
A Proof of Lemma 4.1

Proof. By the definition of v
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We then proceed to bound R.H.S. of (A.1) from above as follows,
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where (i) comes from E||u�Eu||2 = E||u||2�||Eu||2  E||u||2, and (2) comes from ||u�w||2 
2||u||2 + 2||w||2 for any random vectors u and w.
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where the first inequality comes from the fact that b✓ is the minimizer to (A.3). Minimizing R.H.S.
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Taking the summation of (A.6) over i = 1, ..., n, we obtain
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B Proof of Theorem 4.2

Before we proceed with the proof, we first define
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The proof of Lemma B.1 is presented in Appendix D.
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where the third inequality comes from Lemma 4.1.

At the s-th iteration of the outer loop, we have
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where the last inequality comes from EP(✓
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By applying (B.10) recursively and setting |B| = T
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/L, we complete the proof.

C Proof of Corollary 4.3
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D Proof of Lemma B.1
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where (i) comes from the fact that ¯
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Combining (D.5), (D.6), and (D.8), we further have
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where (ii) comes from (D.8), (ii) comes from (D.6), and (iii) comes from ⌘  1/L
max

.

By the definition of ¯

✓, we have
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The optimality condition of (D.10) implies that there exists some ⇠ 2 @R(
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¯

✓ � (✓ � ⌘v) + ⌘⇠ = 0,

which implies ⇠ = �� � v. Then by (D.9), we have

P(

b
✓) � kE

j

P(

¯

✓

Gj
)� (k � 1)P(✓)� ⌘

2

||�||2 + (rF(✓) + ⇠)(

b
✓ � ¯

✓)

= kE
j

P(

¯

✓

Gj
)� (k � 1)P(✓)� ⌘

2

||�||2 + (rF(✓)� � � v)

T

(

b
✓ � ¯

✓)

= kE
j

P(

¯

✓

Gj
)� (k � 1)P(✓)� ⌘

2

||�||2

� (v �rF(✓))

T

(

b
✓ � ¯

✓)� �

T

(

b
✓ � ✓)� �

T

(✓ � ¯

✓). (D.11)

Since ✓ � ¯

✓ = ⌘�, (D.11) further implies
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where the last equality comes from (D.1) and (D.2). By rearranging (D.12), we obtain
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which completes the proof.
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Table E.1: Quantitive comparison of different methods on the simulated dataset for a sequence of
regularization parameters. All three methods attains similar objective values for each regularization
parameter, but MRBCD-III requires fewer partial gradient estimates than SPVRG and BRBCD.

MRBCD �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

# of P.G. 29.32e5 61.12e5 93.81e5 126.42e5 159.1e5 192.2e5 225.0e5 260.1e5 300.6e5 343.2e5

O.V.G. 9.23e-14 7.10e-14 7.45e-14 7.99e-14 7.81e-14 4.97e-14 4.61e-14 6.39e-14 4.26e-14 3.90e-14

Reg. �11 �12 �13 �14 �15 �16 �17 �18 �19 �20

# of P.G . 387.9e5 433.4e5 478.0e5 522.7e5 566.9e5 610.2e5 653.0e5 695.5e5 738.0e5 780.0e5

O.V.G. 1.77e-14 2.48e-14 1.42e-14 3.55e-15 3.67e-15 4.67e-15 5.46e-15 5.57e-15 2.66e-15 1.78e-15

SPVRG �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

# of P.G. 270.6e5 548.4e5 817.8e5 1074e5 1328e5 1586e5 1845e5 2133e5 2441e5 2776e5

O.V.G. 8.57-14 9.43e-14 6.65e-14 9.12e-14 6.39e-14 4.97e-14 4.61e-14 6.39e-14 4.26e-14 0.461e-14

Reg. �11 �12 �13 �14 �15 �16 �17 �18 �19 �20

# of P.G . 3113e5 3454e5 3791e5 4124e5 4456e5 4782e5 5106e5 5425e5 5741e5 6053e5

O.V.G. 3.90e-14 1.42e-14 3.19e-14 1.42e-14 8.88e-15 5.33e-15 3.55e-15 7.57e-15 4.44e-15 2.66e-15

BRBCD �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

# of P.G. 43.50e5 95.80e5 153.2e5 209.5e5 264.8e5 320.4e5 375.7e5 435.4e5 508.8e5 585.2e5

O.V.G. 5.68e-14 8.52e-14 7.81e-14 7.10e-14 7.10e-14 3.90e-14 4.26e-14 3.55e-14 5.68e-14 3.19e-14

Reg. �11 �12 �13 �14 �15 �16 �17 �18 �19 �20

# of P.G . 663.8e5 743.2e5 820.8e5 897.2e5 974.2e5 1050e5 1126e5 1201e5 1275e5 1356e5

O.V.G. 7.11e-15 2.48e-14 1.42e-14 5.33e-15 3.55e-15 5.33e-15 3.55e-15 4.44e-15 1.78e-15 1.78e-15
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Figure F.1: [a] The vertical axis corresponds to objective value gaps P(✓) � P(

b
✓) in log scale.

The horizontal axis corresponds to numbers of partial gradient estimates. [b] The horizontal axis
corresponds to indices of regularization parameters. The vertical axis corresponds to numbers of
partial gradient estimates in log scale. We see that MRBCD attains the best performance among all
methods for both settings
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