
Expectation Backpropagation: Parameter-Free
Training of Multilayer Neural Networks with

Continuous or Discrete Weights (with appendix)

Daniel Soudry1, Itay Hubara2, Ron Meir2
(1) Department of Statistics, Columbia University

(2) Department of Electrical Engineering, Technion, Israel Institute of Technology
daniel.soudry@gmail.com,itayhubara@gmail.com,rmeir@ee.technion.ac.il

Abstract

Multilayer Neural Networks (MNNs) are commonly trained using gradient
descent-based methods, such as BackPropagation (BP). Inference in probabilistic
graphical models is often done using variational Bayes methods, such as Expec-
tation Propagation (EP). We show how an EP based approach can also be used
to train deterministic MNNs. Specifically, we approximate the posterior of the
weights given the data using a “mean-field” factorized distribution, in an online
setting. Using online EP and the central limit theorem we find an analytical ap-
proximation to the Bayes update of this posterior, as well as the resulting Bayes
estimates of the weights and outputs.
Despite a different origin, the resulting algorithm, Expectation BackPropagation
(EBP), is very similar to BP in form and efficiency. However, it has several addi-
tional advantages: (1) Training is parameter-free, given initial conditions (prior)
and the MNN architecture. This is useful for large-scale problems, where param-
eter tuning is a major challenge. (2) The weights can be restricted to have discrete
values. This is especially useful for implementing trained MNNs in precision lim-
ited hardware chips, thus improving their speed and energy efficiency by several
orders of magnitude.
We test the EBP algorithm numerically in eight binary text classification tasks.
In all tasks, EBP outperforms: (1) standard BP with the optimal constant learning
rate (2) previously reported state of the art. Interestingly, EBP-trained MNNs with
binary weights usually perform better than MNNs with continuous (real) weights
- if we average the MNN output using the inferred posterior.

1 Introduction

Recently, Multilayer1 Neural Networks (MNNs) with deep architecture have achieved state-of-the-
art performance in various supervised learning tasks [17, 20, 12]. Such networks are often massive
and require large computational and energetic resources. A dense, fast and energetically efficient
hardware implementation of trained MNNs could be built if the weights were restricted to discrete
values. For example, with binary weights, the chip in [19] can perform 1012 operations per second
with 1mW power efficiency. Such performances will enable the integration of massive MNNs into
small and low-power electronic devices.

Traditionally, MNNs are trained by minimizing some error function using BackPropagation (BP) or
related gradient descent methods [21]. However, such an approach cannot be directly applied if the
weights are restricted to binary values. Moreover, crude discretization of the weights is usually quite

1i.e., having more than a single layer of adjustable weights.

1

destructive [26]. Other methods have been suggested in the 90’s (e.g., [29, 5, 24]), but it is not clear
whether these approaches are scalable.

The most efficient methods developed for training Single-layer2 Neural Networks (SNN) with binary
weights use approximate Bayesian inference, either implicitly [8, 3] or explicitly [30, 28]. In theory,
given a prior, the Bayes estimate of the weights can be found from their posterior given the data.
However, storing or updating the full posterior is usually intractable. To circumvent this problem,
these previous works used a factorized “mean-field” form the posterior of the weights given the data.

As explained in [28], this was done using a special case of the widely applicable Expectation Propa-
gation (EP) algorithm [25] - with an additional approximation that the fan-in of all neurons is large,
so their inputs are approximately Gaussian. Thus, given an error function, one can analytically
obtain the Bayes estimate of the weights or the outputs, using the factorized approximation of the
posterior. However, to the best of our knowledge, it is still unknown whether such an approach could
be generalized to MNNs, which are more relevant for practical applications.

In this work we derive such generalization, using similar approximations (section 3). The end result
is the Expectation BackPropagation (EBP, section 4) algorithm for online training of MNNs where
the weight values can be either continuous (i.e., real numbers) or discrete (e.g.,±1 binary). Notably,
the training is parameter-free (with no learning rate), and insensitive to the magnitude of the input.
This algorithm is very similar to BP. Like BP, it is very efficient in each update, having a linear
computational complexity in the number of weights.

We test the EBP algorithm (section 5) on various supervised learning tasks: eight high dimensional
tasks of classifying text into one of two semantic classes, and one low dimensional medical dis-
crimination task. Using MNNs with two or three weight layers, EBP outperforms both standard BP,
as well as the previously reported state of the art for these tasks [11]. Interestingly, the best per-
formance of EBP is usually achieved using the Bayes estimate of the output of MNNs with binary
weights. This estimate can be calculated analytically, or by averaging the output of several such
MNNs, with weights sampled from the inferred posterior.

2 Preliminaries

General Notation A non-capital boldfaced letter x denotes a column vector with components xi,
a boldfaced capital letter X denotes a matrix with components Xij . Also, if indexed, the compo-
nents of xl are denoted xi,l and those of Xl are denoted Xij,l. We denote by P (x) the proba-
bility distribution (in the discrete case) or density (in the continuous case) of a random variable X ,
P (x|y) = P (x, y) /P (y),〈x〉 =

´
xP (x) dx, 〈x|y〉 =

´
xP (x|y) dx, Cov (x, y) = 〈xy〉−〈x〉 〈y〉

and Var (x) = Cov (x, x). Integration is exchanged with summation in the discrete case. For any
condition A, we make use of I {A}, the indicator function (i.e., I {A} = 1 if A holds, and zero
otherwise), and δij = I {i = j}, Kronecker’s delta function. If x ∼ N (µ,Σ) then it is Gaussian
with mean µ and covariance matrix Σ, and we denote its density by N (x|µ,Σ). Furthermore, we
use the cumulative distribution function Φ (x) =

´ x
−∞N (u|0, 1) du.

Model We consider a general feedforward Multilayer Neural Network (MNN) with connections
between adjacent layers (Fig. 2.1). For analytical simplicity, we focus here on deterministic binary
(±1) neurons. However, the framework can be straightforwardly extended to other types of neurons
(deterministic or stochastic). The MNN has L layers, where Vl is the width of the l-th layer, and
W = {Wl}Ll=1 is the collection of Vl × Vl−1 synaptic weight matrices which connect neuronal
layers sequentially. The outputs of the layers are {vl}Ll=0, where v0 is the input layer, {vl}L−1l=1 are
the hidden layers and vL is the output layer. In each layer,

vl = sign (Wlvl−1) (2.1)

where each sign “activation function” (a neuronal layer) operates component-wise (i.e., ∀i :
(sign (x))i = sign (xi)). The output of the network is therefore

vL = g (v0,W) = sign (WLsign (WL−1sign (· · ·W1v0))) . (2.2)

2i.e., having only a single layer of adjustable weights.

2

Figure 2.1: Our MNN model (Eq. 2.2).

We assume that the weights are constrained to some set
S, with the specific restrictions on each weight denoted
by Sij,l, so Wij,l ∈ Sij,l and W ∈ S . If Sij,l = {0},
then we say that Wij,l is “disconnected”. For simplic-
ity, we assume that in each layer the “fan-in” Kl =
|{j|Sij,l 6= {0}}| is constant for all i. Biases can be op-
tionally included in the standard way, by adding a con-
stant output v0,l = 1 to each layer.

Task We examine a supervised classification learning
task, in Bayesian framework. We are given a fixed set of
sequentially labeled data pairs DN =

{
x(n),y(n)

}N
n=1

(so D0 = ∅), where each x(n) ∈ RV0 is a data point, and
each y(n) is a label taken from a binary set Y ⊂ {−1,+1}VL . For brevity, we will sometimes
suppress the sample index n, where it is clear from the context. As common for supervised learning
with MNNs, we assume that for all n the relation x(n) → y(n) can be represented by a MNN with
known architecture (the ‘hypothesis class’), and unknown weights W ∈ S . This is a reasonable
assumption since a MNN can approximate any deterministic function, given that it has sufficient
number of neurons [18] (if L ≥ 2). Specifically, there exists some W∗ ∈ S, so that y(n) =
f
(
x(n),W∗

)
(see Eq. 2.2). Our goals are: (1) estimate the most probable W∗ for this MNN, (2)

estimate the most probable y given some (possibly unseen) x.

3 Theory

In this section we explain how a specific learning algorithm for MNNs (described in section 4) arises
from approximate (mean-field) Bayesian inference, used in this context (described in section 2).

3.1 Online Bayesian learning in MNNs

We approach this task within a Bayesian framework, where we assume some prior distribution on the
weights - P (W|D0). Our aim is to find P (W|DN), the posterior probability for the configuration
of the weights W , given the data. With this posterior, one can select the most probable weight
configuration - the Maximum A Posteriori (MAP) weight estimate

W∗ = argmaxW∈SP (W|DN) , (3.1)
minimizing the expected zero-one loss over the weights (I {W∗ 6=W}). This weight estimate can
be implemented in a single MNN, which can provide an estimate of the label y for (possibly unseen)
data points x through y =g (x,W∗). Alternatively, one can aim to minimize the expected loss over
the output - as more commonly done in the MNN literature. For example, if the aim is to reduce
classification error then one should use the MAP output estimate

y∗ = argmaxy∈Y
∑
W
I {g (x,W) = y}P (W|DN) , (3.2)

which minimizes the zero-one loss (I {y∗ 6= g (x,W)}) over the outputs. The resulting estimator
does not generally have the form of a MNN (i.e., y =g (x,W) withW ∈ S), but can be approxi-
mated by averaging the output over many such MNNs with W values sampled from the posterior.
Note that averaging the output of several MNNs is a common method to improve performance.

We aim to find the posterior P (W|DN) in an online setting, where samples arrive sequentially.
After the n-th sample is received, the posterior is updated according to Bayes rule:

P (W|Dn) ∝ P
(
y(n)|x(n),W

)
P (W|Dn−1) , (3.3)

for n = 1, . . . , N . Note that the MNN is deterministic, so the likelihood (per data point) has the
following simple form3

P
(
y(n)|x(n),W

)
= I

{
g
(
x(n),W

)
= y(n)

}
. (3.4)

3MNN with stochastic activation functions will have a “smoothed out” version of this.

3

Therefore, the Bayes update in Eq. 3.3 simply makes sure that P (W|Dn) = 0 in any “illegal” con-
figuration (i.e., anyW0 such that g

(
x(k),W0

)
6= y(k)) for some 1 ≤ k ≤ n. In other words, the

posterior is equal to the prior, restricted to the “legal” weight domain, and re-normalized appropri-
ately. Unfortunately, this update is generally intractable for large networks, mainly because we need
to store and update an exponential number of values for P (W|Dn). Therefore, some approximation
is required.

3.2 Approximation 1: mean-field

In order to reduce computational complexity, instead of storing P (W|Dn), we will store its factor-
ized (‘mean-field’) approximation P̂ (W|Dn), for which

P̂ (W|Dn) =
∏
i,j,l

P̂ (Wij,l|Dn) , (3.5)

where each factor must be normalized. Notably, it is easy to find the MAP estimate of the weights
(Eq. 3.1) under this factorized approximation ∀i, j, l

W ∗ij,l = argmaxWij,l∈Sij,l
P̂ (Wij,l|DN) . (3.6)

The factors P̂ (Wij,l|Dn) can be found using a standard variational approach [7, 30]. For each n,
we first perform the Bayes update in Eq. 3.3 with P̂ (W|Dn−1) instead of P (W|Dn−1). Then, we
project the resulting posterior onto the family of distributions factorized as in Eq. 3.5, by minimiz-
ing the reverse Kullback-Leibler divergence (similarly to EP [25, 28]). A straightforward calculation
shows that the optimal factor is just a marginal of the posterior (appendix A, available in the supple-
mentary material). Performing this marginalization on the Bayes update and re-arranging terms, we
obtain a Bayes-like update to the marginals ∀i, j, l

P̂ (Wij,l|Dn) ∝ P̂
(
y(n)|x(n),Wij,l, Dn−1

)
P̂ (Wij,l|Dn−1) , (3.7)

where

P̂
(
y(n)|x(n),Wij,l, Dn−1

)
=

∑
W′:W ′ij,l=Wij,l

P
(
y(n)|x(n),W ′

) ∏
{k,r,m}6={i,j,l}

P̂
(
W ′kr,m|Dn−1

)
(3.8)

is the marginal likelihood. Thus we can directly update the factor P̂ (Wij,l|Dn) in a single step.
However, the last equation is still problematic, since it contains a generally intractable summation
over an exponential number of values, and therefore requires simplification. For simplicity, from
now on we replace any P̂ with P , in a slight abuse of notation (keeping in mind that the distributions
are approximated).

3.3 Simplifying the marginal likelihood

In order to be able to use the update rule in Eq. 3.7, we must first calculate the marginal likelihood
P
(
y(n)|x(n),Wij,l, Dn−1

)
using Eq. 3.8. For brevity, we suppress the index n and the dependence

on Dn−1 and x, obtaining

P (y|Wij,l) =
∑

W′:W ′ij,l=Wij,l

P (y|W ′)
∏

{k,r,m}6={i,j,l}

P
(
W ′kr,m

)
, (3.9)

where we recall that P (y|W ′) is simply an indicator function (Eq. 3.4). Since, by assumption,
P (y|W ′) arises from a feed-forward MNN with input v0 = x and output vL = y, we can perform
the summations in Eq. 3.9 in a more convenient way - layer by layer. To do this, we define

P (vm|vm−1) =
∑
W′

m

Vm∏
k=1

I
vk,m

Vm−1∑
r=1

vr,m−1W
′
kr,m > 0

Vm−1∏
r=1

P
(
W ′kr,m

) (3.10)

and P (vl|vl−1,Wij,l), which is defined identically to P (vl|vl−1), except that the summation is
performed over all configurations in which Wij,l is fixed (i.e., W′

l : W ′ij,l = Wij,l) and we set

4

P (Wij,l) = 1. Now we can write recursively P (v1) = P (v1|v0 = x)

∀m ∈ {2, .., l − 1} : P (vm) =
∑
vm−1

P (vm|vm−1)P (vm−1) (3.11)

P (vl|Wij,l) =
∑
vl−1

P (vl|vl−1,Wij,l)P (vl−1) (3.12)

∀m ∈ {l + 1, l + 2, .., L} : P (vm|Wij,l) =
∑
vm−1

P (vm|vm−1)P (vm−1|Wij,l) (3.13)

Thus we obtain the result of Eq. 3.9, through P (y|Wij,l) = P (vL = y|Wij,l). However, this
computation is still generally intractable, since all of the above summations (Eqs. 3.10-3.13) are still
over an exponential number of values. Therefore, we need to make one additional approximation.

3.4 Approximation 2: large fan-in

Next we simplify the above summations (Eqs. 3.10-3.13) assuming that the neuronal fan-in is
“large”. We keep in mind that i, j and l are the specific indices of the fixed weight Wij,l. All
the other weights beside Wij,l can be treated as independent random variables, due to the mean field
approximation (Eq. 3.5). Therefore, in the limit of a infinite neuronal fan-in (∀m : Km → ∞) we
can use the Central Limit Theorem (CLT) and say that the normalized input to each neuronal layer,
is distributed according to a Gaussian distribution

∀m : um = Wmvm−1/
√
Km ∼ N (µm,Σm) . (3.14)

Since Km is actually finite, this would be only an approximation - though a quite common and
effective one (e.g., [28]). Using the approximation in Eq. 3.14 together with vm = sign (um) (Eq.
2.1) we can calculate (appendix B) the distribution of um and vm sequentially for all the layers
m ∈ {1, . . . , L}, for any given value of v0 and Wij,l. These effectively simplify the summations in
3.10-3.13 using Gaussian integrals (appendix B).

At the end of this “forward pass” we will be able to find P (y|Wij,l) = P (vL = y|Wij,l) , ∀i, j, l.
This takes a polynomial number of steps (appendix B.3), instead of a direct calculation through
Eqs. 3.11-3.13, which is exponentially hard. Using P (y|Wij,l) and Eq. 3.7 we can now update the
distribution of P (Wij,l). This immediately gives the Bayes estimate of the weights (Eq. 3.6) and
outputs (Eq. 3.2).

As we note in appendix B.3, the computational complexity of the forward pass is significantly lower
if Σm is diagonal. This is true exactly only in special cases. For example, this is true if all hidden
neurons have a fan-out of one - such as in a 2-layer network with a single output. However, in order
to reduce the computational complexity in cases that Σm is not diagonal, we will approximate the
distribution of um with its factorized (‘mean-field’) version. Recall that the optimal factor is the
marginal of the distribution (appendix A). Therefore, we can now find P (y|Wij,l) easily (appendix
B.1), as all the off-diagonal components in Σm are zero, so Σkk′,m = σ2

k,mδkk′ .

A direct calculation of P (vL = y|Wij,l) for every i, j, l would be computationally wasteful, since
we will repeat similar calculations many times. In order to improve the algorithm’s efficiency,
we again exploit the fact that Kl is large. We approximate lnP (vL = y|Wij,l) using a Taylor
expansion of Wij,l around its mean, 〈Wij,l〉, to first order in K−1/2l . The first order terms in this
expansion can be calculated using backward propagation of derivative terms

∆k,m = ∂ lnP (vL = y) /∂µk,m , (3.15)

similarly to the BP algorithm (appendix C). Thus, after a forward pass for m = 1, . . . , L, and a
backward pass for l = L, . . . , 1, we obtain P (vL = y|Wij,l) for all Wij,l and update P (Wij,l).

4 The Expectation Backpropagation Algorithm

Using our results we can efficiently update the posterior distribution P (Wij,l|Dn) for all the weights
withO (|W|) operations, according to Eqs. 3.7. Next, we summarize the resulting general algorithm
- the Expectation BackPropgation (EBP) algorithm. In appendix D, we exemplify how to apply the

5

algorithm in the special cases of MNNs with binary, ternary or real (continuous) weights. Similarly
to the original BP algorithm (see review in [22]), given input x and desired output y, first we perform
a forward pass to calculate the mean output 〈vl〉 for each layer. Then we perform a backward pass
to update P (Wij,l|Dn) for all the weights.

Forward pass In this pass we perform the forward calculation of probabilities, as in Eq. 3.11.
Recall that 〈Wkr,m〉 is the mean of the posterior distribution P (Wkr,m|Dn). We first initialize the
MNN input 〈vk,0〉 = xk for all k and calculate recursively the following quantities (Eqs. B.5-B.7)
for m = 1, . . . , L and all k

µk,m =
1√
Km

Vm−1∑
r=1

〈Wkr,m〉 〈vr,m−1〉 ; 〈vk,m〉 = 2Φ (µk,m/σk,m)− 1 . (4.1)

σ2
k,m =

1

Km

Vm−1∑
r=1

〈
W 2
kr,m

〉 (
δm,1

(
〈vr,m−1〉2 − 1

)
+ 1
)
− 〈Wkr,m〉2 〈vr,m−1〉2 , (4.2)

where µm and σ2
m are, respectively, the mean and variance of um, the input of layer m (Eq. 3.14),

and 〈vm〉 is the resulting mean of the output of layer m.

Backward pass In this pass we perform the Bayes update of the posterior (Eq. 3.7) using a Taylor
expansion. Recall Eq. 3.15. We first initialize4 (Eq. C.8)

∆i,L = yi
N
(
0|µi,L, σ2

i,L

)
Φ (yiµi,L/σi,L)

. (4.3)

for all i. Then, for l = L, . . . , 1 and ∀i, j we calculate (Eqs. C.9-C.10, C.6 and 3.7)

∆i,l−1 =
2√
Kl

N
(
0|µi,l−1, σ2

i,l−1
) Vm∑
j=1

〈Wji,l〉∆j,l . (4.4)

lnP (Wij,l|Dn) = lnP (Wij,l|Dn−1) +
1√
Kl

Wij,l∆i,l 〈vj,l−1〉+ C , (4.5)

where C is some unimportant constant (which does not depend on Wij,l).

Output Using the posterior distribution, the optimal configuration can be immediately found
through the MAP weights estimate (Eq. 3.6) ∀i, j, l

W ∗ij,l = argmaxWij,l∈Sij,l
lnP (Wij,l|Dn) . (4.6)

The output of a MNN implementing these weights would be g (x,W∗) (see Eq. 2.2). We define this
to be the ‘deterministic‘ EBP output (EBP-D).

Additionally, the MAP output (Eq. 3.2) can be calculated directly

y∗ = argmaxy∈Y lnP (vL = y) = argmaxy∈Y

[∑
k

ln

(
1 + 〈vk,L〉
1− 〈vk,L〉

)yk]
(4.7)

using 〈vk,L〉 from Eq. 4.1, or as an ensemble average over the outputs of all possible MNN with the
weightsWij,l being sampled from the estimated posterior P (Wij,l|Dn). We define the output in Eq.
4.7 to be the Probabilistic EBP output (EBP-P). Note that in the case of a single output Y = {−1, 1},
so this output simplifies to y = sign (〈vk,L〉).

4Due to numerical inaccuracy, calculating ∆i,L using Eq. 4.3 can generate nonsensical values (±∞, NaN)
if |µi,L/σi,L| becomes to large. If this happens, we use instead the asymptotic form in that limit

∆i,L = − µi,L

σ2
i,L

√
KL

I {yiµi,L < 0}

6

5 Numerical Experiments

We use several high dimensional text datasets to assess the performance of the EBP algorithm in
a supervised binary classification task. The datasets (taken from [11]) contain eight binary tasks
from four datasets: ‘Amazon (sentiment)’, ‘20 Newsgroups’, ‘Reuters’ and ‘Spam or Ham’. Data
specification (N =#examples and M =#features) and results (for each algorithm) are described in
Table 1. More details on the data including data extraction and labeling can be found in [11].

We test the performance of EBP on MNNs with a 2-layer architecture of M → 120 → 1, and
bias weights. We examine two special cases: (1) MNNs with real weights (2) MNNs with binary
weights (and real bias). Recall the motivation for the latter (section 1) is that they can be efficiently
implemented in hardware (real bias has negligible costs). Recall also that for each type of MNN, the
algorithm gives two outputs - EBP-D (deterministic) and EBP-P (probabilistic), as explained near
Eqs. 4.6-4.7.

To evaluate our results we compare EBP to: (1) the AROW algorithm, which reports state-of-the-art
results on the tested datasets [11] (2) the traditional Backpropagation (BP) algorithm, used to train
an M → 120→ 1 MNN with real weights. In the latter case, we used both Cross Entropy (CE) and
Mean Square Error (MSE) as loss functions. On each dataset we report the results of BP with the
loss function which achieved the minimal error. We use a simple parameter scan for both AROW
(regularization parameter) and the traditional BP (learning rate parameter). Only the results with
the optimal parameters (i.e., achieving best results) are reported in Table 1. The optimal parameters
found were never at the edges of the scanned field. Lastly, to demonstrate the destructive effect of
naive quantization, we also report the performance of the BP-trained MNNs, after all the weights
(except the bias) were clipped using a sign function.

During training the datasets were repeatedly presented in three epochs (in all algorithms, additional
epochs did not reduce test error). On each epoch the examples were shuffled at random order for BP
and EBP (AROW determines its own order). The test results are calculated after each epoch using
8-fold cross-validation, similarly to [11]. Empirically, EBP running time is similar to BP with real
weights, and twice slower with binary weights. For additional implementation details, see appendix
E.1. The code is available on the author’s website.

The minimal values achieved over all three epochs are summarized in Table 1. As can be seen, in all
datasets EBP-P performs better then AROW, which performs better then BP. Also, EBP-P usually
perfroms better with binary weights. In appendix E.2 we show that this ranking remains true even if
the fan-in is small (in contrast to our assumptions), or if a deeper 3-layer architecture is used.

Dataset #Examples #Features Real EBP-D Real EBP-P Binary EBP-D Binary EBP-P AROW BP Clipped BP

Reuters news I6 2000 11463 14.5% 11.35% 21.7% 9.95% 11.72% 13.3% 26.15%
Reuters news I8 2000 12167 15.65% 15.25% 23.15% 16.4% 15.27% 18.2% 26.4%
Spam or ham d0 2500 26580 1.28% 1.11% 7.93% 0.76% 1.12% 1.32% 7.97%
Spam or ham d1 2500 27523 1.0% 0.96% 3.85% 0.96% 1.4% 1.36% 7.33%

20News group comp vs HW 1943 29409 5.06% 4.96% 7.54% 4.44% 5.79% 7.02% 13.07%
20News group elec vs med 1971 38699 3.36% 3.15% 6.0% 2.08% 2.74% 3.96% 14.23%

Amazon Book reviews 3880 221972 2.14% 2.09% 2.45% 2.01% 2.24% 2.96% 3.81%
Amazon DVD reviews 3880 238739 2.06% 2.14% 5.72% 2.27% 2.63% 2.94% 5.15%

Table 1: Data specification, and test errors (with 8-fold cross-validation). Best results are boldfaced.

6 Discussion

Motivated by the recent success of MNNs, we developed the Expectation BackPropagation algo-
rithm (EBP - see section 4) for approximate Bayesian inference of the synaptic weights of a MNN.
Given a supervised classification task with labeled training data and a prior over the weights, this
deterministic online algorithm can be used to train deterministic MNNs (Eq. 2.2) without the need
to tune learning parameters (e.g., learning rate). Furthermore, each synaptic weight can be restricted
to some set - which can be either finite (e.g., binary numbers) or infinite (e.g., real numbers). This
opens the possibility of implementing trained MNNs in power-efficient hardware devices requiring
limited parameter precision.

7

This algorithm is essentially an analytic approximation to the intractable Bayes calculation of the
posterior distribution of the weights after the arrival of a new data point. To simplify the intractable
Bayes update rule we use several approximations. First, we approximate the posterior using a prod-
uct of its marginals - a ‘mean field’ approximation. Second, we assume the neuronal layers have a
large fan-in, so we can approximate them as Gaussian. After these two approximations each Bayes
update can be tractably calculated in polynomial time in the size of the MNN. However, in order to
further improve computational complexity (to O (|W|) in each step, like BP), we make two addi-
tional approximations. First, we use the large fan-in to perform a first order expansion. Second, we
optionally5 perform a second ‘mean field’ approximation - to the distribution of the neuronal inputs.
Finally, after we obtain the approximated posterior using the algorithm, the Bayes estimates of the
most probable weights and the outputs are found analytically.

Previous approaches to obtain these Bayes estimates were too limited for our purposes. The Monte
Carlo approach [27] achieves state-of-the-art performance for small MNNs [32], but does not scale
well [31]. The Laplace approximation [23] and variational Bayes [16, 4, 14] based methods require
real-value weights, tuning of the learning rate parameter, and stochastic neurons (to “smooth” the
likelihood). Previous EP [30, 28] and message passing [8, 3] (a special case of EP[7]) based methods
were derived only for SNNs.

In contrast, the EBP allows parameter free and scalable training of various types of MNNs (deter-
ministic or stochastic) with discrete (e.g., binary) or continuous weights. In appendix F, we see that
for continuous weights EBP is almost identical to standard BP with a specific choice of activation
function s (x) = 2Φ (x)− 1, CE loss and learning rate η = 1. The only difference is that the input
is normalized by its standard deviation (Eq. 4.1, right), which depends on the weights and inputs
(Eq. 4.2). This re-scaling makes the learning algorithm invariant to the amplitude changes in the
neuronal input. This results from the same invariance of the sign activation functions. Note that in
standard BP algorithm the performance is directly affected by the amplitude of the input, so it is a
recommended practice to re-scale it in pre-processing [22].

We numerically evaluated the algorithm on binary classification tasks using MNNs with two or three
synaptic layers. In all data sets and MNNs EBP performs better than standard BP with the optimal
constant learning rate, and even achieves state-of-the-art results in comparison to [11]. Surprisingly,
EBP usually performs best when it is used to train binary MNNs. As suggested by a reviewer, this
could be related to the type of problems examined here. In text classification tasks have large sparse
input spaces (bag of words), and presence/absence of features (words) is more important than their
real values (frequencies). Therefore, (distributions over) binary weights and a threshold activation
function may work well.

In order to get such a good performance in binary MNNs, one must average over the output the
inferred (approximate) posterior of the weights. The EBP-P output of the algorithm calculates this
average analytically. In hardware this output could be realizable by averaging the output of several
binary MNNs, by sampling weights from P (Wij,l|Dn). This can be done efficiently (appendix G).

Our numerical testing mainly focused on high-dimensional text classification tasks, where shallow
architectures seem to work quite well. In other domains, such as vision [20] and speech [12], deep
architectures achieve state-of-the-art performance. Such deep MNNs usually require considerable
fine-tuning and additional ‘tricks’ such as unsupervised pre-training [12], weight sharing [20] or
momentum6. Integrating such methods into EBP and using it to train deep MNNs is a promis-
ing direction for future work. Another important generalization of the algorithm, which is rather
straightforward, is to use activation functions other than sign (·). This is particularly important for
the last layer - where a linear activation function would be useful for regression tasks, and joint
activation functions7 would be useful for multi-class tasks[6].

Acknowledgments The authors are grateful to C. Baldassi, A. Braunstein and R. Zecchina for
helpful discussions and to A. Hallak, T. Knafo and U. Sümbül for reviewing parts of this manuscript.
The research was partially funded by the Technion V.P.R. fund, by the Intel Collaborative Research
Institute for Computational Intelligence (ICRI-CI), and by the Gruss Lipper Charitable Foundation.

5This approximation is not required if all neurons in the MNN have a fan-out of one.
6Which departs from the online framework considered here, since it requires two samples in each update.
7i.e., activation functions for which (f (x))i 6= f (xi), such as softmax or argmax.

8

Appendix
A The mean-field approximation

In this section we derive Eqs. 3.7 and 3.8. Recall Eq. 3.5,

P̂ (W|Dn) =
∏
i,j,l

P̂ (Wij,l|Dn) ,

where P̂ (W|Dn) is an approximation of P (W|Dn). In this section we answer the following ques-
tion - suppose we know P̂ (W|Dn−1). How do we find P̂ (W|Dn)? It is a standard approximation
to answer this question using a variational approach (see [7], and note that [30, 28] also used the
same approach for a SNN with binary weights), through the following two steps:

1. We use the Bayes update (Eq. 3.3) with P̂ (W|Dn−1) as our prior

P̃ (W|Dn) ∝ P
(
y(n)|x(n),W

)
P̂ (W|Dn−1)

= P
(
y(n)|x(n),W

)∏
i,j,l

P̂ (Wij,l|Dn−1) , (A.1)

where P̃ (W|Dn) is some “temporary” posterior distribution.

2. We project P̂ (W|Dn) onto P̃ (W|Dn) by minimizing the reverse Kullback-Leibler diver-
gence (e.g., as in the expectation propagation algorithm [25, 7])

DKL

(
P̃ (W|Dn) ||P̂ (W|Dn)

)
=
∑
W

P̃ (W|Dn) log

(
P̃ (W|Dn)

P̂ (W|Dn)

)

with the normalization constraint
∑
Wij,l

P̂ (Wij,l|Dn) = 1 ∀i, j, l.

The second step can be easily performed using Lagrange multipliers, forming a Lagrangian

L
(
P̂ (W|Dn)

)
=

∑
W′∈S

P̃ (W ′|Dn) log

 P̃ (W ′|Dn)∏
k,r,m P̂

(
W ′kr,m|Dn

)

+
∑
k,r,m

λkr,m

1−
∑

W ′kr,m∈Skr,m

P̂
(
W ′kr,m|Dn

) .

The minimum is found by differentiating and equating to zero

0 =
∂L
(
P̂ (W|Dn)

)
∂P̂ (Wij,l|Dn)

= −

∑
W′:W ′ij,l=Wij,l

P̃ (W ′|Dn)

P̂ (Wij,l|Dn)
− λij,l .

Using this equation together with the normalization constraint
∑
Wij,l

P̂ (Wij,l|Dn) = 1 ∀i, j, l we
obtain the result of the minimization through marginalization

P̂ (Wij,l|Dn) =
∑

W′:W ′ij,l=Wij,l

P̃ (W ′|Dn) , (A.2)

which is a known result [7, p. 468]. Finally, we can combine step 1 (Bayes update) with step 2
(projection) to a single step

P̂ (Wij,l|Dn) =
∑

W′:W ′ij,l=Wij,l

P
(
y(n)|x(n),W ′

) ∏
k,r,m

P̂
(
W ′kr,m|Dn−1

)
.

This step is exactly Eqs. 3.7 and 3.8 combined.

9

B Forward propagation of probabilities

In this section we simplify the summations in Eqs. (3.10-3.13), by assuming that the fan-in of all
of the connections is “large”, i.e., ∀m : Km → ∞. Using this approximation and the CLT we can
write ∀m ≥ 1

um =
1√
Km

Wmvm−1 ∼ N (µm,Σm) . (B.1)

vm = sign (um) (B.2)

with v0 = x. Recall (from Eq. 3.9) that Wij,l is a specific weight which is fixed (so i, j and l are
“special” indexes), while all the other weights Wkr,m (for which k 6= i or r 6= j or m 6= l) are
independent variables. We first consider a simple special case.

B.1 Special case: a diagonal Σm

In this section we assume initially that Σm in Eq. B.1 is diagonal, so

P (um) =
∏
k

N
(
uk,m|µk,m, σ2

k,m

)
(B.3)

with σ2
k,m = Σkk,m. Therefore, ∀m ∈ {1, . . . , l − 1}, we can use Eq. B.2 to obtain

P (vm) =
∏
k

P (vk,m) =
∏
k

Φ (vk,mµk,m/σk,m) . (B.4)

These distributions, which are the approximate solution of Eqs. 3.11-3.13, immediately give

〈vk,m〉 = vk,0δ0m + (1− δ0m) (2Φ (µk,m/σk,m)− 1) . (B.5)

Note that Wkr,m and vk,m−1 are independent for a fixed m (from Eqs. 3.5 and 2.1). Therefore, it is
straightforward to derive

µk,m = 〈uk,m〉 =
1√
Km

Vm−1∑
r=1

〈Wkr,m〉 〈vr,m−1〉 (B.6)

σ2
k,m = Var (uk,m) =

1

Km

Vm−1∑
r=1

〈
W 2
kr,m

〉 〈
v2r,m−1

〉
− 〈Wkr,m〉2 〈vr,m−1〉2 . (B.7)

Since the value v0 is given (v0 = x), and for m ≥ 1, vm are binary vectors, we have
〈
v2r,m−1

〉
=

1 + δm0

(
v2r,0 − 1

)
. Importantly, if we know x and P (Wkr,m) Eqs. B.5-B.7 can be calculated

together in a sequential “forward pass” for m = 1, 2, ..., l − 1. We continue in the same manner for
m ≥ l, with slight modifications, since Wij,l is fixed. For m = l we need to respectively replace

〈Wij,l〉 and
〈
W 2
ij,l

〉
with fixed values Wij,l and W 2

ij,l so

µi,l (Wij,l) = µi,l +
1√
Kl

(Wij,l − 〈Wij,l〉) 〈vj,l−1〉 (B.8)

σ2
i,l (Wij,l) = σ2

i,l −
1

Kl
〈Wij,l〉2 Var (vj,l−1) . (B.9)

For m > l we continue as in Eqs. B.4-B.7, except we replace P (vk,m) , 〈vk,m〉, µk,m and σ2
k,m

with P (vk,m|Wij,l) , 〈vk,m|Wij,l〉, µk,m (Wij,l) and σ2
k,m (Wij,l), respectively, to emphasize that

they depend on Wij,l. The end result of this calculation is P (vL = y|Wij,l).

B.2 General case: non-diagonal Σm

In this section we perform the forward propagation (Eqs. 3.11-3.13) without assuming that Σm is
diagonal. For simplicity, in this section we will usually suppress explicit dependence on Wij,l in our

notation (keeping in mind that we should respectively replace 〈Wij,l〉 and
〈
W 2
ij,l

〉
with Wij,l and

W 2
ij,l).

10

Using these equations it is straightforward to derive µm and Σm for each layer and ∀k, k′

µk,m =
1√
Km

Vm−1∑
r=1

〈Wkr,m〉 〈vr,m−1〉 (B.10)

Σkk′,m = Cov (uk,m, uk′,m) (B.11)

=
1

Km
δkk′

Vm−1∑
r=1

Var (Wkr,m)
〈
v2r,m−1

〉
+

1

Km

Vm−1∑
r=1

Vm−1∑
r′=1

〈Wkr,m〉 〈Wk′r′,m〉Cov (vr,m−1, vr′,m−1) .

Therefore, for m > 1 and ∀k

〈vk,m〉 = P (uk,m > 0)− P (uk,m < 0)

= 2P (uk,m > 0)− 1

= 2Φ (µk,m/Σkk,m)− 1 (B.12)

and ∀k′ 6= k :

〈vk,mvk′,m〉 = P (sign (uk,muk′,m) > 0)− P (sign (uk,muk′,m) < 0)

= P (uk,m > 0, uk′,m > 0) + P (uk,m < 0, uk′,m < 0)

− P (uk,m > 0, uk′,m < 0)− P (uk,m < 0, uk′,m > 0)

= 2P (uk,m > 0, uk′,m > 0) + 2P (uk,m < 0, uk′,m < 0)− 1 .

Note that for m ≥ l, all these results depend on Wij,l (this dependency was suppressed, for brevity).
Lastly, we obtain

P (y|Wij,l) = P (∀k : uk,Lyk > 0) . (B.13)

All that remains is to find is to substitute P (y|Wij,l) into Eq. 3.7 and perform the update rule.

B.3 Computational Complexity

What is the computational complexity of a direct implementation the resulting update rule for each
weight? We first consider the complexity for the general case of a non-Diagonal Σm. Denoting S =
maxi,j,l |Sij,l|, V = maxl Vl and ε as the required (relative) precision for calculating P (y|Wij,l),
we can now find the worst case asymptotic complexity Õ (·) (i.e., neglecting logarithmic factors) of
all steps in the update rule. To do this, we first note that

• Given P (Wij,l), calculating 〈Wij,l〉 is O (S).

• Calculating Φ (x) is Õ (1) [9].

• The current state-of-the-art complexity of calculating Gaussian orthant probabilities in d
dimensions and relative precision ε:

– For d ≤ 3 it is Õ (1) [13].

– For d ≥ 4 it is Õ
(
d3ε−2

)
[10], and sometimes lower (e.g., see d = 4 in [15]).

Therefore , in the non-diagonal case (appendix B.2)

• Eq. B.10 for all layers is O (S |W|).

• Eq. B.11 for all layers is O (S |W|V).

• Eq. B.12 for all neurons and all layers is Õ (LV).

• Eq. ?? for all neurons and all layers is Õ (|W|).

• Eq. B.13 is Õ
(
V 3
L ε
−2) if VL > 3 or Õ (1) otherwise.

11

Summing all contributions, in the worst case, the total computational complexity of a single
update step (Eq. 3.7) for all weights and weight values is Õ

(
S2 |W|2 V

)
if VL ≤ 3 or

Õ
(
S2 |W|2 V + V 3

L ε
−2 |W|S

)
if VL > 3.

If instead, Σm is diagonal, then, using a similar analysis, it is straightforward to show that com-
putational complexity of a “naive” single update step (Eq. 3.7) for all weights and weight values
is instead O

(
S2 |W|2

)
. However, this complexity can be further reduced to a linear complexity

O
(
S2 |W|

)
by exploiting the fact that many similar operations are shared by the updates of differ-

ent weights. We explain how this is done in Appendix C.

C Backward propagation of derivatives

In this section we calculate the Taylor expansion of lnP (vL = y|Wij,l) in Wij,l around 〈Wij,l〉.
Initially, we perform a similar Taylor expansion without the log. This yields, to first order

P (vL = y|Wij,l) =P (vL = y|Wij,l = 〈Wij,l〉) + (Wij,l − 〈Wij,l〉)
[
∂P (vL = y|Wij,l)

∂Wij,l

]
Wij,l=〈Wij,l〉

(C.1)

We re-write this expression to first order using the notation as in appendix B.1. First, using the chain
rule, B.8 and Eq. B.9 we obtain

∂P (vL = y|Wij,l)

∂Wij,l
=

∂µi,l
∂Wij,l

∂P (vL = y|Wij,l)

∂µi,l
+

∂σ2
i,l

∂Wij,l

∂P (vL = y|Wij,l)

∂σ2
i,l

=
1√
Kl

〈vj,l−1〉
∂

∂µi,l
P (vL = y|Wij,l) . (C.2)

Next, from Eqs. B.8-B.9

µi,l (Wij,l = 〈Wij,l〉) = µi,l (C.3)

σ2
i,l (Wij,l) = σ2

i,l +O
(
K−1l

)
(C.4)

and therefore
P (vL = y|Wij,l = 〈Wij,l〉) = P (vL = y) +O

(
K−1l

)
(C.5)

Putting Eqs. C.1-C.5 together, we obtain

P (vL = y|Wij,l) = P (vL = y) +
1√
Kl

(Wij,l − 〈Wij,l〉)
∂P (vL = y)

∂µi,l
〈vj,l−1〉+O

(
K−1l

)
.

Taking the logarithm of this expression, we obtain to first order

lnP (vL = y|Wij,l) = ln

[
P (vL = y) +

1√
Kl

(Wij,l − 〈Wij,l〉)
∂P (vL = y)

∂µi,l
〈vj,l−1〉+O

(
K−1l

)]
= ln

[
1 +

1√
Kl

〈vj,l−1〉 (Wij,l − 〈Wij,l〉)
∂P (vL = y)

∂µi,l
/P (vL = y) +O

(
K−1l

)]
+ C

= C +
1√
Kl

Wij,l
∂ lnP (vL = y)

∂µi,l
〈vj,l−1〉+O

(
K−1l

)
. (C.6)

where C is some constant that does not depend on Wij,l.

As we show next, the derivative term can be calculated efficiently to first order, using the chain rule.
From Eq. B.4, we have

∂ lnP (vL = y)

∂µk,L
=

∂

∂µk,L

[
VL∑
r=1

ln Φ (yrµr,L/σr,L)

]
(C.7)

= yk
N
(

0|µk,L, σ2
k,L

)
Φ (ykµk,L/σk,L)

, (C.8)

12

where we used the fact that for a = ±1

d

dx
Φ (ax/b) = aN

(
0|x, b2

)
.

From Eq. B.6-B.7, we have

∂ lnP (vL = y)

∂ 〈vk,m−1〉
=

Vm∑
r=1

[
∂µr,m

∂ 〈vk,m−1〉
∂ lnP (vL = y)

∂µr,m
+

∂σ2
r,m

∂ 〈vk,m−1〉
∂ lnP (vL = y)

∂σ2
r,m

]

=

Vm∑
r=1

[
1√
Km

〈Wrk,l〉
∂ lnP (vL = y)

∂µr,m
+O

(
K−1m

)]
. (C.9)

Finally, from Eq. B.5, we have

∂ lnP (vL = y)

∂µk,m
=

∂ 〈vk,m〉
∂µk,m

∂ lnP (vL = y)

∂ 〈vk,m〉

= 2N
(
0|µk,m, σ2

k,m

) ∂ lnP (vL = y)

∂ 〈vk,m〉
. (C.10)

Importantly, we can calculate Eqs. C.8-C.10 and C.6 in a single backward pass (for l = L, . . . , 1),
after a single forward propagation of probabilities (Eqs. B.5-B.7, for l = 1, . . . , L), similarly to the
BP equations (Eqs. 1.4-1.6 in [22, Eqs. 1.4-1.6]). This reduces the computational complexity of the
algorithm to O (S |W|).

D Examples for weight restrictions

In this section we explain how to implement the EBP algorithm for: (1) Binary weights (2) Ternary
weights (3) Real-valued weights. Note that, similarly to BP, the algorithm uses O (|W|) computa-
tion steps for each update of the posterior (which is the minimal amount of steps required for any
algorithm that updates all the weights) in all these examples. This computational complexity is re-
tained as long as the restriction sets (Sij,l) are finite, and even in some cases when they are not finite
(e.g., section D.3). For simplicity, we denote in this section νk,l = 〈vk,l〉.

D.1 Binary weights

Suppose Wij,l can assume only binary ±1 values, so Sij,l = {−1, 1}. For convenience, we will
parametrize the distribution of Wij,l so that

P (Wij,l|Dn) =
eh

(n)
ij,lWij,l

eh
(n)
ij,l + e−h

(n)
ij,l

. (D.1)

In the forward pass (Eq. 4.1-4.2), we can use this parametrization to compute 〈Wij,l〉 = tanh (hij,l),〈
W 2
ij,l

〉
= 1 and Var (Wij,l) = 1−tanh2 (hij,l) = sech2 (hij,l). In the backward pass we substitute

Eq. D.1 into Eq. 4.5, and find that the parameter h(n)ij,l should be incremented each time according to

h
(n)
ij,l = h

(n−1)
ij,l +

1√
Kl

∆i,lνj,l−1. (D.2)

Finally, we note the MAP estimate (Eq. 4.6) of the weight configuration for the MNN is obtained by
simple clipping

W ∗ij,l = sign (hij,l) . (D.3)

D.2 Ternary weights

Suppose Sij,l = {−1, 0, 1}. For convenience, we will parametrize the distribution of Wij,l so that

P (Wij,l|Dn) =
exp

(
Wij,lh

(n)
ij,l +

(
W 2
ij,l − 1

)
g
(n)
ij,l

)
eh

(n)
ij,l + e−h

(n)
ij,l + e−g

(n)
ij,l

(D.4)

13

In the forward pass

〈Wij,l〉 =
eh

(n)
ij,l − e−h

(n)
ij,l

eh
(n)
ij,l + e−h

(n)
ij,l + e−g

(n)
ij,l〈

W 2
ij,l

〉
=

eh
(n)
ij,l + e−h

(n)
ij,l

eh
(n)
ij,l + e−h

(n)
ij,l + e−g

(n)
ij,l

.

In the backward pass, we substitute Eq. D.4 into Eq. 4.5, obtaining

h
(n)
ij,l =

1

2
ln

P (Wij,l = 1|Dn)

P (Wij,l = −1|Dn)

= h
(n−1)
ij,l +

1√
Kl

∆i,lνj,l−1 ,

as for the binary weights. Similarly,

g
(n)
ij,l =

1

2
ln

[
P (Wij,l = 1|Dn)P (Wij,l = −1|Dn)

P (Wij,l = 0|Dn)

]
= g

(n−1)
ij,l + 0 .

Therefore, the parameter gij,l is not updated. In the end we choose the MAP weight configuration
(using Eq. 4.6)

W ∗ij,l = I {|hij,l| > gij,l} sign (hij,l) .

Therefore, the initial conditions on gij,l (i.e., the prior) act as a threshold which generates sparse
weights.

D.3 Real-valued weights

Suppose Sij,l = R, so Wij,l can receive any real value. A naive implementation of the algorithm
would require an infinite number of updates, for each possible value of Wij,l. A simple way to
circumvent this is to as assume that each real weight can be written as an infinite sum of binary
weights Wα

ij,l

Wij,l = lim
A→∞

1√
A

A∑
α=1

Wα
ij,l ,

where each binary weight is parametrized as in D.1 with parameter hα(n)ij,l , and we denote

h
(n)
ij,l = lim

A→∞

1√
A

A∑
α=1

h
α(n)
ij,l .

Using Eq. D.2, we obtain for each binary weight

h
α(n)
ij,l = h

α(n−1)
ij,l +

1√
A

1√
Kl

∆i,lνj,l−1. (D.5)

This immediately gives

h
(n)
ij,l = h

(n−1)
ij,l +

1√
Kl

∆i,lνj,l−1.

Assuming hα(0)ij,l ∝ 1/
√
A , from Eq. D.5 we also have hα(n)ij,l ∝ 1/

√
A. Therefore, after step n,

〈Wij,l〉 = lim
A→∞

1√
A

A∑
α=1

tanh
(
h
α(n)
ij,l

)
= lim

A→∞

1√
A

A∑
α=1

h
α(n)
ij,l = h

(n)
ij,l

14

and

Var (Wij,l) = lim
A→∞

1

A

A∑
α=1

[
1− tanh2

(
h
α(n)
ij,l

)]
= 1

Therefore, using CLT, we have after the n-th update

Wij,l = lim
A→∞

1√
A

A∑
α=1

Wα
ij,l ∼ N

(
h
(n)
ij,l, 1

)
And so, our MAP estimate of Wij,l is

W ∗ij,l = argmaxWij,l
P (Wij,l|Dn) = h

(n)
ij,l . (D.6)

E Numerical Experiments - additional details

E.1 Implementation

We tested the EBP algorithm in two special cases - a binary MNN (Algorithm 1) and a real MNN
(Algorithm 2). In the first, after each update step, the MAP configuration for all the binary weights,
is given by taking the sign of hij,l (Eq. D.3), and the value of hi0,l is used for the biases (Eq. D.6).
The EBP-D output is then obtained by substituting the MAP configuration into Eq. 2.2 and obtaining
y = vL. The EBP-P output is calculated using y = sign (〈vL〉). The second MNN has real weights,
and is trained by Algorithm 2. The MAP configuration is given by hij,l itself for all the synaptic
weights and biases (Eq. D.6). Again, in the EBP-D y = vL and in EBP-P the output is calculated
using y = sign (〈vL〉).

All algorithms were run using Matlab 2013b. Note that EBP on real MNNs (Algorithm 2) is very
similar to BP, and hence should have similar running times - as was observed in practice. EBP on
binary MNNs (Algorithm 1) performs additional non-linear operations on the weights (tanh (·), or
sech (·)), and therefore is expected to be somewhat slower. In practice, it was two times slower than
BP if the values of the non-linear operation were saved and re-used, or five times slower if these
values were not saved (to reduce memory requirements).

In all data sets we centralized (removed the means) and normalized the input (so std = 1), as
recommended for BP [22]. Both in BP and EBP algorithms we used uniform initial conditions, with
std=1, as recommended for BP [22], so

√
Kl/3h

(0)
ij,l ∼ U [−1, 1] for EBP, and similarly for W (0)

ij,l

in BP. In BP we used an activation function f (x) = 1.7159 tanh (2x/3) for the hidden neurons, as
recommended by [22]. If cross-entopy (CE) loss was used, then in the output neurons we used the
relevant logistic activation functions f (x) = (1 + e−x)

−1 [6]. Parameter scans for the learning rate
in BP was performed over{

10−4, 3 · 10−4, 5 · 10−4, 8 · 10−4, 10−3, 3 · 10−3,

5 · 10−3, 8 · 10−3, 10−2, 3 · 10−2, 5 · 10−2, 8 · 10−2, 0.1
}

and in AROW we scanned the regularization parameter over
{

10k
}4
k=−4 (the results were rather in-

sensitive to changes in that parameter). The optimal parameters (which yield the best performance),
given in Fig. E.1 are never near the edges of the scanned range.

E.2 Additional results

Small fan-in. To check whether the algorithm can work if the large fan-in assumption is incorrect,
we also performed small-scale classification using the Pima Indians Diabetes dataset [2]. The set
contains 768 instances with 8 features and 2 classes. The task was to identify the label ∈ {−1,+1},
using a 8 → 200 → 1 MNN classifier. Classification error was calculated using 10-fold cross
validation, so we can compare with the previous best results reported in [1]. Results are shown in
Table 2: as can be seen, EBP-P still exhibits the best performance with binary weights, and the
second best performance with real weights.

15

Algorithm 1 A single update step of the the Expectation BackPropagation (EBP) algorithm for
fully connected binary MNNs - with binary synaptic weights and real bias. We denote νk,l = 〈vk,l〉,
tanh (hij,l) = 〈Wij,l〉, andH as the set of all hij,l.
Function [νL,Hnext] = UpdateStepBinaryMNN (x,y,H)

% Forward pass
Initialize

∀k : νk,0 = xk,∀l : ν0,l = 1

for m = 1 to L do
∀k:

µk,m =
1√
Km−1

hk0,m +

Vm−1∑
r=1

tanh (hkr,m) νr,m−1

σ2
k,m =

1

Km−1

1 +

Vm−1∑
r=1

[(
1− ν2r,m−1

)
(1− δ1m) + ν2r,m−1sech2 (hkr,m)

]
νk,m = 2Φ (µk,m/σk,m)− 1

end for
% Backward pass
Initialize

∆i,L = yi
N
(
0|µi,L, σ2

i,L

)
Φ (yiµi,L/σi,L)

for l = L to 1 do

∀i : ∆i,l−1 =
2√
Kl−1

N
(
0|µi,l−1, σ2

i,l−1
) Vm∑
j=1

tanh (hji,l) ∆j,l

∀i, j : hnextij,l = hij,l +
1√
Kl−1

∆i,lνj,l−1

end for

A B

20N_c 20N_e Ap_bk Ap_dvddom 0 dom 1 Reu_I6Reu_I8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Parameter Scan Results

P
ar

am
et

er
 v

al
ue

 in
 lo

g
sc

al
e

BP
Clipped BP

20N_c 20N_e Ap_bk Ap_dvd dom 0 dom 1 Reu_I6 Reu_I8
−5

−4

−3

−2

−1

0

1

2

3

4

5
Parameter Scan AROW Results

P
ar

am
et

er
 v

al
ue

 in
 lo

g
sc

al
e

Figure E.1: Optimal parameter values for (A) BP and (B) AROW. Red lines - Minimum and maximal
values of the scan.

16

Algorithm 2 A single update step of the algorithm for a fully connected MNNs with real weights
and bias. We denote νk,l = 〈vk,l〉, hij,l = 〈Wij,l〉, andH as the set of all hij,l.
Function [νL,Hnext] = UpdateStepReaMNN (x,y,H)

% Forward pass
Initialize

∀k : νk,0 = xk,∀l : ν0,l = 1

for m = 1 to L do
∀k:

µk,m =
1√
Kl−1

Vm−1∑
r=0

hkr,mνr,m−1

σ2
k,m = 1 +

1

Kl−1

Vm−1∑
r=0

[(
ν2r,m−1 − 1

)
δm1 + (1− δm1)

(
1− ν2r,m−1

)
h2kr,m

]
νk,m = 2Φ (µk,m/σk,m)− 1

end for
% Backward pass
Initialize

∆i,L = yi
N
(
0|µi,L, σ2

i,L

)
Φ (yiµi,L/σi,L)

for l = L to 1 do

∀i : ∆i,l−1 =
2√
Kl−1

N
(
0|µi,l−1, σ2

i,l−1
) Vm∑
j=1

hji,l∆j,l

∀i, j : hnextij,l = hij,l +
1√
Kl−1

∆i,lνj,l−1

end for

17

Dataset Previous Best[1] Real EBP-D Real EBP-P Binary EBP-D Binary EBP-P BP Clipped BP
Pima Indians diabetes 22.3% 23.82% 22.11% 26.18% 21.6% 22.9% 34.9%

Table 2: Pima Indians Diabetes dataset - Test error.

Deeper architectures. To verify that the MNN’s depth does not effect our conclusions, we test
our algorithms using the same setup (except for more training epochs - eight instead of three) on a
a deeper architecture of M → 1000 → 100 → 1. The MNN was tested on three of the datasets.
Results are described in Table 3. As can be seen, for these datasets EBP-P exhibits the best perfor-
mance with binary weights, and the second best performance with real weights. This is the same as
in the 2-layer case, except for the Reuters news I8 dataset - where before EBP performed better with
real weights than with binary weights.

Dataset Real EBP-D Real EBP-P Binary EBP-D Binary EBP-P BP Clipped BP
Reuters news I8 15.7% 15.5% 21.5% 15.25% 17.2% 25.4%

20News group comp vs HW 5.06% 5.01% 6.2% 4.39% 8.26% 12.75%
Spam or ham d0 1.12% 0.88% 3.08% 0.72% 1.92% 10.54%

Table 3: Test error for a 3-layer MNN.

F Comparison with Backpropagation

The EBP algorithm for MNNs with real weights (summarized in Algorithm 2) is almost identical to
the standard BP algorithm, when the variables hij,l are interprets as the real-valued weights in a BP
algorithm. To see this, recall [22] that in BP we wish to train a MNN of the form

ul = Wlvl−1

vl = f (ul) ,

∀l = 1, . . . , L, where f (·) is some sigmoid function. The training is done by minimizing an error
function E (y,vL), through the following recursive equations. First, we initialize

∆i,L = − η
∂E (y, f (ul))

∂ui,L,
, (F.1)

where E is some non-negative error function and η is a learning rate. Then, for l = L, . . . , 1 and
∀i, j we calculate

∆i,l−1 = f ′ (ui,l−1)

Vm∑
j=1

W
(n−1)
ji,l ∆j,l . (F.2)

W
(n)
ij,l = W

(n−1)
ij,l + ∆i,lvj,l−1 . (F.3)

where f ′ is the derivative of f Comparing with EBP for a MNN with real-valued weights (summa-
rized in Algorithm 2), we find that it is nearly identical. Specifically, in BP, we just need to substitute
Wij,l = hij,l/

√
Kl, vk,m = 〈vk,m〉, use η = 1, the activation function

f (uk,l) = 2Φ (uk,l/σi,l)− 1

and the “cross-entropy” [6] error function

E (y,vL) = − lnP (vL = y) = −
∑
i

ln

(
1 + yivi,L

2

)
.

The only difference is that the input u to each neuron is scaled adaptively through σi,l - which
depends on the inputs and weights (Eq. 4.2). This implies that the EBP algorithm is invariant to
changes in the amplitude of of the input x (i.e., x→ cx, where c > 0). This preserves the amplitude
invariance of the sign activation function we used in the original MNN (Eq. 2.2). Note that in the
standard BP algorithm the performance is directly affected by the amplitude of the input, so it is a
recommended practice to re-scale it in pre-processing [22]. Interestingly, is also recommended prac-
tice to use the cross-entropy error function for classification tasks [6], and to scale initial conditions
W

(0)
ij,l ∼ 1/

√
Kl [22]. These rather heuristic practices naturally arise in EBP, which was derived

from first principles.

18

10
0

10
1

10
2

0

0.05

0.1

0.15

samples

E
rr

o
r

Sampling

Analytical

10
0

10
1

10
2

0

0.05

0.1

samples

E
rr

o
r

Sampling

EBP−P

Figure G.1: Approximating EBP-P output by averaging the output of a random sample of MNNs
with binary weights (#samples=

{
2k
}9
k=0

shown). Top figure: P (yEBP−P 6= ysampling) - sign error
between the sampling output and analytical output. We show the analytically predicted error (Eq.
G.2), as well as the empirical error from the sampling simulation. Bottom figure: The test classifica-
tion error of the sampling output ysampling in comparison to the same error of the analytical yEBP−P
output. Note that already for 16 samples (the fifth point), we get a comparable error. Error bars give
the 95% confidence intervals.

G Sampling the weights

The EBP-P output (Eq. 4.7) is the MAP estimate of the MNN output (Eq. 3.2) which typically gives
the best performance empirically (Table 1). In the paper we calculated the EBP-P output analytically
(Eq. 4.7). Motivated by hardware applications, we would like, instead, to calculate the EBP-P output
by averaging the output of several MNNs with binary weights. In this section we explain how this
is done, and calculate analytically and numerically the approximation error for such MNNs with a
single output neuron (i.e., VL = 1 - a binary classification task).

Originally the EBP-P output was derived from an ensemble average over the output of all such
MNNs when the weights are distributed according to the posterior

P (W|DN) =
∏
i,j,l

P (Wij,l|DN) (G.1)

where P (Wij,l|DN) is the weight distribution given by the algorithm (section 4) after training. In
the binary output case, the classification according to the EBP-P output was peformed according to
(Eq. 4.7)

yEBP−P = sign (〈vL〉)
= sign (µL) ,

where either 〈vL〉 or µL can calculated analytically (Eqs. 4.1-4.2) from the distribution over W
(Eq. G.1). However, in order to implement this output in hardware using binary MNNs, we will use
instead the following sampling-based procedure.

19

First, we generate S samples of the weights
{
W(s)

}S
s=1

by sampling from the inferred distribution
(Eq. G.1). Then, we use each sampleW(s) to calculate the input to the last layer in the MNN (Eq.
2.2) for each example x in the test set

∀s : u
(s)
L = W

(s)
L sign

(
W

(s)
L−1sign

(
· · ·W(s)

1 x
))

.

Then, we perform the classification according to

ysampling = sign

(
1

S

N∑
s=1

u
(s)
L

)
.

Due to the CLT approximation (Eq. 3.14), we have

1

S

N∑
s=1

u
(s,n)
L ∼ N

(
µL,

σ2
L

S

)
.

Therefore, it is straightforward to calculate the following error probability

P (yEBP−P 6= ysampling) = P

(
sign

(
1

S

N∑
s=1

u
(s)
L

)
6= sign (µL)

)

= Φ

(
−
√
S

∣∣∣∣µLσL
∣∣∣∣)

= Φ

(
−
√
S

∣∣∣∣Φ−1(〈vL〉+ 1

2

)∣∣∣∣) . (G.2)

Therefore, asymptotically, the error will decay exponentially fast in S, since

lim
x→∞

Φ (−x) ∼ 1

x
√

2π
e−x

2/2 .

Next, we examine numerically this convergence speed, using the Spam or ham d0 dataset. Im-
portantly, the above sampling-based method only assumes that the CLT theorem can be used to
approximate the input to each neuronal layer. This is only approximately true for finite fan-in K.
Empirically, we noticed that CLT was usually accurate - except in the input layer for a few examples.
In these cases, the inputs were “heavy tailed” - so a single feature (an input component) was much
stronger then all the others8. On these examples, the sampling output ysampling might not converge
to yEBP−P, even if S →∞. To correct for this, we split any “strong” features which cause this issue
(before any pre-processing). Specifically on this dataset (Spam or ham d0), we select any feature
which contained examples deviating more than 140 standard deviations from the mean . Then we
split that feature into five identical features with their original value divided by five. In total, this
results in a modest 26% increase in the number of features (i.e., the size of the input layer). As can
be seen on Figure G.1, the sampled output quickly converges to the anaytical output of EBP-P.

References
[1] Http://www.is.umk.pl/projects/datasets.html.

[2] K Bache and M Lichman. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml, 2013.

[3] C Baldassi, A Braunstein, N Brunel, and R Zecchina. Efficient supervised learning in networks with
binary synapses. PNAS, 104(26):11079–84, 2007.

[4] D Barber and C M Bishop. Ensemble learning for multi-layer networks. In Advances in Neural Informa-
tion Processing Systems, pages 395–401, 1998.

[5] R Battiti and G Tecchiolli. Training neural nets with the reactive tabu search. IEEE transactions on neural
networks, 6(5):1185–200, 1995.

[6] C M Bishop. Neural networks for pattern recognition. 1995.

8This can happen, for example, due to common pre-processing procedure of normalizing features by their
standard deviation. If the values of a certain feature are usually zero except in a few similar positive examples,
then these positive values can drastically increase due to this type of normalization.

20

[7] C M Bishop. Pattern recognition and machine learning. Springer, Singapore, 2006.

[8] A Braunstein and R Zecchina. Learning by message passing in networks of discrete synapses. Physical
review letters, 96(3), 2006.

[9] R P Brent and P Zimmermann. Modern computer arithmetic. Cambridge University Press, New York,
2011.

[10] B Cousins and S Vempala. A cubic algorithm for computing gaussian volume. arXiv preprint
arXiv:1306.5829, 2013.

[11] K Crammer, A Kulesza, and M Dredze. Adaptive regularization of weight vectors. Machine Learning,
91(2):155–187, March 2013.

[12] G E Dahl, D Yu, L Deng, and A Acero. Context-Dependent Pre-Trained Deep Neural Networks for
Large-Vocabulary Speech Recognition. Audio, Speech, and Language Processing, 20(1):30–42, 2012.

[13] A Genz. Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statis-
tics and Computing, 14(3):251–260, 2004.

[14] A Graves. Practical variational inference for neural networks. Advances in Neural Information Processing
Systems, pages 1–9, 2011.

[15] A J Hayter and Y Lin. The evaluation of two-sided orthant probabilities for a quadrivariate normal
distribution. Computational Statistics, 27(3):459–471, June 2011.

[16] G E Hinton and D Van Camp. Keeping the neural networks simple by minimizing the description length
of the weights. In COLT ’93, 1993.

[17] G E Hinton, L Deng, D Yu, G E Dahl, A R Mohamed, N Jaitly, A Senior, V Vanhoucke, P Nguyen, T N
Sainath, and B Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012.

[18] K Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(1989):251–257, 1991.

[19] R Karakiewicz, R Genov, and G Cauwenberghs. 1.1 TMACS/mW Fine-Grained Stochastic Resonant
Charge-Recycling Array Processor. IEEE Sensors Journal, 12(4):785–792, 2012.

[20] A Krizhevsky, I Sutskever, and G E Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

[21] Y LeCun and L Bottou. Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

[22] Y LeCun, L Bottou, G B Orr, and K R Müller. Efficient Backprop. In G Montavon, G B Orr, and K-R
Müller, editors, Neural networks: Tricks of the Trade. Springer, Heidelberg, 2nd edition, 2012.

[23] D J C MacKay. A practical Bayesian framework for backpropagation networks. Neural computation,
472(1):448–472, 1992.

[24] E Mayoraz and F Aviolat. Constructive training methods for feedforward neural networks with binary
weights. International journal of neural systems, 7(2):149–66, 1996.

[25] T P Minka. Expectation Propagation for Approximate Bayesian Inference. NIPS, pages 362–369, 2001.

[26] P Moerland and E Fiesler. Neural Network Adaptations to Hardware Implementations. In Handbook of
neural computation. Oxford University Press, New York, 1997.

[27] R M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

[28] F Ribeiro and M Opper. Expectation propagation with factorizing distributions: a Gaussian approximation
and performance results for simple models. Neural computation, 23(4):1047–69, April 2011.

[29] D Saad and E Marom. Training Feed Forward Nets with Binary Weights Via a Modified CHIR Algorithm.
Complex Systems, 4:573–586, 1990.

[30] S A Solla and O Winther. Optimal perceptron learning: an online Bayesian approach. In On-Line Learning
in Neural Networks. Cambridge University Press, Cambridge, 1998.

[31] N Srivastava and G E Hinton. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning, 15:1929–1958, 2014.

[32] H Y Xiong, Y Barash, and B J Frey. Bayesian prediction of tissue-regulated splicing using RNA sequence
and cellular context. Bioinformatics (Oxford, England), 27(18):2554–62, October 2011.

21

	Introduction
	Preliminaries
	Theory
	Online Bayesian learning in MNNs
	Approximation 1: mean-field
	Simplifying the marginal likelihood
	Approximation 2: large fan-in

	The Expectation Backpropagation Algorithm
	Numerical Experiments
	Discussion
	The mean-field approximation
	Forward propagation of probabilities
	Special case: a diagonal bold0mu mumu m
	General case: non-diagonal bold0mu mumu m
	Computational Complexity

	Backward propagation of derivatives
	Examples for weight restrictions
	Binary weights
	Ternary weights
	Real-valued weights

	Numerical Experiments - additional details
	Implementation
	Additional results

	Comparison with Backpropagation
	Sampling the weights

