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Abstract

Sparse Subspace Clustering (SSC) and Low-Rank Representation (LRR) are both
considered as the state-of-the-art methods for subspace clustering. The two meth-
ods are fundamentally similar in that both are convex optimizations exploiting the
intuition of “Self-Expressiveness”. The main difference is that SSC minimizes the
vector `1 norm of the representation matrix to induce sparsity while LRR mini-
mizes nuclear norm (aka trace norm) to promote a low-rank structure. Because the
representation matrix is often simultaneously sparse and low-rank, we propose a
new algorithm, termed Low-Rank Sparse Subspace Clustering (LRSSC), by com-
bining SSC and LRR, and develops theoretical guarantees of when the algorithm
succeeds. The results reveal interesting insights into the strength and weakness of
SSC and LRR and demonstrate how LRSSC can take the advantages of both meth-
ods in preserving the “Self-Expressiveness Property” and “Graph Connectivity” at
the same time.

1 Introduction

We live in the big data era – a world where an overwhelming amount of data is generated and collect-
ed every day, such that it is becoming increasingly impossible to process data in its raw form, even
though computers are getting exponentially faster over time. Hence, compact representations of data
such as low-rank approximation (e.g., PCA [13], Matrix Completion [4]) and sparse representation
[6] become crucial in understanding the data with minimal storage. The underlying assumption is
that high-dimensional data often lie in a low-dimensional subspace [4]). Yet, when such data points
are generated from different sources, they form a union of subspaces. Subspace Clustering deals
with exactly this structure by clustering data points according to their underlying subspaces. Appli-
cation include motion segmentation and face clustering in computer vision [16, 8], hybrid system
identification in control [26, 2], community clustering in social networks [12], to name a few.

Numerous algorithms have been proposed to tackle the problem. Recent examples include GP-
CA [25], Spectral Curvature Clustering [5], Sparse Subspace Clustering (SSC) [7, 8], Low Rank
Representation (LRR) [17, 16] and its noisy variant LRSC [9] (for a more exhaustive survey of sub-
space clustering algorithms, we refer readers to the excellent survey paper [24] and the references
therein). Among these algorithms, LRR and SSC, based on minimizing the nuclear norm and `1
norm of the representation matrix respectively, remain the top performers on the Hopkins155 mo-
tion segmentation benchmark dataset [23]. Moreover, they are among the few subspace clustering
algorithms supported with theoretic guarantees: Both algorithms are known to succeed when the
subspaces are independent [27, 16]. Later, [8] showed that subspace being disjoint is sufficient
for SSC to succeed1, and [22] further relaxed this condition to include some cases of overlapping

1 Disjoint subspaces only intersect at the origin. It is a less restrictive assumption comparing to independent
subspaces, e.g., 3 coplanar lines passing the origin are not independent, but disjoint.
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subspaces. Robustness of the two algorithms has been studied too. Liu et al. [18] showed that a vari-
ant of LRR works even in the presence of some arbitrarily large outliers, while Wang and Xu [29]
provided both deterministic and randomized guarantees for SSC when data are noisy or corrupted.

Despite LRR and SSC’s success, there are questions unanswered. LRR has never been shown to
succeed other than under the very restrictive “independent subspace” assumption. SSC’s solution is
sometimes too sparse that the affinity graph of data from a single subspace may not be a connected
body [19]. Moreover, as our experiment with Hopkins155 data shows, the instances where SSC fails
are often different from those that LRR fails. Hence, a natural question is whether combining the
two algorithms lead to a better method, in particular since the underlying representation matrix we
want to recover is both low-rank and sparse simultaneously.

In this paper, we propose Low-Rank Sparse Subspace Clustering (LRSSC), which minimizes a
weighted sum of nuclear norm and vector 1-norm of the representation matrix. We show theoretical
guarantees for LRSSC that strengthen the results in [22]. The statement and proof also shed insight
on why LRR requires independence assumption. Furthermore, the results imply that there is a fun-
damental trade-off between the interclass separation and the intra-class connectivity. Indeed, our
experiment shows that LRSSC works well in cases where data distribution is skewed (graph connec-
tivity becomes an issue for SSC) and subspaces are not independent (LRR gives poor separation).
These insights would be useful when developing subspace clustering algorithms and applications.
We remark that in the general regression setup, the simultaneous nuclear norm and 1-norm regular-
ization has been studied before [21]. However, our focus is on the subspace clustering problem, and
hence the results and analysis are completely different.

2 Problem Setup

Notations: We denote the data matrix by X ∈ Rn×N , where each column of X (normalized to
unit vector) belongs to a union of L subspaces

S1 ∪ S2 ∪ ... ∪ SL.

Each subspace ` contains N` data samples with N1 + N2 + ... + NL = N . We observe the noisy
data matrix X . Let X(`) ∈ Rn×N` denote the selection (as a set and a matrix) of columns in
X that belong to S` ⊂ Rn, which is an d`-dimensional subspace. Without loss of generality, let
X = [X(1), X(2), ..., X(L)] be ordered. In addition, we use ‖ · ‖ to represent Euclidean norm (for
vectors) or spectral norm (for matrices) throughout the paper.

Method: We solve the following convex optimization problem

LRSSC : min
C
‖C‖∗ + λ‖C‖1 s.t. X = XC, diag(C) = 0. (1)

Spectral clustering techniques (e.g., [20]) are then applied on the affinity matrix W = |C| + |C|T
where C is the solution to (1) to obtain the final clustering and | · | is the elementwise absolute value.

Criterion of success: In the subspace clustering task, as opposed to compressive sensing or matrix
completion, there is no “ground-truth” C to compare the solution against. Instead, the algorithm
succeeds if each sample is expressed as a linear combination of samples belonging to the same
subspace, i.e., the output matrix C are block diagonal (up to appropriate permutation) with each
subspace cluster represented by a disjoint block. Formally, we have the following definition.
Definition 1 (Self-Expressiveness Property (SEP)). Given subspaces {S`}L`=1 and data points X
from these subspaces, we say a matrixC obeys Self-Expressiveness Property, if the nonzero entries of
each ci (ith column of C) corresponds to only those columns of X sampled from the same subspace
as xi.

Note that the solution obeying SEP alone does not imply the clustering is correct, since each block
may not be fully connected. This is the so-called “graph connectivity” problem studied in [19].
On the other hand, failure to achieve SEP does not necessarily imply clustering error either, as the
spectral clustering step may give a (sometimes perfect) solution even when there are connections
between blocks. Nevertheless, SEP is the condition that verifies the design intuition of SSC and
LRR. Notice that if C obeys SEP and each block is connected, we immediately get the correct
clustering.
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3 Theoretic Guanratees

3.1 The Deterministic Setup

Before we state our theoretical results for the deterministic setup, we need to define a few quantities.
Definition 2 (Normalized dual matrix set). Let {Λ1(X)} be the set of optimal solutions to

max
Λ1,Λ2,Λ3

〈X,Λ1〉 s.t. ‖Λ2‖∞ ≤ λ, ‖XTΛ1 − Λ2 − Λ3‖ ≤ 1, diag⊥(Λ3) = 0,

where ‖ · ‖∞ is the vector `∞ norm and diag⊥ selects all the off-diagonal entries. Let Λ∗ =
[ν∗1 , ..., ν

∗
N ] ∈ {Λ1(X)} obey ν∗i ∈ span(X) for every i = 1, ..., N .2 For every Λ = [ν1, ..., νN ] ∈

{Λ1(X)}, we define normalized dual matrix V for X as

V (X) ,

[
ν1

‖ν∗1‖
, ...,

νN
‖ν∗N‖

]
,

and the normalized dual matrix set {V (X)} as the collection of V (X) for all Λ ∈ {Λ1(X)}.
Definition 3 (Minimax subspace incoherence property). Compactly denote V (`) = V (X(`)). We
say the vector set X(`) is µ-incoherent to other points if

µ ≥ µ(X(`)) := min
V (`)∈{V (`)}

max
x∈X\X(`)

‖V (`)Tx‖∞.

The incoherence µ in the above definition measures how separable the sample points in S` are a-
gainst sample points in other subspaces (small µ represents more separable data). Our definition
differs from Soltanokotabi and Candes’s definition of subspace incoherence [22] in that it is defined
as a minimax over all possible dual directions. It is easy to see that µ-incoherence in [22, Defini-
tion 2.4] implies µ-minimax-incoherence as their dual direction are contained in {V (X)}. In fact,
in several interesting cases, µ can be significantly smaller under the new definition. We illustrate the
point with the two examples below and leave detailed discussions in the supplementary materials.
Example 1 (Independent Subspace). Suppose the subspaces are independent, i.e., dim(S1 ⊕ ... ⊕
SL) =

∑
`=1,...,L dim(S`), then all X(`) are 0-incoherent under our Definition 3. This is because

for eachX(`) one can always find a dual matrix V (`) ∈ {V (`)} whose column space is orthogonal to
the span of all other subspaces. To contrast, the incoherence parameter according to Definition 2.4
in [22] will be a positive value, potentially large if the angles between subspaces are small.
Example 2 (Random except 1 subspace). Suppose we have L disjoint 1-dimensional subspaces
in Rn (L > n). S1, ...,SL−1 subspaces are randomly drawn. SL is chosen such that its angle
to one of the L − 1 subspace, say S1, is π/6. Then the incoherence parameter µ(X(L)) defined
in [22] is at least cos(π/6). However under our new definition, it is not difficult to show that

µ(X(L)) ≤ 2
√

6 log(L)
n with high probability3.

The result also depends on the smallest singular value of a rank-d matrix (denoted by σd) and the
inradius of a convex body as defined below.
Definition 4 (inradius). The inradius of a convex body P , denoted by r(P), is defined as the radius
of the largest Euclidean ball inscribed in P .

The smallest singular value and inradius measure how well-represented each subspace is by its data
samples. Small inradius/singular value implies either insufficient data, or skewed data distribution,
in other word, it means that the subspace is “poorly represented”. Now we may state our main result.
Theorem 1 (LRSSC). Self-expressiveness property holds for the solution of (1) on the data X
if there exists a weighting parameter λ such that for all ` = 1, ..., L, one of the following two
conditions holds:

µ(X(`))(1 + λ
√
N`) < λmin

k
σd`(X

(`)
−k), (2)

or µ(X(`))(1 + λ) < λmin
k
r(conv(±X(`)

−k)), (3)

2If this is not unique, pick the one with least Frobenious norm.
3The full proof is given in the supplementary. Also it is easy to generalize this example to d-dimensional

subspaces and to “random except K subspaces”.
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where X−k denotes X with its kth column removed and σd`(X
(`)
−k) represents the dth` (smallest

non-zero) singular value of the matrix X(`)
−k.

We briefly explain the intuition of the proof. The theorem is proven by duality. First we write out
the dual problem of (1),

Dual LRSSC : max
Λ1,Λ2,Λ3

〈X,Λ1〉 s.t. ‖Λ2‖∞ ≤ λ, ‖XTΛ1 − Λ2 − Λ3‖ ≤ 1, diag⊥(Λ3) = 0.

This leads to a set of optimality conditions, and leaves us to show the existence of a dual certificate
satisfying these conditions. We then construct two levels of fictitious optimizations (which is the
main novelty of the proof) and construct a dual certificate from the dual solution of the fictitious
optimization problems. Under condition (2) and (3), we establish this dual certifacte meets all opti-
mality conditions, hence certifying that SEP holds. Due to space constraints, we defer the detailed
proof to the supplementary materials and focus on the discussions of the results in the main text.

Remark 1 (SSC). Theorem 1 can be considered a generalization of Theorem 2.5 of [22]. Indeed,
when λ→∞, (3) reduces to the following

µ(X(`)) < min
k
r(conv(±X(`)

−k)).

The readers may observe that this is exactly the same as Theorem 2.5 of [22], with the only difference
being the definition of µ. Since our definition of µ(X(`)) is tighter (i.e., smaller) than that in [22],
our guarantee for SSC is indeed stronger. Theorem 1 also implies that the good properties of SSC
(such as overlapping subspaces, large dimension) shown in [22] are also valid for LRSSC for a range
of λ greater than a threshold.

To further illustrate the key difference from [22], we describe the following scenario.

Example 3 (Correlated/Poorly Represented Subspaces). Suppose the subspaces are poorly repre-
sented, i.e., the inradius r is small. If furthermore, the subspaces are highly correlated, i.e., canonical
angles between subspaces are small, then the subspace incoherence µ′ defined in [22] can be quite
large (close to 1). Thus, the succeed condition µ′ < r presented in [22] is violated. This is an
important scenario because real data such as those in Hopkins155 and Extended YaleB often suffer
from both problems, as illustrated in [8, Figure 9 & 10]. Using our new definition of incoherence
µ, as long as the subspaces are “sufficiently independent”4 (regardless of their correlation) µ will
assume very small values (e.g., Example 2), making SEP possible even if r is small, namely when
subspaces are poorly represented.

Remark 2 (LRR). The guarantee is the strongest when λ → ∞ and becomes superficial when
λ→ 0 unless subspaces are independent (see Example 1). This seems to imply that the “independent
subspace” assumption used in [16, 18] to establish sufficient conditions for LRR (and variants) to
work is unavoidable.5 On the other hand, for each problem instance, there is a λ∗ such that whenever
λ > λ∗, the result satisfies SEP, so we should expect phase transition phenomenon when tuning λ.

Remark 3 (A tractable condition). Condition (2) is based on singular values, hence is computa-
tionally tractable. In contrast, the verification of (3) or the deterministic condition in [22] is NP-
Complete, as it involves computing the inradii of V-Polytopes [10]. When λ → ∞, Theorem 1
reduces to the first computationally tractable guarantee for SSC that works for disjoint and poten-
tially overlapping subspaces.

3.2 Randomized Results

We now present results for the random design case, i.e., data are generated under some random
models.

Definition 5 (Random data). “Random sampling” assumes that for each `, data points in X(`)

are iid uniformly distributed on the unit sphere of S`. “Random subspace” assumes each S` is
generated independently by spanning d` iid uniformly distributed vectors on the unit sphere of Rn.

4Due to space constraint, the concept is formalized in supplementary materials.
5Our simulation in Section 6 also supports this conjecture.
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Lemma 1 (Singular value bound). Assume random sampling. If d` < N` < n, then there exists an
absolute constant C1 such that with probability of at least 1−N−10

` ,

σd`(X) ≥ 1

2

(√
N`
d`
− 3− C1

√
logN`
d`

)
, or simply σd`(X) ≥ 1

4

√
N`
d`
,

if we assume N` ≥ C2d`, for some constant C2.
Lemma 2 (Inradius bound [1, 22]). Assume random sampling of N` = κ`d` data points in each S`,
then with probability larger than 1−

∑L
`=1N`e

−
√
d`N`

r(conv(±X(`)
−k)) ≥ c(κ`)

√
log (κ`)

2d`
for all pairs (`, k).

Here, c(κ`) is a constant depending on κ`. When κ` is sufficiently large, we can take c(κ`) = 1/
√

8.

Combining Lemma 1 and Lemma 2, we get the following remark showing that conditions (2) and
(3) are complementary.
Remark 4. Under the random sampling assumption, when λ is smaller than a threshold, the singular

value condition (2) is better than the inradius condition (3). Specifically, σd`(X) > 1
4

√
N`
d`

with
high probability, so for some constant C > 1, the singular value condition is strictly better if

λ <
C
(√

N` −
√

log (N`/d`)
)

√
N`

(
1 +

√
log (N`/d`)

) , or when N` is large, λ <
C

1 +
√

log (N`/d`)
.

By further assuming random subspace, we provide an upper bound of the incoherence µ.
Lemma 3 (Subspace incoherence bound). Assume random subspace and random sampling. It holds
with probability greater than 1− 2/N that for all `,

µ(X(`)) ≤
√

6 logN

n
.

Combining Lemma 1 and Lemma 3, we have the following theorem.
Theorem 2 (LRSSC for random data). SupposeL rank-d subspace are uniformly and independently
generated from Rn, and N/L data points are uniformly and independently sampled from the unit
sphere embedded in each subspace, furthermore N > CdL for some absolute constant C, then SEP
holds with probability larger than 1− 2/N − 1/(Cd)10, if

d <
n

96 logN
, for all λ >

1√
N
L

(√
n

96d logN − 1
) . (4)

The above condition is obtained from the singular value condition. Using the inradius guarantee,
combined with Lemma 2 and 3, we have a different succeed condition requiring d < n log(κ)

96 logN for all
λ > 1√

n log κ
96d logN−1

. Ignoring constant terms, the condition on d is slightly better than (4) by a log

factor but the range of valid λ is significantly reduced.

4 Graph Connectivity Problem

The graph connectivity problem concerns when SEP is satisfied, whether each block of the solution
C to LRSSC represents a connected graph. The graph connectivity problem concerns whether each
disjoint block (since SEP holds true) of the solution C to LRSSC represents a connected graph. This
is equivalent to the connectivity of the solution of the following fictitious optimization problem,
where each sample is constrained to be represented by the samples of the same subspace,

min
C(`)

‖C(`)‖∗ + λ‖C(`)‖1 s.t. X(`) = X(`)C(`), diag(C(`)) = 0. (5)
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The graph connectivity for SSC is studied by [19] under deterministic conditions (to make the prob-
lem well-posed). They show by a negative example that even if the well-posed condition is satisfied,
the solution of SSC may not satisfy graph connectivity if the dimension of the subspace is greater
than 3. On the other hand, graph connectivity problem is not an issue for LRR: as the following
proposition suggests, the intra-class connections of LRR’s solution are inherently dense (fully con-
nected).
Proposition 1. When the subspaces are independent, X is not full-rank and the data points are
randomly sampled from a unit sphere in each subspace, then the solution to LRR, i.e.,

min
C
‖C‖∗ s.t. X = XC,

is class-wise dense, namely each diagonal block of the matrix C is all non-zero.

The proof makes use of the following lemma which states the closed-form solution of LRR.
Lemma 4 ([16]). Take skinny SVD of data matrix X = UΣV T . The closed-form solution to LRR
is the shape interaction matrix C = V V T .

Proposition 1 then follows from the fact that each entry of V V T has a continuous distribution,
hence the probability that any is exactly zero is negligible (a complete argument is given in the
supplementary).

Readers may notice that when λ → 0, (5) is not exactly LRR, but with an additional constraint
that diagonal entries are zero. We suspect this constrained version also have dense solution. This is
demonstrated numerically in Section 6.

5 Practical issues

5.1 Data noise/sparse corruptions/outliers

The natural extension of LRSSC to handle noise is

min
C

1

2
‖X −XC‖2F + β1‖C‖∗ + β2‖C‖1 s.t. diag(C) = 0. (6)

We believe it is possible (but maybe tedious) to extend our guarantee to this noisy version following
the strategy of [29] which analyzed the noisy version of SSC. This is left for future research.

According to the noisy analysis of SSC, a rule of thumb of choosing the scale of β1 and β2 is

β1 =
σ( 1

1+λ )
√

2 logN
, β2 =

σ( λ
1+λ )

√
2 logN

,

where λ is the tradeoff parameter used in noiseless case (1), σ is the estimated noise level and N is
the total number of entries.

In case of sparse corruption, one may use `1 norm penalty instead of the Frobenious norm. For
outliers, SSC is proven to be robust to them under mild assumptions [22], and we suspect a similar
argument should hold for LRSSC too.

5.2 Fast Numerical Algorithm

As subspace clustering problem is usually large-scale, off-the-shelf SDP solvers are often too slow
to use. Instead, we derive alternating direction methods of multipliers (ADMM) [3], known to be
scalable, to solve the problem numerically. The algorithm involves separating out the two objectives
and diagonal constraints with dummy variables C2 and J like

min
C1,C2,J

‖C1‖∗ + λ‖C2‖1

s.t. X = XJ, J = C2 − diag(C2), J = C1,
(7)

and update J,C1, C2 and the three dual variables alternatively. Thanks to the change of variables,
all updates can be done in closed-form. To further speed up the convergence, we adopt the adap-
tive penalty mechanism of Lin et.al [15], which in some way ameliorates the problem of tuning
numerical parameters in ADMM. Detailed derivations, update rules, convergence guarantee and the
corresponding ADMM algorithm for the noisy version of LRSSC are made available in the supple-
mentary materials.

6



6 Numerical Experiments

To verify our theoretical results and illustrate the advantages of LRSSC, we design several numerical
experiments. Due to space constraints, we discuss only two of them in the paper and leave the rest to
the supplementary materials. In all our numerical experiments, we use the ADMM implementation
of LRSSC with fixed set of numerical parameters. The results are given against an exponential grid
of λ values, so comparisons to only 1-norm (SSC) and only nuclear norm (LRR) are clear from two
ends of the plots.

6.1 Separation-Sparsity Tradeoff

We first illustrate the tradeoff of the solution between obeying SEP and being connected (this is
measured using the intra-class sparsity of the solution). We randomly generate L subspaces of
dimension 10 from R50. Then, 50 unit length random samples are drawn from each subspace and
we concatenate into a 50 × 50L data matrix. We use Relative Violation [29] to measure of the
violation of SEP and Gini Index [11] to measure the intra-class sparsity6. These quantities are
defined below:

RelViolation (C,M) =

∑
(i,j)/∈M |C|i,j∑
(i,j)∈M |C|i,j

,

whereM is the index set that contains all (i, j) such that xi, xj ∈ S` for some `.

GiniIndex (C,M) is obtained by first sorting the absolute value of Cij∈M into a non-decreasing
sequence ~c = [c1, ..., c|M|], then evaluate

GiniIndex (vec(CM)) = 1− 2

|M|∑
k=1

ck
‖~c‖1

(
|M| − k + 1/2

|M|

)
.

Note that RelViolation takes the value of [0,∞] and SEP is attained when RelViolation is zero.
Similarly, Gini index takes its value in [0, 1] and it is larger when intra-class connections are sparser.

The results for L = 6 and L = 11 are shown in Figure 1. We observe phase transitions for both
metrics. When λ = 0 (corresponding to LRR), the solution does not obey SEP even when the
independence assumption is only slightly violated (L = 6). When λ is greater than a threshold,
RelViolation goes to zero. These observations match Theorems 1 and 2. On the other hand, when λ
is large, intra-class sparsity is high, indicating possible disconnection within the class.

Moreover, we observe that there exists a range of λ where RelViolation reaches zero yet the sparsity
level does not reaches its maximum. This justifies our claim that the solution of LRSSC, taking λ
within this range, can achieve SEP and at the same time keep the intra-class connections relatively
dense. Indeed, for the subspace clustering task, a good tradeoff between separation and intra-class
connection is important.

6.2 Skewed data distribution and model selection

In this experiment, we use the data for L = 6 and combine the first two subspaces into one 20-
dimensional subspace and randomly sample 10 more points from the new subspace to “connect”
the 100 points from the original two subspaces together. This is to simulate the situation when data
distribution is skewed, i.e., the data samples within one subspace has two dominating directions.
The skewed distribution creates trouble for model selection (judging the number of subspaces), and
intuitively, the graph connectivity problem might occur.

We find that model selection heuristics such as the spectral gap [28] and spectral gap ratio [14] of
the normalized Laplacian are good metrics to evaluate the quality of the solution of LRSSC. Here
the correct number of subspaces is 5, so the spectral gap is the difference between the 6th and 5th

smallest singular value and the spectral gap ratio is the ratio of adjacent spectral gaps. The larger
these quantities, the better the affinity matrix reveals that the data contains 5 subspaces.

6We choose Gini Index over the typical `0 to measure sparsity as the latter is vulnerable to numerical
inaccuracy.
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Figure 1: Illustration of the separation-sparsity trade-off. Left: 6 subspaces. Right: 11 subspace.

Figure 2 demonstrates how singular values change when λ increases. When λ = 0 (corresponding
to LRR), there is no significant drop from the 6th to the 5th singular value, hence it is impossible for
either heuristic to identify the correct model. As λ increases, the last 5 singular values gets smaller
and become almost zero when λ is large. Then the 5-subspace model can be correctly identified
using spectral gap ratio. On the other hand, we note that the 6th singular value also shrinks as λ
increases, which makes the spectral gap very small on the SSC side and leaves little robust margin
for correct model selection against some violation of SEP. As is shown in Figure 3, the largest
spectral gap and spectral gap ratio appear at around λ = 0.1, where the solution is able to benefit
from both the better separation induced by the 1-norm factor and the relatively denser connections
promoted by the nuclear norm factor.

Figure 2: Last 20 singular values of the normalized
Laplacian in the skewed data experiment.

Figure 3: Spectral Gap and Spectral Gap
Ratio in the skewed data experiment.

7 Conclusion and future works

In this paper, we proposed LRSSC for the subspace clustering problem and provided theoretical
analysis of the method. We demonstrated that LRSSC is able to achieve perfect SEP for a wider
range of problems than previously known for SSC and meanwhile maintains denser intra-class con-
nections than SSC (hence less likely to encounter the “graph connectivity” issue). Furthermore, the
results offer new understandings to SSC and LRR themselves as well as problems such as skewed
data distribution and model selection. An important future research question is to mathematically
define the concept of the graph connectivity, and establish conditions that perfect SEP and connec-
tivity indeed occur together for some non-empty range of λ for LRSSC.
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