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1 Sampler: Acceptance probabilities

We accept a path λ∗

(0:T ) with probability

pMH = min

(

1,
P (Y|λ∗

(0:T ))

P (Y|λ(0:T ))

Q(λ(0:T )|λ
∗

(0:T ))

Q(λ∗

(0:T )|λ(0:T ))

P (λ∗

(0:T )|f, α, pλ)

P (λ(0:T )|f, α, pλ)

)

. (1)

The data likelihood ratio remains the same for all proposal actions and follows from

P (Y|λ(0:T )) ∝
s
∏

i=1

λni

i e−τiλi . (2)

On the other hand, the proposal and prior ratios

Ψ =
Q(λ(0:T )|λ

∗

(0:T ))

Q(λ∗

(0:T )|λ(0:T ))

P (λ∗

(0:T )|f, α, pλ)

P (λ(0:T )|f, α, pλ)
(3)

depend on what proposal action was chosen and can be obtained from the prior probability of a path

P (λ(0:T )|f, α, pλ) ∝ f ce−fTαs

∏s

j=1 (pλ(λj)(#j − 1)!)
∏c

i=0(α+ i)
(4)

and the description of the action.

For shifting the time of a jump it is

Ψ =
Φ((tmax − t)/σt)− Φ((tmin − t)/σt)

Φ((tmax − t∗)/σt)− Φ((tmin − t∗)/σt)
, (5)

where t∗ is the proposed new time, σt the standard deviation of the Gaussian and Φ(·) is the cumu-
lative distribution function of the standard normal distribution.

When adding a jump, we distinguish between adding a new value λs+1 and reusing an existing one.
In the first case the ratio is

Ψ =
qrT

qaqn(c+ 1)γ∗(λs+1)

fα

(α+ c+ 1)
, (6)

with qn as the proposal probability to add a new value λs+1 and γ∗(λi) being the gamma density at
λi with shape n∗

i + 1 and inverse scale τ∗i . This is proportional to the likelihood of the data given
the parameter λi and the new path λ∗

(0:T ).
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When we do not add a new state and instead reuse λi, we get

Ψ =
qrT

qa(1− qn)(c+ 1)p∗seg(i)

f(#∗

i − 1)

(α+ c+ 1)
, (7)

where #i is the number of segments which use λi in the old path and p∗seg(i) denotes the probability
to choose λi for the segment (see section 2 for details).

When we remove a jump, we distinguish between removing a jump and thereby removing the last
instance of a state i (#∗

i = 0):

Ψ =
qaqncγ(λi)

qrT

(α+ c)

fα
, (8)

and the case that the state is still used after removing the jump (#∗

i > 0):

Ψ =
qa(1− qn)cpseg(i)

qrT

(α+ c)

f(#i − 1)
. (9)

When we switch the value of λ used in a segment from λi to λj we have four cases:

1. λi is still used in the proposal (#∗

i > 0) and λj is already assigned to another segment
(#j > 0):

Ψ =
pseg(i)

p∗seg(j)

(#∗

j − 1)

(#i − 1)
. (10)

2. λi is still used in the proposal (#∗

i > 0) and we introduce a new value λj (#j = 0):

Ψ =
(1− qn)pseg(i)

qnγ∗(λj)

α

(#i − 1)
. (11)

3. λi is no longer used in the proposal (#∗

i = 0) and λj is already used in another segment
(#j > 0):

Ψ =
qnγ

∗(λi)

(1− qn)p∗seg(j)

(#∗

j − 1)

α
. (12)

4. λi is no longer used in the proposal (#∗

i = 0) and we introduce a new value λj (#j = 0):

Ψ = γ(λi)/γ
∗(λj). (13)

Joining two neighboring states i1 and i2 into a new state j leads to

Ψ =
qdpparpǫ(ǫ)(s− 1)

qjs∗>1

ǫ

2λj

pλ(λ
∗

j )(#
∗

j − 1)!

αpλ(λi1)pλ(λi2)(#i1 − 1)!(#i2 − 1)!
, (14)

where qd and qj are the probabilities to choose the divide and join action, respectively, pǫ is the
density from which the factor ǫ > 1 is drawn and ppar is the probability to assign the segments
between states i1 and i2 like they are in the original path (see section 2 for details). s∗>1 is the
number of states in the proposal with more than one segment assigned. ǫ/(2λj) is a Jacobian factor
resulting from using the distribution over ǫ rather than that of the λ-values when applying the join
and divide actions.

For dividing state i into the new states j1 and j2 we get

Ψ =
qjs>1

qdpparpǫ(ǫ)s

2λi

ǫ

αpλ(λ
∗

j1
)pλ(λ

∗

j2
)(#∗

j1
− 1)!(#∗

j2
− 1)!

pλ(λi)(#i − 1)!
. (15)

2 Sampler: Assigning a λ value to a segment

If we reuse an existing state when adding a jump or switching the state of a segment we choose the
new state i randomly with probability proportional to

P (λi|Y, λ(0:T )) = Gamma

(

λi; a+ nseg,
b

τsegb+ 1

)

, (16)
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Figure 1: Robustness of the posterior to different values of α for four of the toy datasets.

where nseg is the number of Poisson events during the segment, τseg is the width (in time units) of
the segment and a and b come from the base distribution pλ(λ) = Gamma(λ; a, b).

Therefore the probability to choose state i becomes

pseg(i) =
λ
a+nseg−1
i exp

(

−
τsegb+1

b
λi

)

∑s

j=1 λ
a+nseg−1
j exp

(

−
τsegb+1

b
λj

) . (17)

After dividing a state i into two new states j1 and j2 the segments of the original state must be
assigned to the new states. For segment l the probability to be assigned to state j1 is

p′seg(l, j1) =
λa+nl−1
j1

exp
(

− τlb+1
b

λj1

)

λa+nl−1
j1

exp
(

− τlb+1
b

λj1

)

+ λa+nl−1
j2

exp
(

− τlb+1
b

λj2

) , (18)

and accordingly for state j2. Let ω1 . . . ω#i
∈ {j1, j2} be the assignments of the #i segments of

state i to the new states then we get

ppar =

#i
∏

l=1

p′seg(l, ωl). (19)

If one of the new states is assigned to all segments but the last one, then the last segment is automat-
ically assigned to the other state thereby setting pseg(#i, ω#i

) = 1.

3 Choice of α Parameter

Our sampler used the same α value that was used to generate the data to get the results on the 100
datasets. For the first 4 datasets we let the sampler run with a wide range of different values of α and,
as can be seen in figure 1, the model is robust enough to cope with this. This means it is sufficient if
we have a broad idea of the value of α and therefore the numbers of states to expect.

4 Further Results for Neuron Data

Figure 2 shows the connection between the states and the orientation of the stimulus for all neurons
in the dataset. The data contained spike trains from 10 neurons, but we kept the original non-
consecutive numbering.
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Figure 2: Probability distribution over the orientation of the stimulus while a state is active. States
are ordered by increasing λ rate. All results at the maximum a posteriori number of states.
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