
On the Computational Efficiency of Training Neural
Networks – Appendix

Roi Livni
The Hebrew University
roi.livni@mail.huji.ac.il

Shai Shalev-Shwartz
The Hebrew University

shais@cs.huji.ac.il

Ohad Shamir
Weizmann Institute

ohad.shamir@weizmann.ac.il

A Proofs

A.1 Proof of Corollary 2

A.1.1 Hardness result for the class N2,n,σsig,L:

Consider Ha as defined in Thm. 2. Note that for every h ∈ Ha there are integral w and b such that
h(x) = w>x − b − 1

2 and we have that |h(x)| ≥ 1/2. Given k hyperplanes {hi}ki=1 consider the
neurons

gi(x) = 1/ (1 + exp (−Chi(x))) ,
where C ∈ ω(1) is to be chosen later. Let

g(x) =
Cd

2k + 1
3

(
k∑
i=1

gi(x)− k +
1

3

)
.

If ‖w‖1 + |b + 1
2 | ≤ d we have that g(x) ∈ N2,n,σsig,L, whenever L ≥ Cd. Choose C ∈ O(k)

sufficiently large so that

1/

(
1 + exp

(
−C

2

))
− 1 > − 1

3k
.

and

1/

(
1 + exp

(
C

2

))
<

2

3
.

Since |hi(x)| ≥ 1
2 for all i, if the output of all neurons {gi} is positive we have

2k + 1/3

Cd
g(x) ≥ k

(
1

1 + exp(−C2)
− 1

)
+

1

3
> 0.

On the other hand, if hi(x) < − 1
2 for some i we have that

2k + 1/3

Cd
g(x) ≤

k−1∑
i=1

gi(x) +
1

1 + exp(C2)
− k + 1

3
≤ k − 1− k + 1

1 + exp C
2

+
1

3
< 0.

We’ve demonstrated that the target function sign(g(x)) implements h1 ∧ h2 ∧ . . . ∧ hk thus Ha
k ⊆

N2,k+1,σsig,L.

A.1.2 Hardness result for the class N2,n,σrelu,L:

Again, given k hyperplanes {hi}ki=1, for every k consider the two neurons:

g+i (x) = max{0, 2hi(x)}, g−i = (x)max{0, 2hi(x)− 1}.

1

And let

g(x) =
1

2k

(
k∑
i=1

(
g+i (x)− g

−
i (x)

)
− k

)
.

As before g(x) ∈ N2,2k+1,σrelu,L, whenever L ≥ 2d. One can also verify that g(x) implements
h1 ∧ h2 ∧ . . . ∧ hk.

A.2 Proof of Thm. 3

We start by showing that we can implement AND,OR,NEG, Id gates using polynomial networks of
fixed depth and size. As a corollary, we can implement circuits with fixed number of fan-ins. NEG
can be implemented with x 7→ 1−x and Id can be implemented with x 7→ 1

4

(
(x+ 1)2 − (x− 1)2

)
.

Next note that

AND(x1,x2) = x1 · x2, and OR(x1,x2) = x1 + x2 −AND(x1,x2).

and that x1 · x2 = 1
4

(
(x2 + x1)

2 − (x2 − x1)
2
)
. Thus we can implement with two layers a con-

junction and disjunction of 2 neurons. By adding a fixed number of layers, we can also implement
the conjunction and disjunction of any fixed number of neurons. Therefore, if B is a circuit with
fixed number of fan-ins, of size T, we can implement it using a polynomial network with O(T)
layers and O(T 2) neurons, where layer t simulates the calculation of all gates at depth t.

Now, by [1], any Turing machine with runtime T can be simulated by an oblivious Turing machine
with O(T log T)-steps. An oblivious Turing machine is a machine such that the position of the
machine head at time t does not depend on the input of the machine (and therefore is known ahead
of time). We can now easily simulate the machine by a network of depth O(T log T), where the
nodes at each layer contain the state of the turing machine (the content of the tape and the position
at the state machine), and the transition from layer to layer depends on a constant size circuit, and
hence can be implemented by a constant depth polynomial network.

A.3 Proof of Thm. 4

The idea of proof of Thm. 4 is as follows: First we show that we can express any T -degree poly-
nomial using O(log T) layers and O(T) neurons. This is done in Lemma 1 part 4. As a second
step, we show in Lemma 2 that a sigmoidal function can be approximated in a ball of radius L by
a O(log L

ε)-degree polynomial. The result follows by replacing each sigmoid activation unit with
added layers that approximate the sigmoidal function on the output of the previous layer. We will
first prove the two Lemmas. The proof of Thm. 4 is then given at the end of the section.

Lemma 1. The following statements hold:

1. If g ∈ Nt,n,σ2,L for some L ≥ 2 then g ∈ Nt′,n+2(t′−t),σ2,L for every t′ ≥ t.

2. If G ∈ Nt,n,σ2,L for some L ≥ 2 and G is a network with two output neurons g1 and g2
then g1 · g2 ∈ Nt+1,n+1,σ2

.

3. If g ∈ Nt,n,σ2,L for some L ≥ 2 then (g)T ∈ Nt′,n′,σ2,L. where t′ = t+ log T + log log T
and n′ = n+ 2 log T + log T (log log T).

4. If g ∈ Nt,n,σ2,L then
∑T
i=1 ai(g(x))

k is in Nt′,n′,σ2,L′ where

t′ = t+ log T + log log T, n′ = n+ 2‖a‖0(2 log T + log T (log log T),

where ‖a‖0 = |{k : ak 6= 0}|. And L′ = max{‖a‖1, L, 2}.

Proof. 1. Proof of 1]: Note that 1
4 ((x+1)2− (x− 1)2) = x. Next we prove the statement by

induction. For t′ = t, the satement is trivial. Next assume that g ∈ Nt,n+2(t′−t),σ2,L. Let

h1(x) =

(
1

2
g(x) +

1

2

)2

, h2(x) =

(
1

2
g(x)− 1

2

)2

.

2

Let h(x) = h1(x) − h2(x) then h(x) = g(x). By taking the network that implements g,
removing the output neuron, adding an additional hidden layer that consists of h1 and h2
and finally adding an additional output neuron we have that h(x) ∈ Nt′+1,n+2(t′−t)+2,σ2,L.

2. Proof of 2: Like before, note that x1 · x2 = 1
4 (x1 + x2)

2 − 1
4 (x1 − x2)

2. Let

h1(x) = (
1

2
g1(x) +

1

2
g2(x))

2, h2(x) = (
1

2
g1(x) +

1

2
g2(x))

2.

As before we remove from the network that implements G the two nodes at the output
layer, add an additional hidden layer that implements h1 and h2 and finally add an output
neuron h(x) = h1(x)− h2(x).

3. Proof of 3:Write T =
∑log T
i=1 εi2

i where εi = {0, 1}.
We will first show that we can construct a polynomial network that contains in layer t +
log T neurons h1, . . . , hlog T such that hk(x) = (g(x))2

k

. It is easy to see that we can
implement a neuron h′(x)k at layer t + k such that h′k(x) = (g(x))2

k

. Next, using 1 we
add 2(log T − k) neurons and implement h′k in layer t+ log T .

Finally, we implement
∏
{i:εi 6=0} hi(x) using log log T layers and log T log log T addi-

tional neurons, this can be done by applying 2 where at each layer we pair the neu-
rons at previous layer and do their product (e.g. if for every i εi 6= 0 then at the next
layer we implement (h1 · h2, h3 · h4, . . . ht−1ht) then at the next layer we implement
(h1 · h2 · h3 · h4, . . . , ht−4 · · ·ht) etc..)

4. Proof of 4: Follows from 1 and 3.

Lemma 2 (Sigmoidals are approximable via polynomial networks). The following holds for any
ε ≥ 0 and (for simplicity) L ≥ 3: Set

T = log

(
2L4 + exp

(
7L ln

(
4L

ε
+ 3

)))
+ 2 log

8

ε
.

There is a polynomial p(x) =
∑T
j=1 ajx

j , such that:

sup
|x|<4L

|p(x)− σsig(x)| < ε.

Proof of Lemma 2. Set

t′ = log

(
2L4 + exp(7L ln

(
4L

ε
+ 3

))
.

According to [3] Lemma 2, there is an analytic function q such that

sup
|x|≤1

|q(x)− σsig(4Lx)| ≤
ε

2
,

and

q(x) =

∞∑
j=0

βjx
j

where
∞∑
j=0

β2
j 2
j ≤ 2t

′
.

Note that for every j we have |βj | ≤ 2
t′−j

2 . Thus

sup
|x|<1

|
∑
j>T

βjx
j | ≤

∑
j>T

|βj | ≤
∑
j>T

2
t′−j

2 = 2
t′−T

2

∞∑
j=1

(√
2
)−j

< 4 · 2
t′−T

2 .

3

Recalling that T = t′ + 2 log 8
ε and letting p0(x) =

∑T
j=0 βjx

j , we have by triangular inequality
that

sup
|x|≤1

|p0(x)− σsig(4Lx)| ≤ ε.

Finally, take p(x) = p0(
x
4L).

A.3.1 Back to proof of Thm. 4

Set

T = log

(
2L4 + exp(7L ln

(
(4L)t

ε
+ 3

))
+ 2 log

8(4L)t−1

ε
.

and have

Bt = 1 + log T + log log T ∈ Õ
(
logL log

Lt

ε

)
, (1)

Bn = 1 + 2T (2 log T + log T log log T) ∈ Õ(L log
Lt

ε
). (2)

We prove the statement by induction on t, our induction hypothesis will hold for networks with not
necessarily a single output neuron. For t = 1, since N1,n,σ2

= N1,n,σsig
, the statement is trivial.

Next let F ∈ Nt,n,σsig,L, assume F : Rd → Rs (i.e. the output layer has s nodes). There is a target
function F (t−1) ∈ Nt−1,n−s,σsig,L such that for every i = 1 . . . s we have

Fi = w>i σsig(F
(t−1)(x)).

where σsig(F (t−1)(x)) denotes pointwise activation of σsig on the coordinates of F (t−1).

By induction, there is some P (t−1) ∈ N(t−1)Bt,(n−s)Bn,σ2
such that

sup
‖x‖∞≤1

‖P (t−1)(x)− F (t−1)(x)‖∞ ≤
ε

4L
≤ ε

4

By Lemma 1 part 4 and Lemma 2 we can addBt layers andBn neurons and implement a new target
function Pi such that

Pi(x) = w>i p(P
(t−1)(x)),

where p is taken from Lemma 2 and satisfies

sup
|x|≤4L

|p(x)− σsig(x)| <
ε

(4L)t−1
≤ ε

2L
,

Taken together we can add sBn nodes to implement a target function P = P1, . . . , Ps. Next,

‖P (x)−F (x)‖∞ ≤ sup
i
‖Pi(x)−w>i σsig(P (t−1)(x))‖+‖w>i σsig(P (t−1)(x))−w>i σsig(F (t−1)(x))‖.

Recall that the `1-norm of each weight vector of each neuron is bounded by L and that the output
of each neuron is bounded by supx σsig(x) = 1, hence: ‖F (t−1)(x)‖∞ ≤ L. By induction we also
have that ‖F (t−1)(x)− P (t−1)(x)‖∞ ≤ 1 hence ‖P t−1(x)‖∞ ≤ 2L and we have:

sup
i
‖w>i p(P (t−1)(x))−w>i σsig(P (t−1)(x))‖+sup

i
‖w>i σsig(P (t−1)(x))−w>i σsig(F (t−1)(x))‖ ≤ .

‖wi‖1ε
2L

+ ‖wi‖1‖P (t−1)(x)− F (t−1)(x)‖∞ ≤
ε

2
+
ε

4
≤ ε.

Where we used the fact that σsig is 1-Lipschitz.

4

A.4 Proof of Thm. 7

That f ∈ N3,5r,σ2
can be shown using Lemma 1 and the output’s structure.

Let us denote by Approx((1−τ)√
2d
,∇R(f)), a procedure that returns g ∈ V such that

m∑
i=1

`′(f(xi), yi)g(xi) ≥
(1− τ)√

2d
max
g∗∈V

1

m

m∑
i=1

`′(f(xi), yi)g
∗(xi)

Input: r τ , ε
Initialize: W = ∅, f = 0
For t = 1, . . . , r

Set g(x) := Approx
(

(1−τ)√
2d
,∇R(f)

)
Add g(x) toW .
Let α(t) and f (t) optimize the problem minf

1
m

∑m
i=1 `(f(xi), yi)

subject to f(x) =
∑
g∈W αgg(x).

Return: f = f (r).

Figure 3: GECO with different Approx procedure.

The GECO algorithm is presented in Fig. 3 with an Approx procedure that is implemented with
respect to V = ∪Vi. The guarantees in Thm. 7 are proven in exactly the same manner as in [2].

The remained challenge is to demonstrate that the Approx procedure can be implemented efficiently,
relying on the algorithm presented in Fig. 1 . To this end, note that the only difficulty is when g∗ ∈ V3
(since if g∗ ∈ V2 or g∗ ∈ V1 we are back to the 2-layer scenario). The proof follows directly from
the following lemma:
Lemma 3. Let w∗,u∗,v∗ be the output of the Algorithm presented in Fig. 1 with parameters
δ, τ, {xi}mi=1 and αi = `′(f(xi), yi). With probability at least 1− δ:

F (w∗,u∗,v∗) ≥ 1− τ√
2d

max
‖w‖,‖u‖,‖v‖≤1

F (w,u,v),

where

F (w,u,v) =
1

m

m∑
i=1

`′(f(xi), yi)(w
>xi) · (u>xi) · (v>xi).

Proof. Let us denote by w∗,u∗,v∗ the maximizers of F (w,u,v), over all ‖w‖, ‖u‖, ‖v‖ = 1.

For each u,v let f(u,v) be the vector

f(u,v) =

m∑
i=1

αi(u
>xi)(v

>xi)xi.

First, we claim that f(u∗,v∗) ∝ w∗ and that F (w∗,u∗,v∗) = ‖f(u∗,v∗)‖. Indeed for every
‖w‖ ≤ 1, by the Cauchy-Schwartz inequality:

F (w,u∗,v∗) = f(u∗,v∗)>w ≤ ‖f(u∗,v∗)‖‖w‖ ≤ ‖f(u∗,v∗)‖.
Again by Cauchy-Schwartz, equality is attained if and only if w ∝ f(u∗,v∗).
Next, let us consider a single random variable ŵ such that w ∼ N(0, Id) and ŵ = w

‖w‖ . Note
that for any unit vector u1 we have E((ŵ>u1)

2) = 1
d . Indeed, extend u1 to an orthonormal basis

u1, . . . ,ud. we have that

1 = E(‖ŵ‖2) = E(
d∑
i=1

(ŵ>ui)
2).

5

By symmetry we have that:

1 = E(
d∑
i=1

(ŵ>ui)
2) =

d∑
i=1

E((ŵ>ui)2) = dE((ŵ>u1)
2).

In particular we have E((ŵ>w∗)2) = 1
d . In conclusion (ŵ>w∗)2 is a random variable that takes

values in [0, 1] and has expected value 1
d . Applying the inverse Markov inequality (i.e. applying

Markov to the random variable 1− (ŵ>w∗)2), we have that

P ((ŵ>w∗)2 >
1

2d
) ≥

1
d −

1
2d

1− 1
2d

=
1

2d− 1
∈ O(

1

2d
)

Letting s ≥ − log 1
δ

log(1− 1
2d)
≈ 2d log 1

δ we have that with probability at least (1 − δ) for some wi we

have |w>i w∗| ≥ 1√
2d

, say w1.

Finally note that by definition of ui,vi:

max
i≤s

F (wi,ui,vi) ≥ F (w1,u1,v1) ≥ (1− τ)max
u,v

F (w1,u,v) ≥ (1− τ)F (w1,u
∗,v∗) =

= (1− τ)‖f(u∗,v∗)‖w∗>w1 ≥
1− τ√

2d
f(u∗,v∗) =

1− τ√
2d

F (w∗,u∗,v∗)

References

[1] N. Pippenger and M. Fischer. Relations among complexity measures. Journal of the ACM
(JACM), 26(2):361–381, 1979.

[2] S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-rank
constraint. In ICML, 2011.

[3] S. Shalev-Shwartz, O. Shamir, and K. Sridharan. Learning kernel-based halfspaces with the 0-1
loss. SIAM Journal on Computing, 40(6):1623–1646, 2011.

6

	Proofs
	Proof of Corollary 2
	Hardness result for the class N2,n,sig,L:
	Hardness result for the class N2,n,relu,L:

	Proof of Thm. 3
	Proof of Thm. 4
	Back to proof of Thm. 4

	Proof of Thm. 7

