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Abstract

Appendix for the details on Nelder-Mead algorithm, and the nonlinear least
squares optimization method.

1 MLE using Nelder-Mead algorithm

Given a nondegenerate simplex S as the convex hull of vertices {t1, t2, ..., tn+1} ∈ Rn, the Nelder-
Mead method evaluates the objective function at each of the simplex vertices, the evaluation is
denoted as f(ti), i = 1, ..., n+ 1, f(t) = − lnL(t;x). For each iteration, the algorithm consists of
the following three steps [1]:

1. Order the evaluation values at each vertex, such that f(t1) ≤ f(t2) ≤ · · · ≤ f(tn+1).
2. Calculate the centroid of the best n points by c =

∑n
i=1 ti.

3. Compute the new simplex by finding a new accepted point t′ that leads to a better function
evaluation. First, evaluate the reflection point f(tr) with respect to c. Iteration terminates
if f(t1) ≤ f(tr) < f(tn). Else:
• Expand if reflected point is the new best point, such that f(tr) < f(t1).
• Contract if the reflected point is the second worse point, such that f(xn) ≤ f(tr).
• Shrink the new simplex toward current best point t1 if none of the above resulted in a

better function evaluation, by replacing ti with 1
2 (t1 + ti), for i = 2, ..., n+ 1.

The effect of this algorithm is better understood in the case of R2, that the simplex is a triangle
that flip-flops (reflection, if necessary) its way down the hill in the likelihood function space until
convergence. To enforce the bound constraints of β1,2 ≥ 1 and π ≤ 1 that involves just inequalities,
the accepted point t′ is adjusted with the respective lower and upper bound if any of its corresponding
parameter values fail to satisfy the constraints.

2 Nonlinear least squares

For observations (x1, y1), ..., (xn, yn) and our parameter vector θ = (α1, β1, c1, α2, β2, c2, π), the
least squares estimator finds the minimizer to the following objective function:

F (θ;x) =
1

2

n∑
i=1

r2i (θ) , ri(θ) =W2(θ;xi)− yi (1)

1



where ri(θ) is the residual, and θ is subject to the bound constraints that were specified earlier.
The trust-region method iteratively minimizes the objective function starting from an initial starting
parameter vector θ′. By setting θ = θ′, we proceed to minimize a quadratic approximation Q(s)
that is the change in the objective function F (θ + s)− F (θ). Q(s) is given by:

Q(s) ≡ gT s+ 1
2s
THs , subject to ||s||2 ≤ τ, 1

τ −
1
||s||2 = 0 (2)

s ∈ N is the subspace in the neighborhood N of the trust-region, g and H are the gradient and
Hessian at θ. The Steihaug-Toint conjugate-gradient method can be used for each iteration step s
with the unconstrained Newton equation Hs = −g, setting θ = θ + s if F (θ + s) < F (θ) and
adjusting τ at the end of each iteration [2][3]. In our constrained case, the unconstrained Newton
step is replaced with a scaled Newton step D−2g = 0 to solve for the following linear system:

MDsN = −g′, M = D−1HD−1 + diag(g)Jv (3)

with g′ = D−1g at the kth iteration, and D is the diagonal matrix of vector |v−1/2k |, with Jv

denoting the Jacobian of |v|. The bound constraints (ub: upper-bound, lb: lower-bound) are used
here for computing v(θ): for the ith observation, vi = θi−ubi if gi < 0 and ubi <∞; vi = θi− lbi
if gi ≥ 0 and lbi > −∞; vi = −1 if gi < 0 and ubi =∞; and vi = 1 if gi ≥ 0 and lbi = −∞.
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