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Abstract

In many situations we have some measurement of confidence on “positiveness”
for a binary label. The “positiveness” is a continuous value whose range is a
bounded interval. It quantifies the affiliation of each training data to the positive
class. We propose a novel learning algorithm called expectation loss SVM (e-
SVM) that is devoted to the problems where only the “positiveness” instead of a
binary label of each training sample is available. Our e-SVM algorithm can also
be readily extended to learn segment classifiers under weak supervision where the
exact positiveness value of each training example is unobserved. In experiments,
we show that the e-SVM algorithm can effectively address the segment proposal
classification task under both strong supervision (e.g. the pixel-level annotations
are available) and the weak supervision (e.g. only bounding-box annotations are
available), and outperforms the alternative approaches. Besides, we further vali-
date this method on two major tasks of computer vision: semantic segmentation
and object detection. Our method achieves the state-of-the-art object detection
performance on PASCAL VOC 2007 dataset.

1 Introduction

Recent work in computer vision relies heavily on manually labeled datasets to achieve satisfactory
performance. However, the detailed hand-labelling of datasets is expensive and impractical for large
datasets such as ImageNet [6]. It is better to have learning algorithms that can work with data that
has only been weakly labelled, for example by putting a bounding box around an object instead of
segmenting it or parsing it into parts.

In this paper we present a learning algorithm called expectation loss SVM (e-SVM). It requires
a method that can generate a set of proposals for the true label (e.g., the exact silhouette of the
object). But this set of proposals may be very large, each proposal may be only partially correct
(the correctness can be quantified by a continues value between 0 and 1 called ”positiveness”), and
several proposals may be required to obtain the correct label. In the training stage, our algorithm
can deal with the strong supervised case where the positiveness of the proposals are observed, and
can easily extend to the weakly supervised case by treating the positiveness as latent variables. In
the testing stage, it will predict the label for each proposal and provide a confidence score.

There are some alternative approaches for this problem, such as Support Vector Classification (SVC)
and Support Vector Regression (SVR). For the SVC algorithm, because this is not a standard binary
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Figure 1: The illustration of our algorithm. In the training process, the e-SVM model can handle
two types of annotations: pixel level (strong supervision) and bounding box (weak supervision)
annotations. For pixel level annotations, we set the positiveness of the proposal as IoU overlap
ratios with the groundtruth and train classifiers using basic e-SVM. For bounding box annotations,
we treat the positiveness as latent variables and use latent e-SVM to train classifiers. In the testing
process, the e-SVM will provide each segment proposal a class label and a confidence score. (Best
viewed in color)

classification problem, one might need to binarize the positiveness using ad-hoc heuristics to deter-
mine a threshold, which degrades its performance [18]. To address this problem, previous works
usually used SVR [4, 18] to train the class confidence prediction models in segmentic segmenta-
tion. However, it is also not a standard regression problem since the value of positiveness belongs
to a bounded interval [0, 1]. We compare our e-SVM to these two related methods in the seg-
ment proposal confidence prediction problem. The positiveness of each segment proposal is set as
the Intersection over Union (IoU) overlap ratio between the proposal and the pixel level instance
groundtruth. We test our algorithm under two types of scenarios with different annotations: the
pixel level annotations (positiveness is observed) and the bounding box annotations (positiveness
is unobserved). Experiments show that our model outperforms SVC and SVR in both scenarios.
Figure 1 illustrates the framework of our algorithm.

We further validate our approach on two fundamental computer vision tasks: (i) semantic segmenta-
tion, and (ii) object detection. Firstly, we consider semantic segmentation. There has recently been
impressive progress at this task using rich appearance cues. Segments are extracted from images
[1, 3, 4, 12], appearance cues are computed for each segment [5, 21, 25], and classifiers are trained
using groundtruth pixel labeling [18]. Methods of this type are almost always among the winners
of the PASCAL VOC segmentation challenge [5]. But all these methods rely on datasets which
have been hand-labelled at the pixel level. For this application we generate the segment proposals
using CPMC segments [4]. The positiveness of each proposal is set as the Intersection over Union
(IoU) overlap ratio. We show that appearance cues learnt by e-SVM, using either the bounding
box annotations or pixel level annotations, are more effective than those learnt with SVC and SVR
on PASCAL VOC 2011 [9] segmentation dataset. Our algorithm is also flexible enough to utilize
additional bounding box annotations to further improve the results.

Secondly, we address object detection by exploiting the effectiveness of segmentation cues and cou-
pling them to existing object detection methods. For this application, the data is only weakly labeled
because the groundtruth for object detection is typically specified by bounding boxes (e.g. PASCAL
VOC [8, 9] and Imagenet [6]), which means that pixel level groundtruth is not available. We use
either CPMC or super-pixels as methods for producing segment proposals. IoU is again used to rep-
resent the positiveness of the proposals. We test our approach on the PASCAL dataset using, as our
base detector, the Regions with CNN features (RCNN) [14] (currently state of the art on PASCAL
and outperforms previous works by a large margin). This method first used selective search method
[24] to extract candidate bounding boxes. For each candidate bounding box, it extracts features by
deep networks [16] learned on Imagenet dataset and fine-tuned on PASCAL. We couple our appear-
ance cues to this system by simple concatenating our spatial confidence map features based on the
trained e-SVM classifiers and the deep learning features, and then train a linear SVM. We show that
this simple approach yields an average improvement of 1.5 percent on per-class average precision
(AP).

We note that our approach is general. It can use any segment proposal detectors, any image features,
and any classifiers. When applied to object detection it could use any base detector, and we could
couple the appearance cues with the base detector in many different ways (we choose the simplest).
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In addition, it can handle other classification problems where only the ”positiveness” of the samples
instead of binary labels are available.

2 Related work on weakly supervised learning and weighted SVMs
We have introduced some of the most relevant works published recently for semantic segmentation
or object detection. In this section, we will briefly review related work of weakly supervised learn-
ing methods for segment classification, and discuss the connection to instance weighted SVM in
literature.

The problem settings for most previous works generally assumed that they only get a set of accom-
panying words of an image or a set of image level labeling, which is different from the problem
settings in this paper. Multiple Instance Learning (MIL) [7, 2] was adopted to solve these problems
[20, 22]. MIL handles cases where at least one positive instance is present in a positive bag and
only the labels of a set of bags are available. Vezhnevets et.al. [26] proposed a Multi-Image Model
(MIM) to solve this problem and showed that MIL in [22] is a special case of MIM. Later, [26]
developed MIM to a generalized MIM and used it as their segmentation model. Recently, Liu et.al.
[19] presented a weakly-supervised dual clustering approach to handle this task.

Our weakly supervised problem setting is in the middle between these settings and the strong super-
vision case (i.e. the full pixel level annotations are available). It is also very important and useful
because bounding box annotations of large-scale image dataset are already available (e.g. Imagenet
[6]) while the pixel level annotations of large datasets are still hard to obtain. This weakly super-
vised problem cannot be solved by MIL. We cannot assume that at least one ”completely” positive
instance (i.e. a CPMC segment proposals) is present in a positive bag (i.e. a groundtruth instance)
since most of the proposals will contain both foreground pixels and background pixels. We will
show how our e-SVM and its latent extension address this problem in the next sections.

In machine learning literature, the weighted SVM (WSVM) methods [23, 27, ?] also use an instance-
dependent weight on the cost of each example, and can improve the robustness of model estimation
[23], alleviate the effect of outliers [27], leverage privileged information [17] or deal with unbal-
anced classification problems. The difference between our e-SVM and WSVMs mainly lies in that
it weights labels instead of data points, which leads to each example contributing both to the costs
of positive and negative labels. Although the loss function of e-SVM model is different from those
of WSVMs, it can be effortlessly solved by any standard SVM solver (e.g., LibLinear [10]) like
those used in WSVMs. This is an advantage because it does not require a specific solver for the
implementation of our e-SVM.

3 The expectation loss SVM model

In this section, we will first describe the basic formulation of our expectation loss SVM model
(e-SVM) in section 3.1 when the positiveness of each segment proposal is observed. Then, in sec-
tion 3.2, a latent e-SVM model is introduced to handle the weak supervision situation where the
positiveness of each segment proposal is unobserved.

3.1 The basic e-SVM model

We are given a set of training images D. Using some segmentation method (we adopt CPMC [4]
in this work), we can generate a set of foreground segment proposals {S1, S2, . . . , SN} from these
images. For each segment Si, we extract feature xi, xi ∈ Rd.

Suppose the pixelwise annotations are available for all the groundtruth instances in D. For each
object class, we can calculate the IoU ratio ui (ui ∈ [0, 1]) between each segment Si and the
groundtruth instances labeling, and set the positiveness of Si as ui (although positiveness can be
some functions of IoU ratio, for simplicity, we just set it as IoU and use ui to represent the pos-
itiveness in the following paragraphs). Because many foreground segments overlap partially with
the groundtruth instances (i.e. 0 < ui < 1), it is not a standard binary classification problem for
training. Of course, we can define a threshold τb and treat all the segments whose ui ≥ τb as positive
examples and the segments whose ui < τb as negative examples. In this way, this problem is trans-
ferred to a Support Vector Classification (SVC) problem. But it needs some heuristics to determine
τb and its performance is only partially satisfactory [18].
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To address this issue, we proposed our expectation loss SVM model as an extension of the classical
SVC models. In this model, we treat the label Yi of each segment as an unobserved random variable.
Yi ∈ {−1,+1}. Given xi, we assume that Yi follows a Bernoulli distribution. The probability of
Yi = 1 given xi (i.e. the success probability of the Bernoulli distribution) is denoted as µi. We
assume that µi is a function of the positiveness ui, i.e. µi = g(ui). In the experiment, we simply set
µi = ui.

Similar to the traditional linear SVC problem, we adopt a linear function as the prediction function:
F (xi) = wTxi + b. For simplicity, we denote [w b] as w, [xi 1] as xi and F (xi) = wTxi in the
remaining part of the paper. The loss function of our e-SVM is the expectation over the random
variables Yi:

L(w) =λw ·
1

2
wTw +

1

N

N∑
i=1

EYi
[max(0, 1− YiwTxi)]

=λw ·
1

2
wTw +

1

N

N∑
i=1

[l+i · Pr(Yi = +1|xi) + l−i · Pr(Yi = −1|xi)]

=λw ·
1

2
wTw +

1

N

N∑
i=1

{l+i · g(ui) + l−i · [1− g(ui)]}

(1)

where l+i = max(0, 1−wTxi) and l−i = max(0, 1 +wTxi).

Given the pixelwise groundtruth annotations, g(ui) is known. From Equation 1, we can see that it
is equivalent to ”weight” each sample with a function of its positiveness. The standard linear SVM
solver is used to solve this model with loss function of L(w). In the experiments, we show that
the performance of our e-SVM is much better than SVC and slightly better than Support Vector
Regression (SVR) in the segment classification task.

3.2 The latent e-SVM model

One of the advantage of our e-SVM model is that we can easily extend it to the situation where only
bounding box annotations are available (this type of labeling is of most interest in the paper). Under
this weakly supervised setting, we cannot obtain the exact value of the positiveness (IoU) ui for each
segment. Instead, ui will be treated as a latent variable which will be determined by minimizing the
following loss function:

L(w,u) = λw ·
1

2
wTw +

1

N

N∑
i=1

{l+i · g(ui) + l−i · [1− g(ui)]}+ λR ·R(u) (2)

where u denotes {ui}i=1,...,N . R(u) is a regularization term for u. We can see that the loss function
in Equation 1 is a special case of that in Equation 2 by setting u as constant and λR equal to 0.

When u is fixed, L(w,u) is a standard linear SVM loss, which is convex with respect to w. When
w is fixed, L(w,u) is also a convex function ifR(u) is a convex function with respect to u. The IoU
between a segment Si and groundtruth bounding boxes, denoted as ubbi , can serve as an initialization
for ui. We can iteratively fix u and w, and solve the two convex optimization problems until it
converges. The pseudo-code for the optimization algorithm is shown in Algorithm 1.

Algorithm 1 The optimization for training latent e-SVM
Initialization:

1: u(cur) ← ubb;
Process:

2: repeat
3: w(new) ← argminw L(w,u(cur));
4: u(new) ← argminu L(w(new),u);
5: u(cur) ← u(new);
6: until Converge
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If we do not add any regularization term on u (i.e. set λR = 0), u will become 0 or 1 in the
optimization step in line 4 of algorithm 1 because the loss function becomes a linear function with
respect to u when w is fixed. It turns to be similar to a latent SVM and can lead the algorithm to
stuck in the local minimal as shown in the experiments. The regularization term will prevent this
situation under the assumption that the true value of u should be around ubb.

There are a lot of different designs of the regularization termR(u). In practice, we use the following
one based on the cross entropy between two Bernoulli distributions with success probability ubbi and
ui respectively.

R(u) = − 1

N

N∑
i=1

[ubbi · log(ui) + (1− ubbi ) · log(1− ui)]

= − 1

N

N∑
i=1

DKL[Bern(u
bb
i )||Bern(ui)] + C

(3)

where C is a constant value with respect to u. DKL(.) represents the KL distance between two
Bernoulli distributions. This regularization term is a convex function with respect to u and achieves
its minimal when u = ubb. It is a strong regularization term since its value increases very fast when
u 6= ubb.

4 Visual Tasks

4.1 Semantic segmentation

We can easily apply our e-SVM model to the semantic segmentation task with the framework pro-
posed by Carreira et al. [5]. Firstly, CPMC segment proposals [4] are generated and the second-
order pooling features [5] are extracted from each segment. Then we train the segment classifiers
using either e-SVM or latent e-SVM according to whether the groundtruth pixel-level annotations
are available. In the testing stage, the CPMC segments are sorted based on their confidence scores
output by the trained classifiers. The top ones will be selected to produce the predicted semantic
label map.

4.2 Object detection

For the task of object detection, we can only acquire bounding-box annotations instead of pixel-level
labeling. Therefore, it is natural to apply our latent e-SVM in this task to provide complementary
information for the current object detection system.

In the state-of-the-art object detection systems [11, 13, 24, 14], the window candidates of foreground
object are extracted from images and the confidence scores are predicted on them. Window candi-
dates are extracted either by sliding window approaches (used in e.g. the deformable part-based
model [11, 13]) or most recently, the Selective Search method [24] (used in e.g. the Region Con-
volutional Neural Networks [14]). This method lowers down the number of window candidates
compared to the traditional sliding window approach.

Original Image
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classifiers

Mapping 

segment 

confidence 

to pixels

Confidence Map

Pooling in 
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Features
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Figure 2: The illustration of our spatial confidence map features for window candidates based on
e-SVM. The confidence scores of the segments are mapped to pixels to generate a pixel-level con-
fidence map. We will divide a window candidate into m ×m spatial bins and pool the confidence
scores of the pixels in each bin. It leads to a m×m dimensional feature.
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It is not easy to directly incorporate confidence scores of the segments into these object detection
systems based on window candidates. The difficulty lies in two aspects. First, only some of the
segments are totally inside a window candidate or totally outside the window candidate. It might be
hard to calculate the contribution of the confidence score of a segment that only partially overlaps
with a window candidate. Second, the window candidates (even the groundtruth bounding boxes)
will contain some of the background regions. Some regions (e.g. the regions near the boundary of
the window candidates) will have higher probability to be the background region than the regions in
the center. Treating them equally will harm the accuracy of the whole detection system.

In order to solve these issues, we propose a new spatial confidence map feature. Given an image and
a set of window candidates, we first calculate the confidence scores of all the segments in the image
using the learned e-SVM models. The confidence score for a segment S is denoted as CfdScore(S).
For each pixel, the confidence score is set as the maximum confidence score of all the segments
that contain this pixel. CfdScore(p) = max∀S,p∈S CfdScore(S). In this way, we can handle the
difficulty of partial overlapping between segments and candidate windows. For the second difficulty,
we divide each candidate window into M = m ×m spatial bins and pool the confidence scores of
the pixels in each bin. Because the classifiers are trained with the one-vs-all scheme, our spatial
confidence map feature is class-specific. It leads to a (M × K)-dimensional feature for each can-
didate window, where K refers to the total number of object classes. After that, we encode it by
additive kernels approximation mapping [25] and obtain the final feature representation of candidate
windows. The feature generating process is illustrated in Figure 2. In the testing stage, we can
concatenate this segment feature with the features from other object detection systems.

5 Experiments

In this section, we first evaluate the performance of e-SVM method on segment proposal classifica-
tion, by using two new evaluation criterions for this task. After that, we apply our method to two
essential tasks in computer vision: semantic segmentation and object detection. For semantic seg-
mentation task, we test the proposed eSVM and latent eSVM on two different scenarios (i.e., with
pixel-level groundtruth label annotation and with only bounding-box object annotation) respectively.
For object detection task, we combine our confidence map feature with the state-of-the-art object de-
tection system, and show our method can obtain non-trivial improvement on detection performance.

5.1 Performance evaluation on e-SVM

We use PASCAL VOC 2011 [9] segmentation dataset in this experiment. It is a subset of the whole
PASCAL 2011 datasets with 1112 images in the training set and 1111 images in the validation set,
with 20 foreground object classes in total. We use the official training set and validation set for
training and testing respectively. Similar to [5], we extract 150 CPMC [4] segment proposals for
each image and compute the second-order pooling features on each segment. Besides, we use the
same sequential pasting scheme [5] as the inference algorithm in testing.

5.1.1 Evaluation criteria

In literature [5], the supervised learning framework of segment-based prediction model either re-
gressed the overlapping value or converted it to a binary classification problem via a threshold val-
ue, and evaluate the performance by certain task-specific criterion (i.e., the pixel-wise accuracy used
for semantic segmentation). In this paper, we adopt a direct performance evaluation criteria for the
segment-wise target class prediction task, which is consistent with the learning problem itself and
not biased to particular tasks. Unfortunately, we have not found any work on this sort of direct
performance evaluation, and thus introduce two new evaluation criteria for this purpose. We first
briefly describe them as follows:

Threshold Average Precision Curve (TAPC) Although the ground-truth target value (i.e., the
overlap rate of segment and bounding box) is a real value in the range of [0, 1], we can transform
original prediction problem to a series of binary problems, each of which is conducted by thresh-
olding the original groundtruth overlap rate. Thus, we calculate the Precison-Recall Curve as well
as AP on each of binary classification problem, and compute the mean AP w.r.t. different threshold
values as a performance measurement for the segment-based class confidence prediction problem.
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Figure 3: Performance evaluation and comparison to SVC and SVR

Normalized Discounted Cumulative Gain (NDCG) [15] Considering that a higher confidence
value is expected to be predicted for the segment with higher overlap rate, we think this prediction
problem can be treated as a ranking problem, and thus we use the Normalized Discounted Cumu-
lative Gain (NDCG), which is common performance measurement for ranking problem, as another
kind of performance evaluation criterion in this paper.

5.1.2 Comparisons to SVC and SVR

Based on the TAPC and NDCG introduced above, we evaluate the performance of our e-SVM model
on PASCAL VOC 2011 segmentation dataset, and compare the results to two common methods (i.e.
SVC and SVR) in literature. Note that we test the SVC’s performance with a variety of binary clas-
sification problems, each of which are trained by using different threshold values (e.g., 0, 0.2, 0.4,
0.6 and 0.8 as shown in figure 3). In figure 3 (a) and (b), we show the experimental results w.r.t. the
model/classifier trained with clean pixel-wise object class labels and weakly-labelled bounding-box
annotation, respectively. For both cases, we can see that our method obtains consistently superior
performance than SVC model for all different threshold values. Besides, we can see that the TAPC
and NDCG of our method are higher than those of SVR, which is a popular regression model for
continuously valued target variable based on the max-margin principle.

5.2 Results of semantic segmentation

For the semantic segmentation task, we test our e-SVM model with PASCAL VOC 2011 segmtation
dataset using training set for training and validation set for testing. We evaluate the performance
under two different data annotation settings, i.e., training with pixel-wise semantic class label maps
and object bounding-box annotations. The accuracy w.r.t. these two settings are 36.8% and 27.7%
respectively, which are comparable to the results of the state-of-the-art segment confidence predic-
tion model (i.e., SVR) [5] used in semantic segmentation task.

5.3 Results of object detection

As mentioned in Section 4.2, one of the natural applications of our e-SVM method is the object
detection task. Most recently, Girshick et.al [14] presented a Regions with CNN features method
(RCNN) using the Convolutional Neural Network pre-trained on the ImageNet Dataset [6] and fine-
tuned on the PASCAL VOC datasets. They achieved a significantly improvement over the previous
state-of-the-art algorithms (e.g. Deformable Part-based Model (DPM) [11])and push the detection
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plane bike bird boat bottle bus car cat chair cow
RCNN 64.1 69.2 50.4 41.2 33.2 62.8 70.5 61.8 32.4 58.4
Ours 63.7 70.2 51.9 42.5 33.4 63.2 71.3 62.0 34.7 58.7
Gain -0.4 1.0 1.5 1.3 0.2 0.4 0.8 0.2 2.3 0.2
RCNN (bb) 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5
Ours (bb) 70.4 74.2 59.1 44.7 38.0 67.2 74.6 69.0 36.7 64.3
Gain 2.3 1.4 2.3 1.6 1.2 1.0 0.3 1.3 2.3 0.8

table dog horse motor. person plant sheep sofa train tv Average
RCNN 45.8 55.8 61.0 66.8 53.9 30.9 53.3 49.2 56.9 64.1 54.1
Ours 47.8 57.9 61.2 67.5 54.9 34.5 55.8 51.0 58.4 65.0 55.3
Gain 2.0 2.1 0.3 0.8 1.0 3.7 2.5 1.8 1.6 0.9 1.2
RCNN (bb) 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5
Ours (bb) 56.4 62.9 69.3 69.9 59.6 35.6 64.6 53.2 64.3 65.5 60.0
Gain (bb) 1.9 1.8 0.2 1.4 0.9 2.2 1.7 2.1 1.8 0.7 1.5

Table 1: Detection results on PASCAL 2007. ”bb” means the result after applying bounding box
regression. Gain means the improved AP of our system compared to RCNN under the same settings
(both with bounding box or without). The better results in the comparisons are bold.

performance into a very high level (The average AP is 58.5 with boundary regularization on PAS-
CAL VOC 2007).

A question arises: can we further improve their performance? The answer is yes. In our method,
we first learn the latent e-SVM models based on the object bounding-box annotation, and calculate
the spatial confidence map features as in section 4.2. Then we simply concatenate them with RCNN
the features to train object classifiers on candidate windows. We use PASCAL VOC 2007 dataset
in this experiment. As shown in table 1, our method can improve the average AP by 1.2 before
applying bounding boxes regression. For some categories that the original RCNN does not perform
well, such as potted plant, the gain of AP is up to 3.65. After applying bounding box regression for
both RCNN and our algorithm, the gain of performance is 1.5 on average.

In the experiment, we set m = 5 and adopt average pooling on the pixel level confidence scores
within each spatial bin. We also modified the bounding box regularization method used in [14] by
augmenting the fifth layer features with additive kernels approximation methods [25]. It will lead to
a slightly improved performance.

In summary, we achieved an average AP of 60.0, which is 1.5 higher than the best known results
(the original RCNN with bounding box regression) of this dataset. Please note that we only use the
annotations on PASCAL VOC 2007 to train the e-SVM classifiers and have not considered context.
The results are expected to be further improved if the data in ImageNet is used.

6 Conclusion

We present a novel learning algorithm call e-SVM that can well handle the situation in which the
labels of training data are continuous values whose range is a bounded interval. It can be applied
to segment proposal classification task and can be easily extended to learn segment classifiers under
weak supervision (e.g. only bounding box annotations are available). We apply this method on
two major tasks of computer vision (i.e., semantic segmentation and object detection), and obtain
the state-of-the-art object detection performance on PASCAL VOC 2007 dataset. We believe that,
with the ever growing size of datesets, it is increasingly important to learn segment classifiers under
weak supervision to reduce the amount of labeling required. In future work, we will consider using
the bounding box annotation from large datasets, such as ImageNet, to further improve semantic
segmentation performance on PASCAL VOC.
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