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Proposition 1. For a policy 7° : 0 < reg(7°) — creg(7%) < [maxs R*(s) —ming R*(s)| - %

Proof. We can rewrite Equation (1) as follows:
creg(®) = 0% (7°) — 0°(7°), where O (70) = Z a(s)v"#(s,7°) and

(s, /) = 3 w'(s,a)- [R*(S) +9> T(s,a,s) .yt+1v#(s',ﬁt+1)}

Since the value for any policy cannot exceed the value of optimal policy, we have:

reg(7®) — creg(7®) = vO(7*) — 0% (7%) > 0. The difference in value of optimal policy (a
deterministic one) and any other policy is because of the states visited by using the policy. In the
worst case for creg, the optimal policy visits the state with highest R* and 7° visits the states with
the lowest R* at every time step. Sum of a geometric progression over the time steps yields
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reg(7®) — creg(7°) < [max R*(s) — min R*(s)} "
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Figure 1: Error

The proposition below provides the proof for footnote 2.

Footnote 3. In the approximation of x* function using piecewise linear components, \(w), the
maximum approximation in any interval [br.,_1,br,,] occurs at the mid-point.

Proof. Without loss of generality, let us consider any point y in the interval [br,,_1, bry,]. From
Equation 7, we have
y= )‘w—lbrw—l + /\wbrw
Since, we have the sum constraint in Equation 9, the above equation can be modified as:
y=(1—=Ap)bry—1 + Apbry
y— brw—l

— \, =
Y bry — bry—1



The error is given by the difference between LHS and RHS in Equation 8:
§=1y%— [Aw_l(brw_1)2 + )\w(brw)z]
Substituting value of A,,:

—bry,
=y — [(brw)2 Y

—bry—
y T 1 _ (brw71)2 .

brw - brw—l bTw - b’rw—l

When § is maximum, we have % = 0. Therefore:

(bra)® = (bru 1)) _
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(bry — bry—1)
_bry +bry
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Hence proved. B

Proposition 3. Let @éq (s, ) denote the approximation of vgq (s, 7). Then

[Al-e- (1 -7 Al -e- (1 -7
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vg, (s,7) — < of (s, 7) <vf (s,7) +

Proof: At time step ¢ + 1, the approximation error in v5+1( 7L is given by |A| - 6, (JA] as

maximum number of actions across all states, all time steps). The maximum approximation error at
time step ¢ in qu (s,a,@") is v - |A| - & (due to error in value function at time step ¢ + 1). We can

combine equation 3 and 4 as:
7) =Y n(s,a)- [vgq(s,a,ﬁt) £y |4 .5}
= Zwt(s,a) ~v§q(5,a,ﬁt) +y-]Al-6

Now at time step ¢ the error will be |A| - § plus future error from time step ¢ + 1 given by v - |A| - d.
Extending to ¢ = 0 we will have sum of two geometric progressions, i.e.

i[|,4|-5+7-|A|-5+72-|A|-5...}

H—1
Substituting § = 7, we will have a positive and negative error of %. |

Proposition 4. At time step t — 1, the CER corresponding to any policy, wt =1 will have least regret
if it includes CER minimizing policy from t. Formally, if @ represents the CER minimizing policy
from t and T represents any arbitrary policy, then:

Vs: max cregh !, (5, <7rt71, ﬁ*’t>) < max cregz{}l (s, <7rt71, ﬁt>)
P

Glegr % &ledt
if, Vs: max creg ( *!) < max X CT@ggt (s,7)
gt a€¢*

Proof. From Equation 12, we have:

07“692;1 (5a<7ft ' 4” ) ;W (s,a [ARt (s, a) +727’t Y(s,a,s") - glgg creggt( ',ﬁ*’t)}

From Equation 14, we have:

cregg_ll(s,<7rt L gt ) Zﬂ- I [ARi (s,a +’yz7’t (s,a,s") - 5nrlauxcregsf(s 71)}

acA et
t—1 t—1 =t
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Thus, maxcre til(s, atl gt )<maxcre til(s ﬂtil,ﬁt ) |
maxereqt, (s, (7)) < mageregt, (s, (n )



Pruning dominated actions

Algorithm 1 provides the pseudo-code for pruning step discussed earlier. At each time step, for each
state we maintain an upper and lower bound for the value function. Apart from pruning, this gives us
tight bounds on value function that decrease the number of break points required for linearization.

Algorithm 1: PRUNEDOMINATEDACTIONS()

t+—H-1
forall{, € £,s € Sdo

H,mi
Ve, T (s) + 0

H,mazx

ve " (s) = 0

while ¢ >= 0 do
for all s € Sdo

forall{, € {,a c Ado
v?qmm(s, a) < Rg(s, a)+vY . th(s,a, s') - vgl’mm(s’)
vé;maz(s, a) < Ri(s,a) +v> ., T/(s,a,5) - véjl’mam(s’)
if 3a’ s.t. vé;mm(s, a) > vé;max(s, a) V¢, then

. PlRUNE a o
Uijl’mm(s) = minav%mm (s,a)
vfj T (s) = mazqug " (s, a)
t—t—1
SAA Analysis

Each sample (scenario) is described by i = {41, 12,3, ..., 47|} and belong to the set I (in the case
where we consider independent transition probabilities/rewards in each stage, I is the set of samples
which are cross products of independent samples in each stage). Followed from the sample average
approximation (SAA) method described by [2], the steps to calculate the approximate optimality
gap are as follows:

1. Generate the set of sample sets, M = {Il, I, ... L }, where each sample set is of size
|I]. Also generate a larger sample set of size [I'| > |I|.

e Form =1, ...,|M], solve the problem with sample set I,,, to obtain the solution value
regy, and policy 7,
2. Compute the average of the objective values obtained which is a statistical lower bound of
the problem and their corresponding variance as follows:

1 1 2
Ak - = — % d 2A - So* s X .
89" = [agy 2 T 4 O = gy 2 (69 ved")

3. Let 7 be the selected solution from the set of solutions obtained in Step 1. Denote by
reg} (7) the regret value of the policy 7 on the large sample set I’. This value is the
sample average estimate of the true objective function of the policy 7. Also, its variance
can be computed as follows:

1
2 /= — k(= * [=\)2
op(7) = o —= 2 (régi (7) —regr (7))
v = [ 2 !
where rég; () is the regret of the policy 7 corresponding to each sample i € I'.
4. The absolute optimality gap of the solution 7 and its variance can be estimated as follows:

gap(7) = [reg} (%) — reg”| and 02, (%) = 0% () + 0%,

We can similarly perform SAA analysis for MILP-CER.



Single Product Stochastic Inventory Control Problem

In the single product finite horizon stochastic inventory control problem [1], at the beginning of
each time period and before observing the demand, the manager determines the current inventory
size x' and decides whether or not to order additional stock y? from a supplier. We assume the cost
of ordering w units is given by k; - u, the cost of maintaining an inventory of v units is given by ks - u
and the revenue obtained when the demand is j units is given by k3 - j.

Denote D' = {df,d},...,d}} as the set of demand values at time step ¢ (independent of demand
in other time steps). The inventory at time step ¢ + 1 for demand df, is given by 2'*!(d}) =
maz {z' +y" —di,0} = [2* + y* — di]T. Note the that reward at time step ¢ depends on the
current and subsequent inventory size and is given by r*(z,y", 2t (d!)) = —k1 - y' — ko - (2 +
y') + ks - ([2f +yt =2t d)]T).

The discrete demand uncertainty values translate to uncertainty over reward and transition functions,

which require robust solution concepts. A standard approach is to maximize the minimum expected
values or maximin solution. In this paper, we compare DP-CER against maximin across different

cost-to-revenue ratio defined as %
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