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Abstract

Psychophysical experiments have demonstrated that the brain integrates informa-
tion from multiple sensory cues in a near Bayesian optimal manner. The present
study proposes a novel mechanism to achieve this. We consider two reciprocally
connected networks, mimicking the integration of heading direction information
between the dorsal medial superior temporal (MSTd) and the ventral intraparietal
(VIP) areas. Each network serves as a local estimator and receives an independent
cue, either the visual or the vestibular, as direct input for the external stimulus.
We find that positive reciprocal interactions can improve the decoding accuracy
of each individual network as if it implements Bayesian inference from two cues.
Our model successfully explains the experimental finding that both MSTd and VIP
achieve Bayesian multisensory integration, though each of them only receives a
single cue as direct external input. Our result suggests that the brain may imple-
ment optimal information integration distributively at each local estimator through
the reciprocal connections between cortical regions.

1 Introduction

In our daily life, we sense the world through multiple sensory systems. For instance, while walk-
ing, we perceive heading direction through either the visual cue (optic flow), or the vestibular cue
generated by body movement, or both of them [1, 2]. In reality, because of noises, which arise
due to signal ambiguity and/or fluctuations in neural transmission, our perception of the input infor-
mation is often uncertain. In order to achieve an accurate or improved representation of the input
information, it is critical for the brain to integrate information from multiple sensory modalities.

Mathematically, Bayesian inference provides an optimal way to estimate the stimulus value based
on multiple uncertain information resources. Consider the task of inferring heading direction 6
based on the visual and vestibular cues. Suppose that with a single cue ¢; (I = vi, ve correspond
to the visual and the vestibular cues, respectively), the estimation of heading direction satisfies the
Gaussian distribution p(c;|6), which has the mean 4, and the variance 7. Under the condition that
noises from different cues are independent to each other, the Bayes’ theorem states that

p(9|cviacve) O(p(cvi|0)p(cve‘9)p(9)a (1)

where p(0|cyi, cve) is the posterior distribution of the stimulus when two cues are presented, and
p(0) the prior distribution. In the case of no prior knowledge, i.e., p(#) is uniform, p(6|cyi, cve) also



satisfies the Gaussian distribution with the mean and variance given by
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A number of elegant psychophysical experiments have demonstrated that humans and animals in-
tegrate multisensory information in an optimal Bayesian way. These include, for instances, using
visual and auditory cues together to infer object location [3], getting the hand position from the visu-
al and proprioceptive cues simultaneously [4], the combination of visual and haptic input to perceive
object height [5], the integration of visual and vestibular cues to derive heading direction [6, 7], and
the integration of texture and motion information to obtain depth [8]. Nevertheless, the detailed
neural mechanism underlying Bayesian information integration remains largely unclear. Ma et. al.,
proposed a feed-forward mechanism to achieve Bayesian integration [9]. In their framework, a cen-
tralized network integrates information from multiple resources. In particular, in their model, the
improved decoding accuracy after combining input cues (i.e., the decreased uncertainty given by
Eq.3) depends on the linear response nature of neurons, a feature in accordance with the statistics
of Poisson spiking train. However, it is unclear how well this result can be extended to non-Poisson
statistics. Moreover, it is not clear where this centralized network responsible for information inte-
gration locates in the cortex.

In this work, we propose a novel mechanism to implement Bayesian information integration, which
relies on the excitatory reciprocal interactions between local estimators, with each local estimator
receiving an independent cue as external input. Although our idea may be applicable to general cas-
es, the present study focuses on two reciprocally connected networks, mimicking the integration of
heading direction information between the dorsal medial superior temporal (MSTd) area and ventral
intraparietal (VIP) area. It is known that MSTd and VIP receive the visual and the vestibular cues
as external input, respectively. We model each network as a continuous attractor neural network
(CANN), reflecting the property that neurons in MSTd and VTP are widely tuned by heading di-
rection [10, 11]. Interestingly, we find that with positive reciprocal interactions, both networks read
out heading direction optimally in Bayesian sense, despite the fact that each network only receives a
single cue as directly external input. This agrees well with the experimental finding that both MSTd
and VIP integrate the visual and vestibular cues optimally [6, 7]. Our result suggests that the brain
may implement Bayesian information integration distributively at each local area through reciprocal
connections between cortical regions.

2 The Model

We consider two reciprocally connected networks, each of which receives the stimulus information
from an independent sensory cue (see Fig.1A). The two networks may be regarded as representing,
respectively, the neural circuits in MSTd and VIP. Anatomical and fMRI data have revealed that
there exist abundant reciprocal interactions between MSTd and VIP [12-14]. Neurons in MSTd and
VIP are tuned to heading direction, relying on the visual and the vestibular cues [10, 15].

CANN:S, also known as neural field model, have been successfully applied to describe the encoding
of head-direction in neural systems [16]. Therefore, we build each network as a CANN. Denote
6 to be the stimulus value (i.e. the heading direction) encoded by both networks, and the neuronal
preferred stimuli are in the range of —7 < 6 < 7 with periodic boundary condition. Denote U, (6, t),
for [ = 1,2, the synaptic input at time ¢ to the neurons having the preferred stimulus 6 in the [-th
network. The dynamics of U; (0, t) is determined by the recurrent inputs from other neurons in the
same network, the reciprocal inputs from neurons in the other network, the external input 1 f"’”t(ﬁ, t),
and its own relaxation. It is written as

s 1= f [ W [ o [l ) -[B60 ] o

where 7 is the time constant for synaptic current, which is typically in the order of 2-5ms. p is
the neural density. r;(6,t) is the firing rate of neurons, which increases with the synaptic input but
saturates when the synaptic input is sufficiently large. The saturation is mediated by the contribution
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Figure 1: Network structure and stationary state. (A). The two networks are reciprocally connect-
ed and each of them forms a CANN. Each disk represents an excitatory neuron with its preferred
heading direction indicated by the arrow inside. The gray disk in the middle of the network repre-
sents the inhibitory neuron pool which sums the total activities of excitatory neurons and generates
divisive normalization (Eq.5). The solid line with arrow is excitatory connection with the gray level
indicating the strength. The gray dashed line with dots represents inhibitory connection. (B). The
stationary states of two networks, which can locate at anywhere in the perceptual space. Parameters:
N =100,k =10"3,a=0.5,L =7, J11 = Jag = 1.5J,, J12 = Jo1 = 0.5J11.

of inhibitory neurons not explicitly presented in our framework. A solvable model captures these
features is given by divisive normalization [17, 18],
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where the symbol [z] denotes a half-rectifying function, i.e., [z]; = 0, for x < 0 and [z], = =z,
for x > 0, and k reflects the strength of global inhibition.

ri(0,t) = &)

Wim(0,0") denotes the connection from the neurons 6’ in the network m to the neurons 6 in the
network [. W11(0,60’) and Wa3(6,6") are the recurrent connections within the same network, and
W12(6,0") and Way (6, 0”) the reciprocal connections between the networks. We assume they are of
the Gaussian form, i.e.,

Wlm(aa 9/) = (0 - 9/)2:| )

J lm exp |:
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where a;,,, determines the neuronal interaction range. In the text below, we consider a;,,, < 7 and
effectively take —oo < 6 < oo in the theoretical analysis. We choose J;,,, > 0, for [,m = 1,2,

implying excitatory recurrent and reciprocal neuronal interactions. The contribution of inhibitory
neurons is implicitly included in the divisive normalization.

(6)

The external inputs to two networks are given by
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where p; denotes the stimulus value conveyed to the network [ by the corresponding sensory cue.
This can be understood as If** drives the network [ to be stable at z; when no reciprocal interaction
and noise exist. « is the input strength, and & (6,t) is the Gaussian white noise of zero mean
and unit variance, with 7; the noise amplitude. The noise term causes the uncertainty of the input
information, which induces fluctuations of the network state. The exact form of I7** is not critical
here, as long as it has an unimodal form.

2.1 The dynamics of uncoupled networks

It is instructive to first review the dynamics of two networks without reciprocal connection (by
setting W;,,, = 0 for [ # m in Eq.4). In this case, the dynamics of each network is independent



from the other. Because of the translation-invariance of the recurrent connections W;; (6, 6’), each
network can support a continuous family of active stationary states even when the external input is
removed [19]. These attractor states are of Gaussian-shape, called bumps, which are given by,
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where z; is a free parameter, representing the peak position of the bump, and U = [1 + (1 —

Je/Jn) Y2 Ju / (4ag /7). The bumps are stable for Jy; > J., with .J, = 2v/2(27)Y/4, /kay /p, the
critical connection strength below which only silent states, U, lo = 0, exist.

In response to external inputs, the bump position z; is interpreted as the population decoding result
of the network. It has been proven that for a strong transient or a weak constant input, the network
bump will move toward and be stable at a position having the maximum overlap with the noisy input,
realizing the so called template-matching operation [17, 18]. For temporally fluctuating inputs, the
bump position also fluctuates in time, and the variance of bump position measures the network
decoding uncertainty.

In a CANN, its stationary states form a continuous manifold in which the network is neutrally
stable, i.e., the network state can translate smoothly when the external input changes continuously
[18, 20]. This neutral stability is the key that enables the neural system to track moving direction,
head-direction and spatial location of objects smoothly [16, 21, 22]. Due to the special structure of
a CANN, it has been proved that the dynamics of a CANN is dominated by a few motion modes,
corresponding to distortions in the height, position and other higher order features of the Gaussian
bump [19]. In the weak input limit, it is enough to project the network dynamics onto the first few
dominating motion modes and neglect the higher order ones then simplify the network dynamics
significantly. The first two dominating motion modes we are going to use are,

6 — 2
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where a is the width of the basis function, whose value is determined by the bump width the network
holds. By projecting a function f(f) on a motion mode ¢(#|z), we mean to compute the quantity,

[, £(0)6(6]2)db/ [, $(6]2)de.

When reciprocal connections are included, the dynamics of the two networks interact with each
other. The bump position of each network is no longer solely determined by its own input, but is
also affected by the input to the other network, enabling both networks to integrate two sensory
cues via reciprocal connections. We consider the reciprocal connections, W, (6,6"), for I # m,
also translation-invariant (Eq.6), so that two networks still hold the key property of CANNs. That
is, they can hold a continuous family of stationary states and track time-varying inputs smoothly
(Fig.1B).

position : ¢1(0]z)

3 Dynamics of Coupled Networks

It is in general difficult to analyze the dynamics of two coupled networks. In the text below, we
will consider the weak input limit and use a projection method to simplify the network dynamics.
The simplified model allows us to solve the network decoding performances analytically and gives
us insight into the understanding of how reciprocal connections help both networks to integrate
information optimally from independent cues.

For simplicity, we consider two networks that are completely symmetric, i.e., they have the same
structure, i.e., Ji1 = Joa = Jre, Ji2 = Jo1 = Jrp, and ayp, = a; and they receive the same mean
input value and input strength, i.e., u1 = pe = p, a; = az = « and 17 = 12 = 1. They receive,
however, independent noises, i.e., (£1€2) = 0, implying that two cues are independent to each other
given the stimulus.

In the weak input limit (i.e., for small enough «), we find that the network states have approximately
Gaussian shape and their variations are dominated by the height and position changes of the bump
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Figure 2: Characters of the network dynamics. (A). Two networks receive the same external input,
whose value jumps from —1 to 1 abruptly. The network states move smoothly from the initial to the
target position, and their main changes are the height and the position of the Gaussian bumps. (B)
The basis functions for the two dominating motion modes. (C) The simplified network dynamics
after projecting onto the two dominating motion modes. Parameters: a; = ap = 0.2U°%, g = 1y =
0, and others are the same as Fig.1.

(see Fig.2). Thus, we take the Gaussian ansatz and assume the network states to be

Ui(0,t) ~ A(t)exp l—(a_;jz(t))], (11)
r(0,t) =~ B(t)exp [—(9_2':2(75))], (12)

where A(t) represents the bump height, z(¢) the bump position in the network I, a the bump width

and B = [A]7 /(1 + v27kpa[A]%) according to Eq.(5). Note that the bumps in two networks have
the same shape but different positions due to independent noises.

Substituting Eqgs.(11,12) and (7) into the network dynamics Eq.(4), and projecting them onto the
height and position motion modes (9-10), we obtain the dynamics for the height and position of the
bumps in two networks (see Supplemental information 1), which are

dA - -
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da _ JoB @ 2v/a
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where J = p.J /+/2 for simplifying notation. By removing the external inputs (by setting a = 0 in
Eq.(13)), we can get the necessary condition for the networks holding self-sustained bump states,
which is (see Supplemental information 2)

Jee + Jop > 2V2(27) Y4\ ka/ p. (16)
It indicates that positive reciprocal interactions .J,., help the networks to retain attractor states.

To get clear understanding of the effect of reciprocal connections, we decouple the dynamics of
z1 and zo by studying the dynamics of their their difference, z4 = 21 — 22, and their summation,
zs = 21 + 2. From Eqgs.(14) and (15), we obtain

dzq o+ QJTPB 2\/577\/6
_ = — 1
Tat A (277)1/4A6d( ) (17
dzs «a 2a 2\@7]\/5
—= _— _— s 1
Tdt A% T AT amyiaac®: (18)



where €4(t) and €4(t) are independent Gaussian white noises re-organized from &; () and &x(t)
(V2e = & + &).

By solving the above stochastic differential equations, we get the means and variances of z4 and z,
in the limit of ¢ = oo, which are

<Zd> = 0, <Zs> =2p, (19)
Var(zq) = ((2a — (24))?) = an*a 1~ (20)
VorTA o+ 2erB7
4n’a

Var(zs) = <(25—<25>)2> (21)
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where the symbol (-) represents averaging over many trails. Eq.(20) indicates that the positive re-
ciprocal connections JNTp tend to decrease the variance of zy4, i.e, the difference between the states in
two networks (in practice, varying j,«p also induces mild changes in A, B and a; we have confirmed
in simulation that for a wide range of parameters, increasing ij indeed decrease Var(zq)).

The decoding error of each network, measured by the variance of z;, is calculated to be (two net-
works have the same result due to the symmetry),

(z1y = wp, for =12 (22)
Var(z;) = [Var(zq)+ Var(zs)] /4,
n’a 1 1
-+ —]. 23
VorTA (Oé+a+2erB> 23)

We see that the network decoding is unbiased and their errors tend to decrease with the reciprocal

connection strength j,.p (see the second term in the right-hand of Eq.23). It is easy to check that in
the extreme cases and assuming the bump shape is unchanged (which is not true but is still a good

indication), the network decoding variance with vanishing reciprocal interaction (j,.p = 0) is two-

fold of that with infinitely strong reciprocal interactions (jrp = 00). Thus, reciprocal connections
between networks do provide an effective way to integrate information from independent input cues.

To further display the advantage of reciprocal connection, we also calculate the situation when a
single network receives both input cues. This equals to setting the external input to a single CANN
to be 1% (z,t) = Qe (r=m)?/4a® 4 V/2né(x, t) (see Eq.(7) and consider the independence between
two cues). The result in this case can be obtained straightforwardly from Eq.(23) by choosing
Jip = 0 and replacing 1 with v/2n and o with 2a;, which gives Var(z)single = 27%a/(V277Aa).
This result equals to the error when two networks are uncoupled and is larger than that of the coupled
case.

In the weak input limit, the decoding errors in general situations when two networks are not sym-
metric can also be calculated, (see Supplemental information 3)

20 [(Ji2Baas + Jo1 Broy + ajas)As /A1 + (Jo1 By + a2)?nt + (J12B2)*n3 24)
2t (J12B2As + a1As + Jo1 B1A1 + agAq)(Ji2Baag + Jo1 Brag + aian)

Var(z1) =

Var(z2) has the same form as Var(z; ) except that the indexes 1 and 2 are interchanged.

4 Coupled Networks Implement Bayesian Information Integration

In this section, we compare the network performances with experimental findings. Mimicking the
experimental setting for exploring the integration of visual and vestibular cues in the inference of
heading direction [6, 7], we apply three input conditions to two networks (see Fig.3A), which are:

e Only visual cue: ar =a, ag=0.
e Only vestibular cue: o1 =0, ag=a.
e Combined cues: o=, Qg =a.

In three conditions, the noise amplitude is unchanged and the reciprocal connections are intact.
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Figure 3: Two coupled-networks implement (nearly) Bayesian inference. (A). The three input con-
ditions to two networks. (B). The bump position of the network 1 fluctuates around the true stimulus
value 0. The right panel displays the bump position distributions in three input conditions, from
which we estimate the mean and variance of the decoding results. (C),(D). Compared the network
decoding results with two cues with the predictions of Bayesian inference. (C) for the mean val-
ue and (D) for the variance. Different combinations of the input strengths a; and the reciprocal
connection strengths J,, are chosen. Parameters: p; = —0.07,us = 0.07, n; = n2 = 0.5,
a; €[0.1,0.5]U°, J,,, € [0.3,1]J,, and the others are the same as Fig.1.

Considering the symmetric structures of two networks and ignoring the mild changes in the bump
shape in the weak input limit, we can obtain from Eq.(24) the decoding variance in the three input
conditions, which are (because of the symmetry, only the results for the network 1 are shown)

2an?

Var(z1eyi) Varrad’ (25)
2an? jT B+«
Var(21|cve) \/%ZaA S — (26)
rp
2an?  J.,B
Var(z|cp) an JrpB + 27

V2nTaA 2j,.pB +a’

where Var(z1|cyi), Var(z1|cye) and Var(z1|cp) denote, respectively, the decoding errors when only
the visual cue, only the vestibular cue and both cues are presented. It is straightforward to check that
1 1 1

Var(z1|ch) B Var(z1|cyi) + Var(z1|cye)

(28)

Thus, in the weak input limit, the coupled CANNs implements Bayesian inference perfectly (com-
pare Eq.(28) to the Bayesian criterion Eq.(3)).

We carry out simulations to further confirm the above theoretical analysis. We run the network
dynamics under three input conditions for many trials, and calculate the means and variances of
the bump positions in each condition. Fig.3B shows that the bump position fluctuations become
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narrower in the combined cue input condition, indicating greater accuracy in the decoding. We
compare the result when both cues are presented with the prediction of the Bayesian inference,
obtained by using Eqgs.(2, 3). Fig.3C and D show that two networks indeed achieve near Bayesian
optimal inference for a wide range of input amplitudes and reciprocal connection strengths.

A salient feature of Bayesian inference is that its decoding value is biased to the more reliable cue.
The reliability of cues is quantified by their variance ratio, e.g., (0i)? < (0yc)? means that vi-
sual cue is more reliable than vestibular cue. From Eq.2, we see that Bayesian inference gives a
larger weight to the more reliable cue. This property has been used as a criterion in experiment
to check the implementation of Bayesian inference, called “reliability based cue weighting” [23].
We also test this property in our model. To achieve different reliability of the cues, we adjust the
input strength a1, and keep the other input parameters unchanged, mimicking the experimental
finding that the firing rate of MT neuron, the earlier stage before MSTd, increases with the input
coherence for its preferred stimuli [24]. With varying input strengths a4, and hence varied ratios
Var(z1|cyi)/Var(z1|cye), we calculate the mean of the network decoding. Fig. 4 shows that the de-
coded mean in the combined cues condition indeed shifts towards to the more reliable cue, agreeing
with the experimental finding and the property of Bayesian inference.

5 Conclusion

In the present study, we have proposed a novel mechanism to implement Bayesian information inte-
gration. We consider two networks which are reciprocally connected, and each of them is modeled
as a CANN receiving the stimulus information from an independent cue. Our network model may
be regarded as mimicking the information integration on heading direction between the neural cir-
cuits in MSTd and VIP. Experimental data has revealed that the two areas are densely connected in
reciprocity and that neurons in both areas are widely tuned by heading direction, favoring our model
assumptions.

We use a projection method to solve the network dynamics in the weak input limit analytically
and get insights into how positive reciprocal connections enable one network to effectively inte-
grate information from the other. We then carry out simulations to confirm the theoretical analysis,
following the experimental protocols. Our results show that both networks realize near Bayesian op-
timal decoding for a wide range of parameters, supporting the experimental finding that both MSTd
and VIP optimally integrate the visual and the vestibular cues in heading direction inference, though
each of them only receives a single cue directly.

Our study may have a far-reaching implication on neural information processing. It suggests that
the brain can implement efficient information integration in a distributive manner through reciprocal
connections between cortical regions. Compared to centralized information integration, distributive
processing is more robust to local failures and facilitates parallel computation.
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