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Lemma

def

Letwr L wr/|wrl, ér £ ¢p/|lbrll. Let U(G) denote the uniform distribution on S(G). Then,
we have

" ] E
F(w,z,y) = - ar (Wr, ¢y (x,y)), where ar < ﬁlWTH-
Moreover, for any w such that ||w|| = 1, we have
a% =1 ; E ar <1
TAUG) T U(G)
Proof.
F(w,z,y) = (w,¢(z,y))
1 ¢
= Z (Wi @ (T yi,y5)) = 7—29 Z Z (Wi g, @i 5(2,9i,95))
(i,4)€G TeS(G) (i,j)eT
¢ l -
= — E = — E A
30 B vrdr(ey)) = 5 B Jwrllor(ey)ltvrdrey)
7 R R
= E —_ A = E A
B S Sy = B arlrdrey).
where

o V4
ar = /= [lwrl|.
2

Now, for any w such that ||[w|| = 1, we have

l ¢ 1 ¢ 1
E 2 - - E 2 = =—— 2 = - — ii 2
JBoah = 5 B wrl = g 3wl = G X Y wal
TeS(G) TeS(G) (i,5)eT
= > lwiglP = Il = 1.
(i,9)€eG

Since the variance of a7 must be positive, we have, for any w of unit Lo norm, that

E ar S 1.
T~U(G)

Lemma

Consider any unit Lo norm predictor w on the complete graph G that achieves a margin of
I'(w,x,y) for each (z,y) € X x Y, then we have

FT(W,$,y) > F(wvan) —2¢ V(x,y) € X x yv
whenever for all (x,y) € X x ), we have

|FT(W7:E7y) 7F(W7I7Y)‘ <e.
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Proof. From the condition of the lemma, we have simultaneously for all (z,y) € X x ) and
(z,y') € X x ), that
Fr(w,z,y) > F(w,z,y) —¢ AND Fr(w,z,y') < F(w,z,y') +e.
Therefore,
Fr(w,z,y) — Fr(w,z,y') > F(w,z,y) — F(w,z,y') — 2¢.
Hence, for all (x,y) € X x Y, we have
FT(W,Z’7y) > F(vavy) — 2e.

Lemma

Consider any € > 0 and any unit Lo norm predictor w for the complete graph G acting on a
normalized joint feature space. For any § € (0,1), let

21 1 8yn\’
> = —=+=In—— | . 2
n_62(16 2“5) 2
Then with probability of at least 1 — /2 over all samples T generated according to U(G)™, we
have, simultaneously for all (x,y) € X x ), that

‘FT(W7x7Y)_F(Wax,Y)| Se.

2

Proof. Consider an isotropic Gaussian distribution of joint feature vectors of variance o~, centred

on ¢(z,y), with a density given by
N
1 ) 1€ — ¢l
exp —

2ro 202

Qs(¢) = (

where IV is the dimension of the feature vectors. When the feature space is infinite-dimensional, we
can consider () to be a Gaussian process. The end results will not depend on N.

Given the fixed w stated in the theorem, let us define the risk R(Qg, W) of Q4 on the tree T" by
) ]% (wr, (). By the linearity of (-, -), we have
~Qq

def

R(Qg,wr) = E (wr,() = <WT,CE

B E 0 = (wr.9).

which is independent of o.

Gibbs’ risk R(Qg) and its empirical estimate R7(Q) are defined as

RQy) = | B RQwr)= B (wr¢)

n

RT(Q¢) = %ZR(Qtﬁvaz) = %Z<WT13¢>
i=1

=1

Consequently, from the definitions of F' and F’;-, we have

12
F(W,l’,y) = §R(Q¢(I7Y))
l
FT(Wa Z, y) = §RT(Q¢(TQ’)) '

Recall that ¢ is a normalized feature map that applies to all (z,y) € X x Y. Therefore, if we have
with probability > 1 — ¢/2 that, simultaneously for all ¢ of unit L, norm,

SIRT(Qs) ~ R@Qo)l <, g

11



then, with the same probability, we will have simultaneously V(z,y) € X x ), that
|FT(W,£E,y) - F(vavy)‘ < €,
and, consequently, the lemma will be proved.

To prove that we satisfy Equation (7)) with probability > 1 — §/2 simultaneously for all ¢ of unit
Lo norm, let us adapt some elements of PAC-Bayes theory to our case. Note that we cannot use the
usual PAC-Bayes bounds, such as those proposed by [13] because, in our case, the loss (wr, () of
each individual “predictor” ¢ is unbounded.

The distribution )y defined above constitutes the posterior distribution. For the prior P, let us use
an isotropic Gaussian with variance o2 centered at the origin. Hence P = Qg. In that case we have

lel* _ 1
KL P = —.
QsllP) =25 = 5
Given a tree sample 7 of n spanning trees, let
def 1
Aw = — wr, — E wrp,
n T~U(G)

k=1
and consider the Gaussian quadrature

7 ¥ g vVrl(AWQ]
(~P

_ hnotlaw|? (1 + Erf NEIIAWJD

S 262n02HAw||2
We can then use this result for Z to upper bound the Laplace transform £ in the following way.

L = E E V/il(awg)
TU(G)™ (~P
E e%nUQHAWHQ
T~UG)™
— 2 E e XagpecllAw)il?
TAU(G)™

IN

Since

2
E wpr=-w,
T~U(G) Y4

we can write

I(Aw); ;I

1 — 2
-~ > (wn)iy — Wi

k=1

Note that for each (4, j) € G, any sample T, and each Ty, € T, we can write
k
(Wry)ij = WijZ; ;.

where Z}'; = 1if (i,j) € Ty and ZJ; = 0if (i, ) ¢ T. Hence, we have

lAw)il? = 2A|< §jzk_>

Hence, for 02 < 4 and p o 2/¢, we have

L < 2 E e%"ffzz(i,j)ecﬂwi,jﬂ( S, 2k, %)2

T U(G)™
< 9 E  Zapeelwiil?(E io 2l -0)?
T T~UG)
2
< 2 2”(1 ;cl 1Z1 P)
<2 Y Iwl’ B, e )
(i,5)eG
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where the last inequality is obtained by using
ity on the convexity of the exponential.

(i.iyec IWijl|> = 1 and by using Jensen’s inequal-

Now, for any (q,p) € [0,1]2, let

ef 1-—
K(glp) & glnd +(1- gy —2.
p 1
Then, by using 2(q — p)? < kl(q||p) (Pinsker’s inequality), we have for n > 8,

o< 2y fwiyl eI D 2L10) < 4/,

(4,J)€G ™ M(G)n

where the last inequality follows from Maurer’s lemma [14]] applied, for any fixed (7, j) € G, to the
collection of n independent Bernoulli variables Zf ; of probability p.

The rest of the proof follows directly from standard PAC-Bayes theory [15} [13]], which, for com-
pleteness, we briefly outline here.

Since
E ViAW)
¢~P

is a non negative random variable, Markov’s inequality implies that with probability > 1 — §/2 over
the random draws of 7, we have

I B eVallawd)l <, SV
¢~P - )

By the change of measure inequality, we have with probability > 1 — §/2 over the random draws of
T, simultaneously for all ¢,

8

Vi B [(Aw.0)] < KL(QglP) +1n V"
(~Qe

Hence, by using Jensen’s inequality on the convex absolute value function, we have with probability

> 1 — §/2 over the random draws of 7, simultaneously for all ¢,

87
(aw ) < = [KL@olP) + 127

Note that we have KL(Qy|| P) = 1/8 for 0% = 4 (which is the value we shall use). Also note that the
left hand side of this equation equals to |R7(Qg) — R(Qg)|. In that case, we satisfy Equation (7)
with probability 1 — /2 simultaneously for all ¢ of unit Ly norm whenever we satisfy

¢ [1 . 8m
— | = — | <
s < e

which is the condition on n given by the theorem. [

Theorem 4|

Consider any unit Ly norm predictor w for the complete graph G, acting on a normalized joint
feature space, achieving a margin of T'(w, x,y) for each (x,y) € X x Y. Then for any € > 0, and
any n satisfying Lemma 3| for any § € (0, 1], with probability of at least 1 — § over all samples T
generated according to U(G)™, there exists a unit Ly norm conical combination (W, q) on T such
that, simultaneously ¥(x,y) € X x Y, we have

FT(W7q7I7Y) Z [F(W,I,y) - 26] :

1+¢€
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Proof. For any T, consider a conical combination (W, q) where each W, € )V is obtained by
projecting w on 7; and normalizing to unit Ls norm and where
ar;

Z?:l GQT{,

Then, from equations (3)) and @), and from the definition of I'7-(w, z, y), we find that for all (z,y) €
X x ), we have

qi =

n
FT(W,%%}’) = mr’r(w»x,}’)~

Now, by using Hoeffding’s inequality, it is straightforward to show that for any ¢ € (0, 1], we have

1 n
P - 2 <1 >1-6/2.
TAulGy <n ZaTi— +6> = /

whenever n > Z ln ( ) Since n satisfies the condition of Lemma L we see that it also satisfies this
condition whenever e < 1/2. Hence, with probability of at least 1 — 6/2, we have

Za% <n(l+e).
i=1

Moreover Lemmaand Lemmaimply that, with probability of at least 1 — ¢/2, we have simulta-
neously for all (z,y) € X x Y,

I'r(w,z,y) > T(w,z,y) — 2.

Hence, from the union bound, with probability of at least 1 — §, simultaneously V(z,y) € X x Y,

we have
1

1+

FT(W7 q,l‘,y) > [F(W,.’E,y) - 26] .

™

Derivation of the Primal L,-norm Random Tree Approximation

If we introduce the usual slack variables &; & ~- £7(FT(W a4, Yi)), Theoremlsuggests that we
should minimize = Z w—1 Sk for some fixed margin value v > 0. Rather than performing this task

for several values of v, we can, equivalently, solve the following optimization problem for several
values of C' > 0.

1 C &
min @ —+ — > & ¥
2y "y ;

£.v,9,W

s.t.: FT(W7q71‘kayk)27_§k7 ngO,VkE{:l,...,m},

> @d=1,¢>0,|lwrl*=1,Vie{l,...,n}.
i=1
If we now use instead ¢ & &, /7, and vy, = g;wr, /v, we then have 37" 2 = 1/~? (under
def

the constraints of problem (). If V = {vr,, ..., vy, }, optimization problem (8] is then equivalent

to
mm Z |

s.t.: FT(Valamlwyk)Zl_Ck? Ckz()aVke{l?ﬂm}
Note that, following our definitions, we now have

FT(Va 17$7y) = ! E <vTi7$Ti (xvy» max E <vTi7(ApTi (xvy/» .
\/ﬁ Yy ;ﬁ f
=1 =1

We then obtain the optimization problem of Property@with the change of variables wr, < v, /\/n,
fk — Ck, and C + C/\/ﬁ

€))
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Lemma/7

Let y% = argmax Fr(z,y) be the highest scoring multilabel in Y7 . Suppose that
YEVT K

. 1 ”
FT(mvyK) > EZ;FWT"' (m7yTi7K) = GL(K)

It follows that Fr(z,y%) = maxyey Fr(z,y).

Proof. Consider a multilabel y' ¢ V7 K. It follows that for all T; we have

FWTi (x7y1—) S FWTi (anTi,K)-

Hence,
Priey’) = 23Ry € 2SR oyn < Py
=1 =1
as required. O
Lemma [§

Let the scoring function Fr of each spanning tree of G be a or-sub-Gaussian random variable
under the uniform distribution of labels; i.e., for each T on G, there exists op > 0 such that for any
A > 0 we have
E Fr-wr) < o5or
y~UY)

Leto2¥ E U%, and let

Tl

def ~ ~ 2 2
9 p ( <u A Fr(§)>F@E) A o2 < ) .
s T(y) > F(y) Norp <o

Then

_1(F@-—n
2 >

Pr <3T€T: pr(y) <e )2)21—(1—a)”.

TrU(G)"

Proof. From the definition of p(§) and for any A > 0, we have

pr(y”) = y};lzy) (Fr(y) > Fr(y))

= Pr F — > Fr(y) —
yNu(y)( r(y) — pr > Fr(y) — pr)

- Pr (eMFT(y)—#T)>€A(FT(y>—uT>)
y~UY)
< e MEIr()-pr) | AMEr(y)—per) (10)
y~UQ)

< e_)\(FT()A’)_NT)e;U% , (11)

where we have used Markov’s inequality for line (T0) and the fact that Fr is a op-sub-Gaussian
variable for line @ Hence, from this equation and from the definition of «, we have that

Pr (pT(y) < e MFr@)—nr) Aok < e*A(F(S')fu)e%rZﬁ) > a.

TeU(G)
Hence, ,
P (VTG : op(§) > e NFE@-w) %02) < (1—a),
. T: pr(y) >e e < (1-a)
which is equivalent to the statement of the lemma when we choose A = [F(y) — u] /0. O
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The K -best Inference Algorithm

Algorithm [T| depicts the K -best inference algorithm for the ensemble of rooted spanning trees. The
algorithm takes as input the collection of spanning trees 7; € 7, the edge labeling scores

FET = {Fvav“/ (yv’ y“/)}(U,v’)GEi,yveyu,yv/ €Y, T; eT

for fixed z, and w, the length of K -best list, and optionally (for training) also the true multilabel y,
for xy..

As arooted tree implicitly orients the edges, for convenience we denote the edges as directed v —
pa(v), where pa(v) denotes the parent (i.e. the adjacent node on the path towards the root) of v. By
ch(v) we denote the set of children of v. Moreover, we denote the subtree of T rooted at a node v
as T, and by T,_,, the subtree consisting of T, plus the edge v" — v and the node v.

The algorithm performs a dynamic programming over each tree in turn, extracting the K -best list
of multilabels and their scores, and aggregates the results of the trees, retrieving the highest scoring
multilabel of the ensemble, the worst violating multilabel and the threshold score of the K -best lists.

The dynamic programming is based on traversing the tree in post-order, so that children of the node
are always processed before the parent. The algorithm maintains sorted K best lists of candidate
labelings of the subtrees T, and T, _,,,, using the following data structures:

e Score matrix P,, where element P, (y, r) records the score of the 7’th best multilabel of
the subtree T’, when node v is labeled as y.

e Pointer matrix C,, where element C,(y,r) keeps track of the ranks of the child nodes
v" € ch(v) in the message matrix M, _,, that contributes to the score P, (y, 7).

o Message matrix M, _,pq (v, Where element M,,_, ;4 (', ) records the score of r’th best
multilabel of the subtree T%,_,,,q(,) When the label of pa(v) is 3.

e Configuration matrix C,,_,,q(v), Where element C,,_, () (', ) traces the label and rank
(y,7) of child v that achieves M, _,,q(v) (¥, 7).

The processing of a node v entails the following steps. First, the K -best lists of the children of
the node stored in M, _,,, are merged in amortized ©(K) time per child node. This is achieved by
processing two child lists in tandem starting from the top of the lists and in each step picking the
best pair of items to merge. This process results in the score matrix P, and the pointer matrix C,,.

Second, the K-best lists of T’,_, () corresponding to all possible labels y' of pa(v) are formed.
This is achieved by keeping the label of the head of the edge v — pa(v) fixed, and picking the
best combination of labeling the tail of the edge and selecting a multilabel of T}, consistent with that
label. This process results in the matrices M, _,pq(v) and C,,_, q(»)- Also this step can be performed
in ©(K) time.

The iteration ends when the root v,..+ has updated its score P,___,. Finally, the multilabels in form
Y, Kk are traced using the pointers stored in C, and C,_,p4(v). The time complexity for a single
tree is ©(K{), and repeating the process for n trees gives total time complexity of ©(nK¢).

Master algorithm for training the model

The master algorithm (Algorithm [2)) iterates over each training example until convergence. The
processing of each training example proceeds by identifying the K worst violators of each tree
together with the threhold score 8; = 6, (line 5), determining the worst ensemble violator from
among them (line 6) and updating each tree by the worst ensemble violator (line 8). During the
early stages of the algorithm, it is not essential to identify the worst violator. We therefore propose
that initially K = 2, and the iterations continue until no violators are identified (line 7). We then
increment K~ and continue until the condition (line 10-12) given by Lemma[7]is satisfied so that we
are assured of having converged to the global optimum.

16



Algorithm 1 Algorithm to obtain top K multilabels on a collection of spanning trees.

FindK Best(T,Fr,,K,y;)
Input: Collection of rooted spanning trees T; = (E;, V;),
edge labeling scores F, = {Fr 40 (Yo, Yo )}
Output: The best scoring multilabel y*, worst violator y, threshold 6;
1: for T; € T do
2 Initialize P,, C,, Mvﬁpa(v), Cvﬁpa(v) Vv eV
3 I = nodes indices in post-order of the tree T;
4. forj=1:]I| do
5: v = vp(y)
6 % Collect and merge K-best lists of children
7 if ch(v) # () then
8

R)(y) = Pv(y) + kmax (Zv’ECh(U) (Mu/—m(z-b T1z>)>

4,0’ Ech(v)
9 Culy) = Po(y) + argkmax (Zoreento) Mooy )

v,V Ech(v

10: end if

11: % Form the K -best list of T, ;4 (v)

12: Mv%pa(’u)(ypa(v)) = kl;l?X (Pv (yv T) + FT,U—>pa(U)(yvv ypa(v)))

13: Cv%pa(v) (ypa(v)) = argkmax (Pv (uv7 ’I“) + FT,v%pa(v) (u’LH ypa(v)))

14:  end for h

15: Trace back with €, and C,_, ,q(») t0 get V7, k.

16: end for

17: Vr k= U V1, i

;€T

n
18: y* = argmax Z Z FTi,v,u’ (yvayv’)
yeVr.k (v,0)
eckE;
n

19: y = argmax Z Z FTi,U,U’(yU;yU’)

yeyT,K\yi i=1 (v,v'):

eeFE;

n
200 0: = > Frww (Yr. K YT, ko)
i=1 (v,0')=
eckE;
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Algorithm 2 Master algorithm.

Input: Training sample {(x,yx)}7-,, collection of spanning trees 7", minimum violation -y,
Output: Scoring function F’r

I Kp=2Vke{l,--- ,m}; wg, =0,VT; € T; converged = false

2: while not(converged) do

3.  converged = true

4. fork={1,...,m}do

5: ST = {STi,E(k) ue)‘STi-,e(k7 lle) = <WTi,ea ¢Ti7€(xka ue)> ,V(e € E,\T; € Ta Ue €

yv X yv’)}

6: y*,y,6:;] = FindK Best(T,S1,K;,y:)
7: if Fr(2i,¥) — Fr(zi,y:) > 70 then

8: {wr, }1,eT = updateTrees({wr, }r,e1, i, ¥)
9: converged = false
10: else
11: if0; > Fr(x;,y) then
12: Kz = HllIl(2K7, D}D
13: converged = false
14: end if
15: end if
16:  end for

17: end while

Derivation of the Marginal Dual

Definition [6] Primal Lg-norm Random Tree Approximation

m1n ZHWTH2+CZ§k

s.t. Z <WT55¢Ti(xk7yk max Z WTH¢T Tk, )> 2 1-—- fk
i=1
& >0,Vke{l,...,m},

where {wr,|T; € T} are the feature weights to be learned on each tree, &, is the margin slack allo-
cated for each example x, and C' is the slack parameter that controls the amount of regularization in
the model. This primal form has the interpretation of maximizing the joint margins from individual
trees between (correct) training examples and all the other (incorrect) examples.

The Lagrangian of the primal form (Deﬁnition @ is

‘C(WT 7€7a ﬂ

> Bréw

= k=1

- Z Z Ay <Z<WT¢7A$Ti(wk7yk)> -1+ £k> )
i=1

k=1y#ys
where o and f3j, are Lagranglan multlphers that correspond to the constraints of the primal form,

and A¢T (T, yi) = ¢Tl (T, yr) — ¢T (zk,y). Note that given a training example-label pair
(g, Yi) there are exponential number of «y, , one for each constraint defined by incorrect example-
label pair (zy,y).

Setting the gradient of Lagrangian with respect to primal variables to zero, we obtain the following
equalities:

oL
Z > aryAdy (wr,yx) =0,
awT k=1y#yx
_— = C Z a}g’y k = 0,
agk Y#Yk
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which give the following dual optimization problem.
Definition 10. Dual L>-norm Random Tree Approximation

Tlff T K
may el - ga (Z )

st Y oy <CVEe{l,...,m},

Y#Yk
where oo = (g, y ).y is the vector of dual variables. The joint kernel
K1, (2, y; 200, y') = (b, (@0, Y1) — b1, (21, ¥), b1, (@, Y1) — b, (21, ¥))
= (p(@r), p(x1))y - (U1, (y) — U1 (¥), Y7 (Vi) = Y1 (Y)w
= K?(zp, zp) - (Kﬁ (yr:y1) — K7 (yr,¥') — K3 (v, 70) + KJ. (v, y’))

= K?(zn, o) - K2 (v, yi ¥, y)
is composed by input kernel K¥ and output kernel Kﬁ defined by
K?(wp, 2r) = (@(w1), o(@1r)) o
KATZ’ . N — K@Z’ _ K@b AN K'JJ KU’ /
T Ve YY) = Kp (Y, yi) — Kp, (ye,y') — K, (e, y) + K7, (v, ')

To take advantage of the spanning tree structure in solving the problem, we further factorize the dual
(Definition [I0) according to the output structure [} [16]. by defining a marginal dual variable y as

:U’(kv €, ue) - Z l{w(y)zue}ak,y,
Y#Yk
where e = (4, j') € E is an edge in the output graph and u. € Y x ) is a possible label of edge e.
As each marginal dual variable p(k, e, u.) is the sum of a collection of dual variables «y, y that has
consistent label (u;, u;) = u,, we have the following

Z,u(l@e,ue) = Z gy (12)

Y#Yk
for an arbitrary edge e, independently of the structure of the trees.

The linear part of the objective (Definition can be stated in term of p for an arbitrary collection
of trees as

aTl:ZZO‘kvy |E‘ZZZ ulk,e,ue) = |E|Z u(k, e ue),

k=1y#yk k=1 eeET ue e,k,u.
where edge e = (j,j') € E appearing in the collection of trees 7.

‘We observe that the label kernel of tree T, K. %, decomposes on the edges of the tree as
Kp(v,y) =)o = D Westldy = D KV (yes vl)-
eckE; eckE;
Thus, the output kernel K:,% ¥ and the joint kernel K7, also decompose

K2y yiyw.y) = (Kﬁ. (v y1) — K3 (yr,y') — K3 (v, y) + K3 (v, y’))

= Z (Kﬁi’e(ykmyk’e) - K’;b’,je(ykc,yé) - K;b’;e(yea yk/e) + Kﬁi’e(yeayé))

eckE;

Ay,
= K2 (Une: Yei Yrres L),
eck;

KT—;(xkay;kayl) = K¢(‘Tk7xk’) : Kﬁw(ykay;kayl)

= Kw(xkaxk’) : Z KAw’e(ykeaye;yk’evyé)
eckE;

= K@k, i i, yL)-
eckE;
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The sum of joint kernels of the trees can be expressed as

n

n
D Kr(wkyiow,y') =Y > K@k, yeiow, yl)

=1 1=1 ecFE;
/
- E E Ke($k7ye§3?k'7?/e)
ecET T;€T:
e€EE;
= E NT :Ekaye?xk/ ye)
ecET

where N7 (e) denotes the number of occurrences of edge e in the collection of trees 7.

Taking advantage of the above decomposition and of the Equation (I2)) the quadratic part of the
objective (Definition [I0) can be stated in term of y as

1 n
- iaT (; Kn) a

Il
|
Mo =
Q
2,
/_\
5
a
T
<
8
F\
«
~
Q

PGET
1
- 5 Z Z NT Z a(k y)K (xkvyevmk’ ye) (lﬂ/7yl)
k,k'=1ecEr YEY R
Y AV
1
- 5 Z Z NT Z Z a(kay) (xk7ue,$k/ ) (kj y)
k,k'=1ecET U, U, y#YkiYe=Ue

Y #Yiye=u,

1 m
- 75 Z Z |E |2 Z p(k, e, ue) K (xg, ue; i, u,) (k' e, al)
k'=1ecET uc,u’,
1
=5 Z (k. e ue) K (g, ues e, ) (K e, ),

where E is the union of the sets of edges appearing in 7.
We then arrive at the following definition.
Definition[9} Marginalized Dual L,-norm Random Tree Approximation

1 1 .
uglj\zltxm @ Z ,u'(kvevue)fi Z N(kveaue)K’T(Ik”ue;x;muia),u'(k/aevu/e)7

e,k,u. e,k,u.,
7 7
k"u,

where M™ is marginal dual feasible set defined as (c.f., [9])

M™ =S p|pkeue) = ) Ly, —upelk.y), V(k e u)
Y#Yk
The feasible set is composed of a Cartesian product of m identical polytopes M™ = M x - -- x M,

one for each training example. Furthermore, each p € M corresponds to some dual variable a in

the original dual feasible set A = {a|a(k,y) > 0,>_ . a(k,y) < C,Vk}.
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Experimental Results

Table [2| provides the standard deviation results of the prediction performance results of Table 1| for
each algorithm in terms of the microlabel and 0/1 error rates. Values are obtained by five fold
cross-validation.

DATASET MICROLABEL L0OSS (%) 0/1 Loss (%)
SVM | MTL [MMCRH MAM | RTA | SVM | MTL [MMCRF MAM | RTA
EMOTIONS 1.9 1.8 0.9 1.4 0.6 3.4 3.5 3.1 4.2 1.5

YEAST 0.7 0.5 0.6 0.5 0.6 2.8 1.0 1.5 0.4 1.2
SCENE 0.3 0.5 0.3 0.1 0.3 1.4 3.6 1.2 0.9 0.6
ENRON 0.2 0.2 0.2 0.2 0.2 0.3 0.4 2.8 2.3 0.9
CAL500 0.3 0.3 0.3 0.2 04 0.0 0.0 0.0 0.0 0.0
FINGERPRINT| 0.3 0.6 0.6 0.3 0.6 0.7 0.0 0.5 0.6 1.3

NCI60 0.7 0.6 1.3 0.9 1.6 1.3 2.0 1.4 1.2 22
MEDICAL 0.0 0.1 0.1 0.1 0.2 2.1 23 33 2.5 3.6
CIRCLE1O | 0.9 0.7 0.3 0.4 0.3 3.8 34 2.1 35 1.7

CIRCLES0 | 0.5 0.5 0.3 0.3 0.6 2.0 33 4.5 5.5 22

Table 2: Standard deviation of prediction performance for each algorithm in terms of microlabel
loss and 0/1 loss.
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