Appendix: Beta-Negative Binomial Process and Exchangeable Random
Partitions for Mixed-Membership Modeling

Logbeta Process

Denoting a transformed representation of the beta process as @ = — > ;- In(1 — py)d,,. then
for each A C , using the Lévy-Khintchine theorem and (TJ), the Laplace transform of the random
variable Q(A) = — > ;. 4 In(1 — pi) can be expressed as

Ele W] = exp { [y 14 [(1 = ) = wldpde) } = exp {=Bo(A) (e + 5) = v()] },

where ¢(z) = % is the digamma function with ¢(c + s) — 1 (c) = Y 0y (C%H - C+H_3) Thus

Q(A) is an infinitely divisible random variable, which is defined as the logbeta random variable as
Q(A) ~ logBeta(By(A), c). We further define the associated completely random measure as the

logbeta process QQ ~ logBP(By, c), with Lévy measure v(dgdw) = 1%-=;dqBo(dw). The logbeta
random variable is found to be useful to derive closed-form Gibbs sampling update equations for
model parameters, as shown below. We mention that the logbeta process presented here is the same

as the beta-stacy process of [1].

Proof for Lemma|2|

By separating the atoms within the absolutely continuous space and the atoms with positive counts,
the conditional likelihood of the BNBP group size dependent mixed-membership model, as shown
in (3)), can be rewritten as
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Let Dy := {Wk }k:n., >0 denote the set of all observed atoms with positive counts, and let K ; :=
|D ;| denote its cardinality. Our goal is to marginalize out the beta process B to obtain the joint
distribution of the cluster assignments z and the group-size vector m. Fixing an arbitrary labeling
of the atoms in D from 1 to K j, we may further rewrite the joint conditional likelihood as

r K n. r J  T(njr+r;
flzmlr, B) = grbome Q@O TR i (1= p)™ T, S| as)
where Q(Q\Dy) := = > ;... —o In(1—pi) follows the logBeta(o, c) distribution in the prior. Since
Joaxa P (1 =p)"v(dpdw) = 70 R and Egle=@\PIr] = =0lb(e4r) =00, we may

marginalize B out of @]) with the Palm formula [2 3] 4]}, leading to @ which is a PMF that is
only related to the cluster sizes, regardless of their orders. Since the group sizes {m;}; themselves
are random, and the random cluster sizes {nj }s are exchangeable, we call @) as the exchangeable
cluster probability function (ECPF) of the BNBP group size dependent mixed-membership model.

O
Proof for Lemma[3
As the group-size count vector m = (mq,...,my)? can be generated as the summation of a
Poisson random number of i.i.d. random count vectors, its PMF can be expressed as
K
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Using the ECPF in (6) and the multivariate distribution of the group size vector m shown above, the
EPPF in (9) directly follows Bayes’ rule as
f(z7 m|r, 0, C)

f(z|m,r,’yo,c): f(m|r 7o C) .



Proof for Lemma ]

One may rewrite the ECPF in (6)) as
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which directly leads to via Bayes’ rule as
f(zji, 277", mlr,y0,¢)
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Parameter Inference

Using both the conditional likelihood (5) and marginal likelihood (6), with the data augmentation
and marginalization techniques for the negative binomial distribution in [5} 6], we sample the model
parameters as

1
(70|—=) ~ Gamma <€0 + Ky, [P P T/)(C)) ; (16)
(pr|—) ~ Beta(n.g,c+r.), (Q(Q\Dy)|—) ~ logBeta(yo,c+r.), 17
N (o
(Ljk|—) = ;ut7 u; ~ Bernoulli (rj . 1) , (18)
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=7 b+ QDY) — Y5 In(1 — pr)
To draw from the logBeta distribution = ~ logBeta(vo, ¢ + .), we use its Laplace transform
Ele ] =exp{—v [¥(c+ 7. +s) —(c+7r.)]}

together with the random number generating technique developed in [7]. The only parameter that
we could not find an analytic conditional posterior is the concentration parameter ¢, for which we
use the griddy-Gibbs sampler [§] to sample from a discrete distribution

(Cl—) X f(z,m|r,'yo,c) (20)
over a grid of points %Jrc = 0.01,0.02,...,0.99. Collapsed Gibbs sampling for the BNBP topic

model is implemented by iteratively running (12) and (T6)-(20). The direct assignment Gibbs sam-
pler for the HDP-LDA is developed in [9] and also described in detail in [10].
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