
Reputation-based Worker Filtering in Crowdsourcing
– Supplementary Material

A Proofs of the theorems

We first state a few helper lemmas.
Lemma 1. Suppose the graph G is an (l, r)-regular graph, i.e. worker degree is l and task degree is
r. Then, for each (wi, tj) 2 G, the following is true

Pr(wi(tj) = 1) =

1 + (2� � 1)µ

2

,

Pr(wi(tj) = �1) =

1� (2� � 1)µ

2

,

and
E[d+j ] = r

1 + (2� � 1)µ

2

, E[d�j ] = r
1� (2� � 1)µ

2

where the probability and expectation are taken over the random process of sampling worker relia-
bilities, task true labels, and the labels provided by the workers.

Proof. The proof of this result is rather simple. We have,
Pr(wi(tj) = 1 |µi) = Pr(wi(tj) = 1 | yj = 1, µi) Pr(yj = 1 |µi)

+ Pr(wi(tj) = 1 | yj = �1, µi) Pr(yj = �1 |µi)

= pi� + (1� pi)(1� �)

= �
1 + µi

2

+ (1� �)
1� µi

2

= 1/2 + (2� � 1)µi/2.

The expression for Pr(wi(tj) = �1) now immediately follows from the fact that
Pr(wi(tj) = �1) = 1� Pr(wi(tj) = 1)

Hence, we can write

Pr(wi(tj) = 1) =

Z

Pr(wi(tj) = 1 |µi)f(µi)dµi

=

1

2

+

2� � 1

2

Z

µif(µi)dµi

= 1/2 + (2� � 1)µ/2,

where µ is the average reliability in the population. In a similar fashion we can write

E[d+j ] =
X

i2Wj

Pr(wi(tj) = 1)

= |Wj |
1 + (2� � 1)µ

2

= r
1 + (2� � 1)µ

2

,

where Wj denotes the set of workers labeling task tj and the second equality follows from the
expression for Pr(wi(tj) = 1) above. We have used the fact that |Wj | = r because the assignment
graph G is (l, r)-regular.

The expression for E[d�j ] immediately follows from the fact that d+j + d�j = |Wj | = r for any task
tj . The result of the lemma now follows.
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Lemma 2. For a given realization of the worker reliabilities and task true labels, we have the fol-
lowing:

E[d+j | yj = 1] =

r

2

+

1

2

X

i02Wj

µi0

E[d+j | yj = �1] =

r

2

� 1

2

X

i02Wj

µi0 ,

where the expectation is over the randomness in label generation. Furthermore, we must have

E[d+j | yj = 1, wi(tj) = 1] =

1� µi

2

+

r

2

+

1

2

X

i02Wj

µi0

E[d+j | yj = �1, wi(tj) = 1] =

1 + µi

2

+

r

2

� 1

2

X

i02Wj

µi0 ,

Proof. We proceed as follows.

E[d+j | yj = 1] =

X

i02Wj

Pr(wi0(tj) = 1 | yj = 1) =

X

i02Wj

pi0 =
X

i02Wj

1 + µi0

2

=

|Wj |
2

+

1

2

X

i02Wj

µi0

=

r

2

+

1

2

X

i02Wj

µi0 .

It can be shown in a similar fashion that E[d+j | yj = �1] = r/2� (

P

i02Wj
µi0)/2.

Coming to the next set of equalities, we have

E[d+j | yj = 1, wi(tj) = 1] = 1 +

X

i02Wj ,i0 6=i

E[1[wi0(tj) = 1] |wi(tj) = 1, yj = 1]

= 1 +

X

i02Wj ,i0 6=i

E[1[wi0(tj) = 1] | yj = 1]

= 1 +

X

i02Wj ,i0 6=i

Pr(wi0(tj) = 1 | yj = 1)

= 1 +

X

i02Wj ,i0 6=i

pi0

= 1� pi +
X

i02Wj

pi0

=

1� µi

2

+

X

i02Wj

pi0 ,

where the second inequality follows from the conditional independence of 1[wi(tj) = 1] and
1[wi0(tj) = 1] given tj for i 6= i0. The desired expression is then obtained by noting that
P

i02Wj
pi0 = E[d+j | yj = 1]. The derivation of the expression of E[d+j | yj = �1, wi(tj) = 1]

follows from a symmetric argument. The result of the lemma now follows.

A.1 Proof of Theorem 1

For a given realization of worker reliabilities, task true labels, and worker labels to tasks, let sij
denote the penalty assigned by task tj to worker wi. It follows from our algorithm that

1/sij = d+j 1[wi(tj) = 1] + d�j 1[wi(tj) = �1]

= (d+j � d�j )1[wi(tj) = 1] + d�j

= (2d+j � r)1[wi(tj) = 1] + r � d+j
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We now consider the case that yj = 1. Now note that

E[1[wi(tj) = 1]d+j | yj = 1] =

X

i02Wj

E[1[wi(tj) = 1]1[wi0(tj) = 1] | yj = 1]

= Pr(wi(tj) = 1 | yj = 1)

0

@

1 +

X

i02Wj ,i 6=i0

Pr(wi0(tj) = 1 | yj = 1)

1

A ,

where we have used the fact that the random variables 1[wi(tj) = 1] and 1[wi0(tj) = 1] for i 6= i0

are conditionally independent given yj . It then follows that (using lemmas 1 and 2 above)

E[1/sij | yj = 1]

=

�

2E[d+j | yj = 1, wi(tj) = 1]� r
�

Pr(wi(tj) = 1 | yj = 1)

+ r � E[d+j | yj = 1]

=

0

@

1� µi + r +
X

i02Wj

µi0 � r

1

A

(1 + µi)/2 + r/2� 0.5
X

i02Wj

µi0 .

The above expression can be simplified to get

E[1/sij | yj = 1] = r/2 + (1� µ2
i )/2 + 0.5rµi

P

i02Wj
µi0

|Wj |
.

We now make a few approximations based on the concentration of the sum of independent random
variables around its mean. In particular, since |Wj | = r ! 1, it follows (from say Chernoff bound)
that

P

i02Wj
µi0

|Wj |
⇡ E[µi] = µ,

where we use the notation X ⇡ y to denote that the random variable X concentrates around quantity
y. We thus have that

E[1/sij | yj = 1] ⇡ r/2 + (1� µ2
i )/2 + 0.5rµiµ.

In a similar fashion, in the case when yj = �1, we can write (using lemmas 1 and 2)

E[1/sij | yj = �1]

=

�

2E[d+j | yj = �1, wi(tj) = 1]� r
�

Pr(wi(tj) = 1 | yj = �1)

+ r � E[d+j | yj = �1]

=

0

@

1 + µi + r �
X

i02Wj

µi0 � r

1

A

(1� µi)/2 + r/2 + 0.5
X

i02Wj

µi0

=r/2 + (1� µ2
i )/2 + 0.5rµi

P

i02Wj
µi0

|Wj |
.

As a result, given some assignment of true labels for the tasks and using the concentration approxi-
mation (as r ! 1) sij ⇡ 1/E[1/sij | yj = 1] when yj = 1 and sij ⇡ 1/E[1/sij | yj = �1] when
yj = �1, we have

1

|Ti|
X

j2Ti

sij ⇡
1

|Ti|
X

j2Ti

1

r/2 + (1� µ2
i )/2 + 0.5rµiµ

=

1

r/2 + (1� µ2
i )/2 + 0.5rµiµ

,

where Ti denotes the set of tasks that worker wi was assigned. Thus the penalty received by worker
wi concentrates around 1/g(µi), where the function g(·) is defined as g(x) = r/2 + (1� x2

)/2 +
0.5rxµ. Note that g0(x) = �x + 0.5rµ. Thus, for r large enough and µ > 0, we must have that
g0(x) > 0 for any x 2 [�1, 1]. Thus, the function g(·) is increasing on the domain [�1, 1], from
which we can conclude that the penalty decreases with the increase in the reliability of the worker.
The result of the theorem now follows.
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A.2 Proof of Theorem 2

The proof is similar to that of theorem 1 above. First, we need to compute E[d+j | yj = 1] for any
task tj . In particular, we can write

d+j =

X

a2Aj

1[a(tj) = 1] +

X

i2Hj

1[wi(tj) = 1]

= |Aj |+
X

i2Hj

1[wi(tj) = 1].

where Hj and Aj denotes the set of honest workers and adversaries who label task tj . We now note
that E[|Aj |] = (1 � q)r and E[|Hj |] = qr, and following the sequence of arguments in lemmas 1
and 2 we can write

E[d+j | yj = 1] ⇡ (1� q)r +
rq

2

(1 + µ).

In a similar fashion, we can show that

E[d+j | yj = �1] ⇡ (1� q)r +
rq

2

(1� µ).

Similarly, for any honest worker hi we can write

E[d+j | yj = 1, wi(tj) = 1] ⇡ (1� q)r +
1� µi

2

+

rq

2

(1 + µ)

and

E[d+j | yj = �1, wi(tj) = 1] ⇡ (1� q)r +
1 + µi

2

+

rq

2

(1� µ).

Note that E[d+j | yj = 1] and E[d+j | yj = �1] are respectively E[1/saj | yj = 1] and E[1/saj | yj =
�1] for any adversary a labeling on task tj . We can now compute the penalty assigned by task tj to
honest worker hi. Following the sequence of steps above, we can write

E[1/sij | yj = 1] ⇡
✓

2(1� q)r + 1� µi + rq + rqµ� r

◆

(1 + µi)/2 + r � (1� q)r � rq/2� rqµ/2

= (1� q)r(1 + µi)/2 + (1� µ2
i )/2 + rq/2 + rqµµi/2

= (1� µ2
i )/2 + r/2 + rµi(qµ+ 1� q)/2.

In a similar fashion, we can show that

E[1/sij | yj = �1] ⇡
✓

2(1� q)r + 1 + µi + rq � rqµ� r

◆

(1� µi)/2 + r � (1� q)r � rq/2 + rqµ/2

= (1� q)r(1� µi)/2 + (1� µ2
i )/2 + rq/2 + rqµµi/2

= (1� µ2
i )/2 + r/2 + rµi(qµ� 1 + q)/2.

We thus have that the total penalty received by an honest worker is given by

1

|Ti|
X

tj2Ti

sij ⇡
�

(1� µ2
i )/2 + r/2 + rµi(qµ+ 1� q)/2

+

(1� �)

(1� µ2
i )/2 + r/2 + rµi(qµ� 1 + q)/2

Similarly, the total penalty received by an adversary is given by

1

|Ta|
X

tj2Ta

saj ⇡
�

(1� q)r + rq(1 + µ)/2
+

(1� �)

(1� q)r + rq(1� µ)/2
.

Now consider the special case in which � = 1/2 and µi = 1, where we get

1

|Ti|
X

tj2Ti

sij ⇡
1/(2r)

1� q/2 + qµ/2
+

1/(2r)

q/2 + qµ/2
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and
1

|Ta|
X

tj2Ta

saj ⇡
1/(2r)

1� q/2 + qµ/2
+

1/(2r)

1� q/2� qµ/2
.

In this special case it is easy to see that the penalty assigned to the adversaries is higher than the
penalty assigned to the honest workers if and only if

q/2 + qµ/2 > 1� q/2� qµ/2 () q + qµ > 1 () q > 1/(1 + µ).

Now consider the more general setting. We write

1

|Ti|
X

tj2Ti

sij ⇡
2�/r

(1� µ2
i )/r + 1 + µi(qµ+ 1� q)

+

2(1� �)/r

(1� µ2
i )/r + 1 + µi(qµ� 1 + q)

 2�/r

1 + µi(qµ+ 1� q)
+

2(1� �)/r

1 + µi(qµ� 1 + q)
.

Similarly,
1

|Ta|
X

tj2Ta

saj =
2�/r

2� q + qµ
+

2(1� �)/r

2� q � qµ
.

More generally, the penalty of the honest worker is less than that of the adversary only if the relia-
bility of the honest worker is “high enough”. To simplify the expressions, we assume that � =

1
2 :

1/2

1 + µi(qµ+ 1� q)
+

1/2

1 + µi(qµ� 1 + q)
 1/2

2� q + qµ
+

1/2

2� q � qµ

() 1 + µiqµ

(1 + µiqµ)2 � (1� q)2µ2
i

 2� q

(2� q)2 � q2µ2

() [(2� q)2 � q2µ2
](1 + µiqµ)  (2� q)[(1 + µiqµ)

2 � (1� q)2µ2
i ]  (2� q)(1 + q2µ2

+ 2qµµi)

() (2� q)2 � q2µ2 � (2� q)(1 + q2µ2
)  µi(2qµ(2� q)� qw[(2� q)2 � q2µ2

])

() µi �
(2� q)(1� q � q2µ2

)� q2µ2

(2� q)q + q2µ2
.

It is easy to see that the RHS expression is always less than or equal to 1. Thus, depending on
the choice of the parameters, some low reliable honest workers will receive higher penalty than the
adversaries.

A.3 Proof of Theorem 3

We prove the result for the the case when there exists at least one subset T 0 ✓ T such that
PreIm(T 0

)  k. Otherwise, the lower bound L = 0 by definition and the result of the theorem
is trivially true.

Let H⇤ denote the set PreIm(T ⇤
) where

T ⇤ def
= argmax

T 0✓T : |PreIm(T 0)|k

|T 0| .

For a given decision rule R 2 C, we now construct an adversary strategy �⇤ under which atleast
L tasks are affected for some ground-truth labeling. Specifically for a fixed honest worker labeling
pattern and ground-truth labeling y of the tasks, consider the following adversary strategy: letting
H⇤

=

�

h1, h2, . . . , h|H⇤|
 

and the set of adversaries A = {a1, a2, . . . , ak}, we have (recall the
notation in Section 2)

ai(t) =

⇢

�hi(t), if t 2 T ⇤

hi(t), otherwise
8i = 1, 2, . . . , |H⇤| ,

In other words, the adversaries label opposite to the honest workers in H⇤ for tasks in T ⇤ and
agree with them for all other tasks. Note that since |H⇤|  k by construction, the above strategy is
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feasible. In addition, if |H⇤| < k, then we only use |H⇤| of the k adversary identities and not use
the remaining.

Now consider the scenario in which the true labels of all tasks in T ⇤ are reversed, let this ground-
truth be denoted by ŷ. This would alter the labels of the honest workers (since we assumed they
always label correctly). In particular, let ˜h(t) denote the label of an honest worker in this scenario.
Then, we have that for any honest worker

˜h(t) = h(t), 8 t /2 T ⇤ and
˜h(t) = �h(t) 8 t 2 T ⇤, 8 h 2 H. (1)

Correspondingly, according to the adversary labeling strategy �⇤ above, the adversary labels would
also change. In particular, using ã(t) to denote the adversary label in this scenario, we have

ã(t) = a(t), 8 t /2 T ⇤ and
ã(t) = �a(t) 8 t 2 T ⇤, 8 a 2 A. (2)

Finally, let ˜L denote the labeling matrix corresponding to this new scenario. We now argue that
˜L = PL for some n ⇥ n permutation matrix P . In order to see this consider, for any worker w
(honest or adversary), let r(w) and r̃(w) respectively denote the row vectors in matrices L and ˜L.
We show that ˜L can be obtained from L through a permutation of the rows. For that, first note that
for any honest worker h /2 H⇤, we must have by definition of PreIm that h(t) = 0 for any t 2 T ⇤.
Thus, it follows from (1) that ˜h(t) = �h(t) = 0 = h(t) for any t 2 T ⇤. Furthermore, ˜h(t) = h(t)
for any t /2 T ⇤ by (1). Therefore, we have that r(h) = r̃(h) for any h /2 H⇤. Now consider an
honest worker hi 2 H⇤ for some i. We now argue that r(hi) = r̃(ai). To see this, for any task
t /2 T ⇤, we have by (2) that ãi(t) = ai(t) = hi(t), where the second equality follows from our
definition of the adversary strategy. Similarly, for any t 2 T ⇤, we have ãi(t) = �ai(t) by (2) and
ai(t) = �hi(t) (by the adversary strategy). Hence, we must have ãi(t) = hi(t) for any t 2 T ⇤.
Thus, we have shown that the rows r̃(ai) = r(hi) for any i. Thus, ˜L is obtained from L by swapping
rows corresponding to hi with ai for all i.

Now that we have shown that ˜L = PL for some permutation matrix P , it follows from the fact that
R 2 C that R(

˜L) = R(L). Thus, the label assigned by R to all tasks in T ⇤ is the same under both
scenarios. As a result, it follows that A↵(R,�⇤, l) + A↵(R,�⇤, ŷ) = |T ⇤| = 2 ⇤ L and therefore,
either A↵(R,�⇤,y) � L or A↵(R,�⇤, ŷ) � L. The result of the theorem now follows.

Also, note that the simple majority decision rule, with labels chosen randomly in case of a tie,
achieves this lower bound.

A.4 Proof of Theorem 4

Before we can prove the theorem, we need the following definitions and lemmas.
Definition 2. A bipartite graph B = (U, V,E) is termed degenerate if the following condition is
satisfied:

|U | > |V |

Definition 3. A bipartite graph B = (U, V,E) is termed growth if the following condition is satis-
fied:

8 U 0 ✓ U |U 0|  |Img(U 0
)|

Lemma 3. Any bipartite graph can be decomposed into degenerate and growth sub-graphs where
there are cross-edges only from the growth component to the degenerate component.

Proof. Let B = (U, V,E) be a given bipartite graph. Define U⇤ to be the largest subset of U
such that |U⇤| > |ImgB(U

⇤
)| where ImgB denotes the image in the graph B. If no such U⇤

exists then the graph is already growth and we are done. Else, we claim that the sub-graph (say
C) of B restricted to U \ U⇤ on the left and V \ ImgB(U

⇤
) on the right is growth. Otherwise,
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there exists a subset U 0 such that |U 0| > |ImgC(U
0
)| where ImgC(U

0
) ✓ V \ ImgB(U

⇤
) denotes

the image of U 0 in the sub-graph C. But then, we can add U 0 to U⇤ to get a larger degenerate
sub-graph in B which contradicts our choice of U⇤. To see this, consider the set U⇤ [ U 0 on the
left and ImgB(U

⇤
) [ ImgC(U

0
) on the right. We have |U⇤ [ U 0| = |U⇤| + |U 0| > |ImgB(U

⇤
)| +

|ImgC(U
0
)| = |ImgB(U

⇤[U 0
)|. Also, note that the only cross-edges are from U\U⇤ to ImgB(U

⇤
).

This shows that any bipartite graph can be decomposed into degenerate and growth sub-graphs with
cross-edges only from the growth to the degenerate sub-graph.

Lemma 4. Let B = (U, V,E) be any bipartite graph and suppose that M is any semi-matching
on B. Further, let C = (U, V1 ✓ V,E1) be any subgraph of B. Starting with M1 ✓ M , we can
use algorithm ASM2 in [OPT] to obtain an optimal semi-matching N on C. Let the nodes in U be
indexed such that degM (1) � degM (2) � . . . degM (|U |) and indexed again such that degN (1) �
degN (2) � . . . degN (|U |). Then for any 1  l  |U |, we have

Pl
i=1 degN (i) 

Pl
i=1 degM (i),

i.e. the sum of the degrees of the top l nodes in U only decreases as we go from M to N .

Proof. Note that if we restrict M to just the nodes V1, we get a feasible semi-matching M1 on
C. Algorithm ASM2 proceeds by the iterated removal of cost-reducing paths. Note that when a
cost-reducing path is removed, load is transferred from a worker with larger degree to a worker
with strictly smaller degree. To see this, let P = (u1, v1, u2, . . . uk) be a cost-reducing path. This
means that deg(u1) > deg(uk) + 1. When we eliminate the cost-reducing path P , the degree of u1

decreases by 1 and that of uk increases by 1, but still the new degree of uk is strictly lower than the
old degree of u1. In other words, if dB1 � dB2 � . . . dB|U | and dA1 � dA2 � . . . dA|U | be the degrees of

the nodes in U before and after the removal of a cost-reducing path, then
Pl

i=1 d
A
i 

Pl
i=1 d

B
i for

any 1  l  |U |. Since this invariant is satisfied after every iteration of algorithm ASM2, it holds at
the beginning and the end and we have

l
X

i=1

degN (i) 
l

X

i=1

degM1(i) (3)

However, note that when we restrict M to only the set V1, the sum of the degrees of the top l nodes
in U can only decrease, i.e.

l
X

i=1

degM1(i) 
l

X

i=1

degM (i) (4)

Combining equations 3 and 4, the result follows.

Notation. First, let T + denote the set {t+ : t 2 T }, and similarly T � denote the set {t� : t 2 T }.
Now partition the set of task copies T + [ T � into E [F such that for any task t, if the true label is
1, we put t+ in E and t� in F , otherwise, we put t� in E and t+ in F . Thus, E contains task copies
with true labels while F contains task copies with incorrect labels. Since honest workers always
provide the true label, all honest workers have edges only to the set of task copies in E. However,
adversaries can have edges to task copies in E and F . In addition, it is easy to see that the bipartite
graph on the honest workers H and task copies in E is the same as BH . As a result, the optimal
semi-matching ME over the sub-graph from H to E is the same as the optimal semi-matching over
the bipartite graph BH , which we denote by MH . Thus, the degrees of the honest workers in ME

are by hypothesis of the theorem d1, d2, . . . , d|H|. Without loss of generality, suppose that honest
workers are indexed such that d1 � d2 � · · · � d|H| and dh denote the degree of honest worker h.

Adversary strategy that affects atleast
Pk�1

i=1 di tasks

We now exhibit an adversary strategy that results in incorrect labels for at least
Pk�1

i=1 di tasks. For a
given honest worker labeling pattern, the adversaries target workers {1, 2, . . . , k � 1} in H: for each
honest worker h, the adversary labels opposite to h on every task that h is mapped to in the semi-
matching ME . Furthermore, the adversary uses the last identity k to label opposite the true label for
every task t 2 T for which one of the first k � 1 adversaries have not already labeled on. We now
argue that under the penalty-based aggregation algorithm, this adversary strategy results in incorrect
labels for at least

Pk�1
i=1 di tasks. To see this, first note that the conflict set Tcs is the entire set of
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tasks T . The bipartite graph Bcs decomposes into two disjoint bipartite graphs: bipartite graph BE

from H to E and semi-matching MF from A to F that represents the adversary labeling pattern (it
is a semi-matching because there is exactly one adversary labeling on each task). Since the bipartite
graph Bcs decomposes into two disjoint bipartite graphs, computing the optimal semi-matching on
Bcs is equivalent to separately computing optimal semi-matchings on BE and MF . Since ME is
the optimal semi-matching on BE and MF is already a semi-matching by construction, the optimal
semi-matching of Bcs is the disjoint union of ME and MF . It is easy to see that in the resultant semi-
matching honest worker i and adversary i have the same degrees for i = 1, 2, . . . , k� 1. Hence, for
every task that is labeled by honest worker i for i = 1, 2, . . . , k � 1, the algorithm outputs label 0.
Thus, this adversary strategy results in incorrect labels for at least

Pk�1
i=1 di tasks.

Upper bound U

We assume in the arguments below that the optimal semi-matching in HARD PENALTY Algorithm is
computed on the entire task set and not just the conflict set Tcs (We drop the cs superscript and refer
to this graph as just B below, note that B contains both real and fake copies of the tasks). However,
the bounds provided still hold as a result of lemma 4 above. Also, we assume that the adversary
labeling strategy is always a semi-matching, i.e. there is atmost one adversary label for any task. If
the adversary labeling strategy is not a semi-matching, they can replace it with an alternate strategy
where they only label for tasks to which they will be mapped in the optimal semi-matching (the
adversaries can compute this since they have knowledge of the honest workers’ labels). The optimal
semi-matching doesn’t change (otherwise it contradicts the optimality of the original semi-matching)
and hence neither does the number of affected tasks.

We first state the following important lemma:
Lemma 5. For any adversary labeling strategy, let B(E) denote the bipartite graph B restricted to
all the workers W on the left and “real tasks” E on the right, and M be the optimal semi-matching
on the bipartite graph B. Further, let M(E) ⇢ M be the optimal semi-matching restricted just to
the task set E. Then, M(E) is an optimal semi-matching for the sub-graph B(E).

Proof. Suppose the statement is not true and let N(E) denote the optimal semi-matching on B(E).
We use dw(K) to denote the degree of worker w in a semi-matching K. Note that, da(N(E)) 
da(M(E))  da(M) for all adversaries a 2 A. For the adversaries who did not agree with any
honest worker, they will have degrees 0 in the semi-matchings N(E) and M(E) but the inequality
is still satisfied. Now, since N(E) is an optimal semi-matching and M(E) is not, we have that

cost(N(E)) < cost(M(E)) )
X

h2H

dh(N(E))2 +
X

a2A

da(N(E))2 <

X

h2H

dh(M(E))2 +
X

a2A

da(M(E))2 (5)

Now, consider the semi-matching N on B where we start with the semi-matching N(E) and then
map the adversaries A to the tasks in F to which they were assigned in the original optimal semi-
matching M . Now, we claim that cost(N) < cost(M) which will be a contradiction since M was
assumed to be an optimal semi-matching on B.

cost(M) � cost(N)

=
X

h2H

dh(M)2 +
X

a2A

da(M)2 � (
X

h2H

dh(N)2 +
X

a2A

da(N)2)

=
X

h2H

dh(M(E))2 +
X

a2A

(da(M(E)) + �a)
2

� (
X

h2H

dh(N(E))2 +
X

a2A

(da(N(E)) + �a)
2)

where �a
def
= da(M) � da(M(E)) � 0

= (
X

h2H

dh(M(E))2 +
X

a2A

da(M(E))2 �
X

h2H

dh(N(E))2 �
X

a2A

da(N(E))2)

+ 2
X

a2A

(da(M(E)) � da(N(E))) ⇤ �a > 0

since da(M(E)) � da(N(E)) as stated above (6)

Therefore, M(E) is an optimal semi-matching for the sub-graph B(E).
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Part 1. Adversaries only provide incorrect labels or atmost 1 adversary provides correct
labels

First, we provide an upper bound on the number of affected tasks when the adversaries only disagree
with the honest workers.

Lemma 6. Suppose that the adversaries never agree with the honest workers. Let M be an arbitrary
semi-matching on the bipartite graph B and suppose that this semi-matching is used in the PENALTY-
BASED AGGREGATION Algorithm to compute the true labels of the tasks. Further, let b1 � b2 �
· · · � b|H| denote the degrees of the honest workers in this semi-matching where bi is the degree of
honest worker hi. Then, the number of affected tasks is atmost

Pk
i=1 bi.

Proof. It follows from the assumption that adversaries never agree with the honest workers that
there are no cross-edges between A and E in the bipartite graph B. Thus, for any adversary labeling
pattern, we can decompose the bipartite graph B into BE and BF , where BF is the bipartite graph
from the adversaries A to the task copies in F . This further means that the semi-matching M is
a disjoint union of semi-matchings on BE and BF . Let the semi-matchings on the sub-graphs be
termed as M(E) and M(F ) respectively. Further, let T ✓ T denote the set of tasks that are affected
(receive incorrect labels) under this strategy of the adversaries and when the semi-matching M is
used to compute the reputations of the workers. We claim that |T | 

Pk
i=1 bi. To see this, for each

adversary a 2 A, let H(a) ⇢ H denote the set of honest workers who have “lost” to a i.e., for each
worker h 2 H(a) there exists a task t 2 T such that h is mapped to t in M(E), a is mapped to t in
M(F ), and the degree of h in M(E) is greater than or equal to the degree of a in M(F ). Of course,
H(a) may be empty. Let ¯A denote the set of adversaries {a 2 A : H(a) 6= ;} and let ¯H denote the
set of honest workers

S

a2A H(a). Now define a bipartite matching between ¯A and ¯H with an edge
between a 2 ¯A and h 2 ¯H if and only if h 2 H(a). This bipartite graph can be decomposed into
degenerate and growth sub-graphs by lemma 3. In the growth sub-graph, by Hall’s condition, we
can find a perfect matching from adversaries to honest workers. Let (S1, H1) with S1 ✓ ¯A and
H1 = Img(S1) be the degenerate component. The number of tasks that adversaries in S1 affect
is bounded above by

P

h2Img(S1)
bh. Similarly, for S2 =

¯A \ S1, we can match each adversary to
a distinct honest worker whose degree is greater than or equal to the degree of the adversary. We
can now bound the number of affected tasks by the adversaries in S2 by the sum of their degrees,
which in turn is bounded above by the sum of the degrees of honest workers that the adversaries are
matched to. Let H2 denote the set of honest workers matched to adversaries in the perfect matching.
Thus, we have bounded the number of affected tasks above by

P

h2H1[H2
bh. It is easy to see that

|H1 [H2|  k. Therefore,
P

h2H1[H2
bh 

Pk
i=1 bi. Therefore, the number of affected tasks |T |

is atmost
Pk

i=1 bi if the adversaries only disagree with the honest workers.

Note that since the above lemma is true for any choice of semi-matching M it is true in particular for
the optimal semi-matching on B. Therefore, it gives us an upper bound on the number of affected
tasks when the adversaries only disagree with the honest workers.

Now, consider the case when there is exactly 1 adversary that agrees with the honest workers and
all other adversaries only disagree. Let M be the optimal semi-matching on the bipartite graph
B resulting from such an adversary strategy and let a denote the adversary who agrees with the
honest workers. Observe that we can apply the argument in lemma 6 above to get a bound on the
number of affected tasks that the adversaries “win” against the honest workers. Let T1 denote the
set of these tasks. There are two possible scenarios: either we obtain a perfect matching between
the k adversaries and some k honest workers (refer to the proof above). In this scenario, we have
accounted for all the affected tasks in the original semi-matching M . In the other scenario, when the
degenerate component is non-empty, we have a total of at most k � 1 honest workers on the right
and we bound T1 by the sum of the degrees of these honest workers. Note, however that we may be
missing out on some of the affected tasks, namely those that the adversary a “loses” against other
adversaries. The tasks that we might be missing out on correspond exactly to the tasks in E that the
adversary a is mapped to in the semi-matching M . Specifically, let M(E) denote the semi-matching
M restricted to just the real tasks E. Then it follows that we can bound the number of affected tasks
by |T1|+ da(M(E)) where da(M(E)) denotes the degree of a in M(E).
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Next observe that in both cases, we have bounded the number of affected tasks by the sum of the
degrees of some k workers in the semi-matching M restricted to workers H [ {a} on the left and
tasks E on the right, i.e. in the semi-matching M(E). Lemma 5 tells us that M(E) is in fact, the
optimal semi-matching on the subgraph from workers H [{a} to tasks E. Finally, lemma 4 implies
that this sum is atmost

Pk
i=1 di (by starting with MH as a feasible semi-matching) and the bound

follows.

Part 2. Adversaries can provide arbitrary labels

Now, consider the general case when any number of adversaries can agree with the honest workers.
We further make the assumption that |H| � 2 ⇤ |A|, otherwise the upper bound below becomes
P|H|

i=1 di, which is the set of all tasks T and is a trivial upper bound.

First recall that lemma 6 was applicable to any semi-matching and in fact, we can use the same
argument even when the adversaries agree with the honest workers. Formally, let the set of affected
tasks T for an arbitrary adversary labeling strategy, resulting in an optimal semi-matching M on
the bipartite graph B be such that T = TH [ TA where TH are the tasks that the adversaries “win”
against the honest workers and TA are the tasks that are affected when 2 adversaries are compared
against each other in the final step of the PENALTY-BASED AGGREGATION Algorithm. We can
apply the same argument as in lemma 6 to bound |TH | by the sum of the degrees of the top k honest
workers in the optimal semi-matching M . Further, we can bound TA by the number of tasks in E
that were mapped to adversaries in the optimal semi-matching M . This, in turn is equal to the sum
of the degrees of the adversaries in the semi-matching M restricted to just the real tasks E. Let
AH ✓ A denote the set of adversaries that are mapped to tasks in E in the optimal semi-matching
M . Therefore, we can bound the number of affected tasks |T | by the sum of the degrees of the top
j = k + |AH | workers in the semi-matching M restricted to just the real tasks E. Now, we claim
that this is upper bounded by the sum of the degrees of the top j honest workers in the optimal
semi-matching MH on the original honest worker sub-graph BH . To see this, start with MH as a
feasible semi-matching from workers H [ AH to tasks E. Lemma 4 tells us that the sum of the
degrees of the top j workers in the optimal semi-matching is atmost the sum of the degrees of the
top j honest workers in MH . Further, lemma 5 tells us that the optimal semi-matching on the sub-
graph from workers H [ AH to tasks E is precisely the semi-matching M restricted to the real
tasks E. This shows that we can bound the number of affected tasks by

Pj
i=1 di. Finally, note that

|AH |  k ) j  2k and hence, we can bound the number of affected tasks by
P2k

i=1 di.

Uniqueness of degree-sequence in optimal semi-matchings

In the arguments above, we have implicitly assumed some sort of uniqueness for the optimal semi-
matching on any bipartite graph. Clearly its possible to have multiple optimal semi-matchings for a
given bipartite graph. However, we prove below that the degree sequence of the vertices is unique
across all optimal semi-matchings and hence our bounds still hold without ambiguity.
Lemma 7. Let M and M 0 be two optimal semi-matchings on a bipartite graph B = (U, V,E) with
|U | = n and let d1 � d2 · · · � dn and d01 � d02 � · · · d0n be the degree sequence for the U -vertices
in M and M 0 respectively. Then, di = d0i 8 1  i  n, or in other words, any two optimal
semi-matchings have the same degree sequence.

Proof. Let l be the smallest index such that dl 6= d0l, note that we must have l < n since we have that
Pn

j=1 d
0
j =

Pn
j=1 dj . This means that we have dj = d0j 8j < l. Without loss of generality, assume

that d0l > dl. Now, 9q 2 N such that d0ql > dql +
Pn

j=l+1 d
q
j and since dj = d0j 8j < l, we have

that
Pn

j=1 d
0q
j �

Pl
j=1 d

0q
j >

Pn
j=1 d

q
j . But, this is a contradiction since an optimal semi-matching

minimizes the Lp norm of the degree-vector for any p � 1 (Section 3.4 in [OPT]). Hence, we have
that di = d0i 8i.
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