pr(LMM(D) ∈ S) =

∫
Pr(A(`,D) ∈ S |MS(D) = (m, `))dµD

≤
∫
VD

Pr(A(`,D) ∈ S |MS(D) = (m, `))dµD +
2δ

3

≤
∫
VD

(
eα/3 Pr(A(`,D′) ∈ S |MS(D) = (m, `)) + β

)
e2α/3dµD′ +

2δ

3

=

∫
VD

(
eα/3 Pr(A(`,D′) ∈ S |MS(D′) = (m, `)) +

δe−2α/3

3

)
e2α/3dµD′ +

2δ

3

≤
∫ (

eα/3 Pr(A(`,D′) ∈ S |MS(D′) = (m, `)) +
δe−2α/3

3

)
e2α/3dµD′ +

2δ

3

= eα Pr(LMM(D′) ∈ S) + δ.

Above, the second inequality follows from Lemma 5 and the (2α/3)-differential privacy of MS.
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A.2 Utility Analysis

Proof of Theorem 3. Using tail bounds for the Laplace distribution, it follows that with probability
at least 1− η/2,

Z ≥ − 3

α
ln

3

η
, G ≤ 6

α
ln

3

η
, Z`∗ ≤

12

α
ln

3

η
.

In this event, the assumption that D satisfies the (`∗, γ∗)-margin condition implies that(
f (1)(D) + Z/n

)
− f (`

∗+1)(D) > (Z`∗ +G)/n+ T (`∗),

so the while-loop terminates with ` ≤ `∗. Also, the probability distribution p in Step 14 of Algo-
rithm 1 assigns probability mass at most η/2 to the set of items i with

f(i,D) ≤ f (1)(D)− 6 ln(2`/η)

nα
.

Therefore, by a union bound, the item I returned by Algorithm 1 satisfies

f(I,D) > f (1)(D)− 6 ln(2`∗/η)

nα
with probability at least 1− η.

A.3 Proofs of Lower Bounds

Proof of Theorem 1. We construct the private maximization problem as follows. Let the domain
X := 2U (subsets of items), and define f : U × Xn → R by

f(i,D) :=
1

n

n∑
s=1

1{i ∈ Ds}.

In other words, the function f(i, ·) is the fraction of entries containing i. It is easy to see that f(i, ·)
is (1/n)-Lipschitz for all i ∈ U .

Let m := min{n/2, log((`− 1)/2)/α}. We define a collection of ` datasets D1, D2, . . . , D` ∈ Xn
with the following properties:

1. For each i, the first n/2 entries of Di are equal to [`] := {1, 2, . . . , `}, the next n/2 −m
are equal of Di are equal to ∅, and the last m entries of Di are equal to {i}. Therefore

f(j,Di) =


0 if j /∈ [`],
1
2 if j ∈ [`] \ {i},
1
2 + m

n if j = i,

so f(i,Di) = f (1)(Di) and Di satisfies the (`,m/n)-margin condition.

2. For each i 6= j, the datasets Di and Dj differ only in (the last) m entries.

Let A be (α, δ)-approximate differentially private. Assume for sake of contradiction that

Pr
(
f(A(Di), Di) > f (1)(Di)− m

n

)
≥ 1

2

for all i ∈ [`]. Since only i satisfies f(i,Di) > f (1)(Di) −m/n, this is the same as Pr(A(Di) =
i) ≥ 1/2 for all i ∈ [`]. This then implies the following chain of inequalities leading to a contradic-
tion:

1

2
> Pr(A(Di) 6= i)

≥
∑

j∈[`]\{i}

Pr(A(Di) = j)

≥
∑

j∈[`]\{i}

e−αm Pr(A(Dj) = j)− δ

1− e−α

≥ (`− 1)

(
e−αm

2
− δ

1− e−α

)
≥ 1

2
.
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The first inequality above is by assumption; the third inequality follows from Lemma 6; the fourth
inequality again uses the assumption; and the final inequality follows by the definition of m and
the condition on δ. Since a contradiction is reached, there must exist some i ∈ [`] such that
Pr(f(A(Di), Di) > f (1)(Di)−m/n) < 1/2.

Lemma 6 ([11]). Let D and D′ be any two datasets that differ in at most k entries, and let A be
any (α, δ)-approximate differentially private algorithm with range S. Then, for any S ⊆ S,

Pr(A(D) ∈ S) ≥ e−kα Pr(A(D′) ∈ S)− δ

1− e−α
.
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