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Abstract

Pairwise clustering methods partition the data space into clusters by the pairwise
similarity between data points. The success of pairwise clustering largely de-
pends on the pairwise similarity function defined over the data points, where ker-
nel similarity is broadly used. In this paper, we present a novel pairwise clustering
framework by bridging the gap between clustering and multi-class classification.
This pairwise clustering framework learns an unsupervised nonparametric classi-
fier from each data partition, and search for the optimal partition of the data by
minimizing the generalization error of the learned classifiers associated with the
data partitions. We consider two nonparametric classifiers in this framework, i.e.
the nearest neighbor classifier and the plug-in classifier. Modeling the underly-
ing data distribution by nonparametric kernel density estimation, the generaliza-
tion error bounds for both unsupervised nonparametric classifiers are the sum of
nonparametric pairwise similarity terms between the data points for the purpose
of clustering. Under uniform distribution, the nonparametric similarity terms in-
duced by both unsupervised classifiers exhibit a well known form of kernel simi-
larity. We also prove that the generalization error bound for the unsupervised plug-
in classifier is asymptotically equal to the weighted volume of cluster boundary
[1] for Low Density Separation, a widely used criteria for semi-supervised learn-
ing and clustering. Based on the derived nonparametric pairwise similarity using
the plug-in classifier, we propose a new nonparametric exemplar-based clustering
method with enhanced discriminative capability, whose superiority is evidenced
by the experimental results.

1 Introduction

Pairwise clustering methods partition the data into a set of self-similar clusters based on the pair-
wise similarity between the data points. Representative clustering methods include K-means [2]
which minimizes the within-cluster dissimilarities, spectral clustering [3] which identifies clusters
of more complex shapes lying on low dimensional manifolds, and the pairwise clustering method
[4] using message-passing algorithm to inference the cluster labels in a pairwise undirected graph-
ical model. Utilizing pairwise similarity, these pairwise clustering methods often avoid estimating
complex hidden variables or parameters, which is difficult for high dimensional data.

However, most pairwise clustering methods assume that the pairwise similarity is given [2, 3], or
they learn a more complicated similarity measure based on several given base similarities [4]. In
this paper, we present a new framework for pairwise clustering where the pairwise similarity is
derived as the generalization error bound for the unsupervised nonparametric classifier. The un-
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supervised classifier is learned from unlabeled data and the hypothetical labeling. The quality of
the hypothetical labeling is measured by the associated generalization error of the learned classi-
fier, and the hypothetical labeling with minimum associated generalization error bound is preferred.
We consider two nonparametric classifiers, i.e. the nearest neighbor classifier (NN) and the plug-in
classifier (or the kernel density classifier). The generalization error bounds for both unsupervised
classifiers are expressed as sum of pairwise terms between the data points, which can be interpreted
as nonparametric pairwise similarity measure between the data points. Under uniform distribution,
both nonparametric similarity measures exhibit a well known form of kernel similarity. We also
prove that the generalization error bound for the unsupervised plug-in classifier is asymptotically
equal to the weighted volume of cluster boundary [1] for Low Density Separation, a widely used
criteria for semi-supervised learning and clustering.

Our work is closely related to discriminative clustering methods by unsupervised classification,
which search for the cluster boundaries with the help of unsupervised classifier. For example, [5]
learns a max-margin two-class classifier to group unlabeled data in an unsupervised manner, known
as unsupervised SVM whose theoretical property is further analyzed in [6]. Also, [7] learns the
kernel logistic regression classifier, and uses the entropy of the posterior distribution of the class
label by the classifier to measure the quality of the learned classifier. More recent work presented in
[8] learns an unsupervised classifier by maximizing the mutual information between cluster labels
and the data, and the Squared-Loss Mutual Information is employed to produce a convex optimiza-
tion problem. Although such discriminative methods produce satisfactory empirical results, the
optimization of complex parameters hampers their application in high-dimensional data. Following
the same principle of unsupervised classification using nonparametric classifiers, we derive non-
parametric pairwise similarity and eliminate the need of estimating complicated parameters of the
unsupervised classifer. As an application, we develop a new nonparametric exemplar-based cluster-
ing method with the derived nonparametric pairwise similarity induced by the plug-in classifier, and
our new method demonstrates better empirical clustering results than the existing exemplar-based
clustering methods.

It should be emphasized that our generalization bounds are essentially different from the litera-
ture. As nonparametric classification methods, the generalization properties of the nearest neighbor
classifier (NN) and the plug-in classifier are extensively studied. Previous research focuses on the
average generalization error of the NN [9, 10], which is the average error of the NN over all the
random training data sets, or the excess risk of the plug-in classifier [11, 12]. In [9], it is shown that
the average generalization error of the NN is bounded by twice of the Bayes error. Assuming that
the class of the regression functions has a smooth parameter β, [11] proves that the excess risk of
the plug-in classifier converges to 0 of the order n

−β
2β+d where d is the dimension of the data. [12]

further shows that the plug-in classifier attains faster convergence rate of the excess risk, namely
n− 1

2 , under some margin assumption on the data distribution. All these generalization error bounds
depend on the unknown Bayes error. By virtue of kernel density estimation and generalized ker-
nel density estimation [13], our generalization bounds are represented mostly in terms of the data,
leading to the pairwise similarities for clustering.

2 Formulation of Pairwise Clustering by Unsupervised Nonparametric
Classification

The discriminative clustering literature [5, 7] has demonstrated the potential of multi-class clas-
sification for the clustering problem. Inspired by the natural connection between clustering and
classification, we model the clustering problem as a multi-class classification problem: a classifier
is learned from the training data built by a hypothetical labeling, which is a possible cluster labeling.
The optimal hypothetical labeling is supposed to be the one such that its associated classifier has the
minimum generalization error bound. To study the generalization bound for the classifier learned
from the hypothetical labeling, we define the concept of classification model. Given unlabeled data
{xl}nl=1, a classification model MY is constructed for any hypothetical labeling Y = {yl}nl=1 as
below:

Definition 1. The classification model corresponding to the hypothetical labeling Y = {yl}nl=1

is defined as MY =
(
S, PXY , {πi, fi}Qi=1, F

)
. S = {xl,yl}nl=1 are the labeled data by the
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hypothetical labeling, and S are assumed to be i.i.d. samples drawn from the joint distribu-
tion PXY = PX|Y PY , where (X,Y ) is a random couple, X ∈ IRd represents the data and
Y ∈ {1, 2, ..., Q} is the class label of X , Q is the number of classes determined by the hypothetical
labeling. Furthermore, PXY is specified by {π(i), f (i)}Qi=1 as follows: π(i) is the class prior for
class i, i.e. Pr [Y = i] = π(i); the conditional distribution PX|Y=i has probabilistic density func-
tion f (i), i = 1, . . . , Q. F is a classifier trained using the training data S. The generalization error
of the classification model MY is defined as the generalization error of the classifier F in MY .

In this paper, we study two types of classification models with the nearest neighbor classifier and
the plug-in classifier respectively, and derive their generalization error bounds as sum of pairwise
similarity between the data. Given a specific type of classification model, the optimal hypothetical
labeling corresponds to the classification model with minimum generalization error bound. The
optimal hypothetical labeling also generates a data partition where the sum of pairwise similarity
between the data from different clusters is minimized, which is a common criteria for discriminative
clustering.

In the following text, we derive the generalization error bounds for the two types of classification
models. Before that, we introduce more notations and assumptions for the classification model.
Denote by PX the induced marginal distribution of X , and f is the probabilistic density function of

PX which is a mixture of Q class-conditional densities: f =
Q∑
i=1

π(i)f (i). η(i) (x) is the regression

function of Y on X = x, i.e. η(i) (x) = Pr [Y = i |X = x ] = π(i)f(i)(x)
f(x) . For the sake of the

consistency of the kernel density estimators used in the sequel, there are further assumptions on
the marginal density and class-conditional densities in the classification model for any hypothetical
labeling:

(A) f is bounded from below, i.e. f ≥ fmin > 0

(B) {f (i)} is bounded from above, i.e. f (i) ≤ f
(i)
max, and f (i) ∈ Σγ,ci , 1 ≤ i ≤ Q.

where Σγ,c is the class of Hölder-γ smooth functions with Hölder constant c:

Σγ,c , {f : IRd → IR | ∀x, y, |f (x)− f (y)| ≤ c∥x− y∥γ}, γ > 0

It follows from assumption (B) that f ∈ Σγ,c where c =
∑
i

π(i)ci. Assumption (A) and (B) are

mild. The upper bound for the density functions is widely required for the consistency of kernel
density estimators [14, 15]; Hölder-γ smoothness is required to bound the bias of such estimators,
and it also appears in [12] for estimating the excess risk of the plug-in classifier. The lower bound
for the marginal density is used to derive the consistency of the estimator of the regression function
η(i) (Lemma 2) and the consistency of the generalized kernel density estimator (Lemma 3). We
denote by PX the collection of marginal distributions that satisfy assumption (A), and denote by
PX|Y the collection of class-conditional distributions that satisfy assumption (B). We then define
the collection of joint distributions PXY that PXY belongs to, which requires the marginal density
and class-conditional densities satisfy assumption (A)-(B):

PXY , {PXY | PX ∈ PX , {PX|Y =i} ∈ PX|Y ,min
i

{π(i)} > 0} (1)

Given the joint distribution PXY , the generalization error of the classifier F learned from the train-
ing data S is:

R (FS) , Pr [(X,Y ) : F (X) ̸= Y ] (2)

Nonparametric kernel density estimator (KDE) serves as the primary tool of estimating the under-
lying probabilistic density functions in our generalization analysis, and we introduce the KDE of f
as below:

f̂n,hn (x) =
1

n

n∑
l=1

Khn (x− xl) (3)

where Kh (x) = 1
hdK

(
x
h

)
is the isotropic Gaussian kernel with bandwidth h and K (x) ,

1
(2π)d/2

e−
∥x∥2

2 . We have the following VC property of the Gaussian kernel K. Define the class

3



of functions

F , {K
(
t− ·
h

)
, t ∈ IRd, h ̸= 0} (4)

The VC property appears in [14, 15, 16, 17, 18], and it is proved that F is a bounded VC class of
measurable functions with respect to the envelope function F such that |u| ≤ F for any u ∈ F (e.g.
F ≡ (2π)−

d
2 ). It follows that there exist positive numbers A and v such that for every probability

measure P on IRd for which
∫
F 2dP < ∞ and any 0 < τ < 1,

N
(
F , ∥·∥L2(P ) , τ ∥F∥L2(P )

)
≤

(
A

τ

)v

(5)

where N
(
T , d̂, ϵ

)
is defined as the minimal number of open d̂-balls of radius ϵ required to cover

T in the metric space
(
T , d̂

)
. A and v are called the VC characteristics of F .

The VC property of K is required for the consistency of kernel density estimators shown in
Lemma 2. Also, we adopt the kernel estimator of η(i) below

η̂
(i)
n,hn

(x) =

n∑
l=1

Khn (x− xl)1I{yl=i}

nf̂n,hn (x)
(6)

Before stating Lemma 2, we introduce several frequently used quantities throughout this paper. Let
L,C > 0 be constants which only depend on the VC characteristics of the Gaussian kernel K. We
define

f0 ,
Q∑

i=1

π(i)f (i)
max σ2

0 , ∥K∥22f0 (7)

Also, for all positive numbers λ ≥ C and σ > 0, we define

Eσ2 , log (1 + λ/4L)

λLσ2
(8)

Based on Corollary 2.2 in [14], Lemma 2 and Lemma 3 in the Appendix (more complete version
in the supplementary) show the strong consistency (almost sure uniformly convergence) of several
kernel density estimators, i.e. f̂n,hn , {η̂(i)n,hn

} and the generalized kernel density estimator, and they
form the basis for the derivation of the generalization error bounds for the two types of classification
models.

3 Generalization Bounds

We derive the generalization error bounds for the two types of classification models with the nearest
neighbor classifier and the plug-in classifier respectively. Substituting these kernel density estima-
tors for the corresponding true density functions, Theorem 1 and Theorem 2 present the generaliza-
tion error bounds for the classification models with the plug-in classifier and the nearest neighbor
classifier. The dominant terms of both bounds are expressed as sum of pairwise similarity depend-
ing solely on the data, which facilitates the application of clustering. We also show the connection
between the error bound for the plug-in classifier and Low Density Separation in this section. The
detailed proofs are included in the supplementary.

3.1 Generalization Bound for the Classification Model with Plug-In Classifier

The plug-in classifier resembles the Bayes classifier while it uses the kernel density estimator of the
regression function η(i) instead of the true η(i). It has the form

PI (X) = argmax
1≤i≤Q

η̂
(i)
n,hn

(X) (9)

where η̂
(i)
n,hn

is the nonparametric kernel estimator of the regression function η(i) by (6). The
generalization capability of the plug-in classifier has been studied by the literature[11, 12]. Let
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F ∗ be the Bayes classifier, it is proved that the excess risk of PIS , namely IESR (PIS) − R (F ∗),
converges to 0 of the order n

−β
2β+d under some complexity assumption on the class of the regression

functions with smooth parameter β that {η(i)} belongs to [11, 12]. However, this result cannot be
used to derive the generalization error bound for the plug-in classifier comprising of nonparametric
pairwise similarities in our setting.

We show the upper bound for the generalization error of PIS in Lemma 1.
Lemma 1. For any PXY ∈ PXY , there exists a n0 which depends on σ0 and VC characteristics

of K, when n > n0, with probability greater than 1 − 2QLh
E

σ2
0

n , the generalization error of the
plug-in classifier satisfies

R (PIS) ≤ RPI
n +O

(√ log h−1
n

nhd
n

+ hγ
n

)
(10)

RPI
n =

∑
i,j=1,...,Q,i ̸=j

IEX

[
η̂
(i)
n,hn

(X) η̂
(j)
n,hn

(X)
]

(11)

where Eσ2 is defined by (8), hn is chosen such that hn → 0,
log h−1

n

nhd
n

→ 0, η̂(i)n,hn
is the kernel

estimator of the regression function. Moreover, the equality in (10) holds when η̂
(i)
n,hn

≡ 1
Q for

1 ≤ i ≤ Q.

Based on Lemma 1, we can bound the error of the plug-in classifier from above by RPI
n . Theorem 1

then gives the bound for the error of the plug-in classifier in the corresponding classification model
using the generalized kernel density estimator in Lemma 3. The bound has a form of sum of pairwise
similarity between the data from different classes.
Theorem 1. (Error of the Plug-In Classifier) Given the classification model MY =(
S, PXY , {πi, fi}Qi=1,PI

)
such that PXY ∈ PXY , there exists a n1 which depends on σ0, σ1 and

the VC characteristics of K, when n > n1, with probability greater than 1− 2QLh
E

σ2
0

n −QLh
E

σ2
1

n ,
the generalization error of the plug-in classifier satisfies

R (PIS) ≤ R̂n (PIS) +O
(√ log h−1

n

nhd
n

+ hγ
n

)
(12)

where R̂n (PIS) = 1
n2

∑
l,m

θlmGlm,
√
2hn

, σ2
1 =

∥K∥2
2fmax

fmin
, θlm = 1I{yl ̸=ym} is a class indicator

function and

Glm,h = Gh (xl,xm) , Gh (x, y) =
Kh (x− y)

f̂
1
2
n,h (x)f̂

1
2
n,h (y)

, (13)

Eσ2 is defined by (8), hn is chosen such that hn → 0,
log h−1

n

nhd
n

→ 0, f̂n,hn is the kernel density
estimator of f defined by (3).

R̂n is the dominant term determined solely by the data and the excess error O
(√

log h−1
n

nhd
n

+ hγ
n

)
goes to 0 with infinite n. In the following subsection, we show the close connection between the
error bound for the plug-in classifier and the weighted volume of cluster boundary, and the latter is
proposed by [1] for Low Density Separation.

3.1.1 Connection to Low Density Separation

Low Density Separation [19], a well-known criteria for clustering, requires that the cluster boundary
should pass through regions of low density. It has been extensively studied in unsupervised learning
and semi-supervised learning [20, 21, 22]. Suppose the data {xl}nl=1 lies on a domain Ω ⊆ Rd.
Let f be the probability density function on Ω, S be the cluster boundary which separates Ω into
two parts S1 and S2. Following the Low Density Separation assumption, [1] suggests that the
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cluster boundary S with low weighted volume
∫
S

f (s)ds should be preferable. [1] also proves that

a particular type of cut function converges to the weighted volume of S. Based on their study, we
obtain the following result relating the error of the plug-in classifier to the weighted volume of the
cluster boundary.
Corollary 1. Under the assumption of Theorem 1, for any kernel bandwidth sequence {hn}∞n=1

such that lim
n→∞

hn = 0 and hn > n− 1
4d+4 , with probability 1,

lim
n→∞

√
π

2hn
R̂n (PIS) =

∫
S

f (s)ds (14)

3.2 Generalization Bound for the Classification Model with Nearest Neighbor Classifier

Theorem 2 shows the generalization error bound for the classification model with nearest neighbor
classifier (NN), which has a similar form as (12).

Theorem 2. (Error of the NN) Given the classification model MY =
(
S, PXY , {πi, fi}Qi=1,NN

)
such that PXY ∈ PXY and the support of PX is bounded by [−M0,M0]

d, there exists a n0 which
depends on σ0 and VC characteristics of K, when n > n0, with probability greater than 1 −
2QLh

E
σ2
0

n − (2M0)
dndd0e−n1−dd0fmin , the generalization error of the NN satisfies:

R (NNS) ≤ R̂n (NNS) + c0
(√

d
)γ

n−d0γ +O
(√ log h−1

n

nhd
n

+ hγ
n

)
(15)

where R̂n (NN) = 1
n

∑
1≤l<m≤n

Hlm,hnθlm,

Hlm,hn = Khn (xl − xm)
(∫

Vl
f̂n,hn (x) dx

f̂n,hn (xl)
+

∫
Vm

f̂n,hn (x) dx

f̂n,hn (xm)

)
, (16)

Eσ2 is defined by (8), d0 is a constant such that dd0 < 1, f̂n,hn is the kernel density estimator of

f defined by (3) with the kernel bandwidth hn satisfying hn → 0,
log h−1

n

nhd
n

→ 0, Vl is the Voronoi
cell associated with xl, c0 is a constant, θlm = 1I{yl ̸=ym} is a class indicator function such that
θlm = 1 if xl and xm belongs to different classes, and 0 otherwise. Moreover, the equality in (15)
holds when η(i) ≡ 1

Q for 1 ≤ i ≤ Q.

Glm,
√
2hn

in (13) and Hlm,hn
in (16) are the new pairwise similarity functions induced by the plug-

in classifier and the nearest neighbor classifier respectively. According to the proof of Theorem 1 and
Theorem 2, the kernel density estimator f̂ can be replaced by the true density f in the denominators
of (13) and (16), and the conclusions of Theorem 1 and 2 still hold. Therefore, both Glm,

√
2hn

and
Hlm,hn are equal to ordinary Gaussian kernels (up to a scale) with different kernel bandwidth under
uniform distribution, which explains the broadly used kernel similarity in data clustering from an
angle of supervised learning.

4 Application to Exemplar-Based Clustering

We propose a nonparametric exemplar-based clustering algorithm using the derived nonparametric
pairwise similarity by the plug-in classifier. In exemplar-based clustering, each xl is associated with
a cluster indicator el (l ∈ {1, 2, ...n} , el ∈ {1, 2, ...n}), indicating that xl takes xel as the cluster
exemplar. Data from the same cluster share the same cluster exemplar. We define e , {el}nl=1.
Moreover, a configuration of the cluster indicators e is consistent iff el = l when em = l for any
l,m ∈ 1..n, meaning that xl should take itself as its exemplar if any xm take xl as its exemplar. It is
required that the cluster indicators e should always be consistent. Affinity Propagation (AP) [23], a
representative of the exemplar-based clustering methods, solves the following optimization problem

min
e

n∑
l=1

Sl,el s.t. e is consistent (17)
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Sl,el is the dissimilarity between xl and xel , and note that Sl,l is set to be nonzero to avoid the trivial
minimizer of (17).

Now we aim to improve the discriminative capability of the exemplar-based clustering (17) using
the nonparametric pairwise similarity derived by the unsupervised plug-in classifier. As mentioned
before, the quality of the hypothetical labeling ŷ is evaluated by the generalization error bound for
the nonparametric plug-in classifier trained by Sŷ, and the hypothetical labeling ŷ with minimum
associated error bound is preferred, i.e. argminŷ R̂n (PIS) = argminŷ

∑
l,m

θlmGlm,
√
2hn

where

θlm = 1Iŷl ̸=ŷm and Glm,
√
2hn

is defined in (13). By Lemma 3, minimizing
∑
l,m

θlmGlm,
√
2hn

also

enforces minimization of the weighted volume of cluster boundary asymptotically. To avoid the
trivial clustering where all the data are grouped into a single cluster, we use the sum of within-

cluster dissimilarities term
n∑

l=1

exp
(
−Glel,

√
2hn

)
to control the size of clusters. Therefore, the

objective function of our pairwise clustering method is below:

Ψ(e) =

n∑
l=1

exp
(
−Glel,

√
2hn

)
+ λ

∑
l,m

(
θ̃lmGlm,

√
2hn

+ ρlm (el, em)
)

(18)

where ρlm is a function to enforce the consistency of the cluster indicators:

ρlm (el, em) =

{
∞ em = l, el ̸= l or el = m, em ̸= m
0 otherwise

,

λ is a balancing parameter. Due to the form of (18), we construct a pairwise Markov Random
Field (MRF) representing the unary term ul and the pairwise term θ̃lmGlm,

√
2hn

+ ρlm as the data
likelihood and prior respectively. The variables e are modeled as nodes and the unary term and
pairwise term in (18) are modeled as potential functions in the pairwise MRF. The minimization of
the objective function is then converted to a MAP (Maximum a Posterior) problem in the pairwise
MRF. (18) is minimized by Max-Product Belief Propagation (BP).

The computational complexity of our clustering algorithm is O(TEN), where E is the number of
edges in the pairwise MRF, T is the number of iterations of message passing in the BP algorithm.
We call our new algorithm Plug-In Exemplar Clustering (PIEC), and compare it to representative
exemplar-based clustering methods, i.e. AP and Convex Clustering with Exemplar-Based Model
(CEB) [24], for clustering on three real data sets from UCI repository, i.e. Iris, Vertebral Column
(VC) and Breast Tissue (BT). We record the average clustering accuracy (AC) and the standard
deviation of AC for all the exemplar-based clustering methods when they produce the correct number
of clusters for each data set with different values of hn and λ, and the results are shown in Table 1.
Although AP produces better clustering accuracy on the VC data set, PIEC generates the correct
cluster numbers for much more times. The dash in Table 1 indicates that the corresponding clustering
method cannot produce the correct cluster number. The default value for the kernel bandwidth hn is
h∗
n, which is set as the variance of the pairwise distance between data points

{
∥xl − xm∥l<m

}
. The

default value for the balancing parameter λ is 1. We let hn = αh∗
n, λ varies between [0.2, 1] and

α varies between [0.2, 1.9] with step 0.2 and 0.05 respectively, resulting in 170 different parameter
settings. We also generate the same number of parameter settings for AP and CEB.

Table 1: Comparison Between Exemplar-Based Clustering Methods. The number in the bracket is
the number of times when the corresponding algorithm produces correct cluster numbers.

Data sets Iris VC BT
AP 0.8933 ± 0.0138 (16) 0.6677 (14) 0.4906 (1)

CEB 0.6929 ± 0.0168 (15) 0.4748 ± 0.0014 (5) 0.3868 ± 0.08 (2)
PIEC 0.9089 ± 0.0033 (15) 0.5263 ± 0.0173 (35) 0.6585 ± 0.0103 (5)

5 Conclusion

We propose a new pairwise clustering framework where nonparametric pairwise similarity is de-
rived by minimizing the generalization error unsupervised nonparametric classifier. Our framework
bridges the gap between clustering and multi-class classification, and explains the widely used ker-
nel similarity for clustering. In addition, we prove that the generalization error bound for the unsu-
pervised plug-in classifier is asymptotically equal to the weighted volume of cluster boundary for
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Low Density Separation. Based on the derived nonparametric pairwise similarity using the plug-in
classifier, we propose a new nonparametric exemplar-based clustering method with enhanced dis-
criminative capability compared to the exiting exemplar-based clustering methods.

Appendix

Lemma 2. (Consistency of Kernel Density Estimator) Let the kernel bandwidth hn of the Gaussian
kernel K be chosen such that hn → 0,

log h−1
n

nhd
n

→ 0. For any PX ∈ PX , there exists a n0 which

depends on σ0 and VC characteristics of K, when n > n0, with probability greater than 1−Lh
E

σ2
0

n

over the data {xl},

∥∥∥f̂n,hn (x)− f (x)
∥∥∥
∞

= O
(√ log h−1

n

nhd
n

+ hγ
n

)
(19)

where f̂n,hn
is the kernel density estimator of f . Furthermore, for any PXY ∈ PXY , when n > n0,

then with probability greater than 1− 2Lh
E

σ2
0

n over the data {xl},

∥∥∥η̂(i)
n,hn

(x)− η(i) (x)
∥∥∥
∞

= O
(√ log h−1

n

nhd
n

+ hγ
n

)
(20)

for each 1 ≤ i ≤ Q.
Lemma 3. (Consistency of the Generalized Kernel Density Estimator) Suppose f is the probabilistic
density function of PX ∈ PX . Let g be a bounded function defined on X and g ∈ Σγ,g0 , 0 < gmin ≤
g ≤ gmax, and e = f

g . Define the generalized kernel density estimator of e as

ên,h , 1

n

n∑
l=1

Kh (x− xl)

g (xl)
(21)

Let σ2
g =

∥K∥2
2fmax

g2
min

. There exists ng which depends on σg and the VC characteristics of K, When

n > ng , with probability greater than 1− Lh
Eσ2

g
n over the data {xl},

∥ên,hn (x)− e (x)∥∞ = O
(√ log h−1

n

nhd
n

+ hγ
n

)
(22)

where hn is chosen such that hn → 0,
log h−1

n

nhd
n

→ 0.

Sketch of proof: For fixed h ̸= 0, we consider the class of functions

Fg , {
K

(
t−·
h

)
g (·) , t ∈ IRd}

It can be verified that Fg is also a bounded VC class with the envelope function Fg = F
gmin

, and

N
(
Fg, ∥·∥L2(P ) , τ ∥Fg∥L2(P )

)
≤

(
A

τ

)v

(23)

Then (22) follows from similar argument in the proof of Lemma 2 and Corollary 2.2 in [14].

The generalized kernel density estimator (21) is also used in [13] to estimate the Laplacian PDF
Distance between two probabilistic density functions, and the authors only provide the proof of
pointwise weak consistency of this estimator in [13]. Under mild conditions, our Lemma 3 and
Lemma 2 show the strong consistency of the generalized kernel density estimator and the traditional
kernel density estimator under the same theoretical framework of the VC property of the kernel.
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[13] Robert Jenssen, Deniz Erdogmus, José Carlos Prı́ncipe, and Torbjørn Eltoft. The laplacian pdf distance:
A cost function for clustering in a kernel feature space. In NIPS, 2004.
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