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Abstract

Non-parametric approaches for analyzing network datacbaseexchangeable
graph models (ExGM) have recently gained interest. The kggob that defines
an ExGM is often referred to asggaphon This non-parametric perspective on
network modeling poses challenging questions on how to nrdkeence on the
graphon underlying observed network data. In this papepmpose a computa-
tionally efficient procedure to estimate a graphon from asebserved networks
generated from it. This procedure is based on a stochastikimodel approxi-
mation (SBA) of the graphon. We show that, by approximativegdraphon with
a stochastic block model, the graphon can be consistertitpated, that is, the
estimation error vanishes as the size of the graph appreatfiraty.

1 Introduction

Revealing hidden structures of a graph is the heart of mateyataalysis problems. From the well-
known small-world network to the recent large-scale datiected from online service providers
such as Wikipedia, Twitter and Facebook, there is always membum in seeking better and more
informative representations of the graphs [1,14[ 29, B128, In this paper, we develop a new com-
putational tool to study one type of non-parametric repreg@ns which recently draws significant
attentions from the communityl[4, 19,(5,/30] 23].

The root of the non-parametric model discussed in this pagdarthe theory of exchangeable ran-
dom arraysl[2, 15, 16], and it is presented[ini[11] as a linknemting de Finetti’s work on patrtial
exchangeability and graph limits [20, 6]. In a nutshell, theory predicts that every convergent
sequence of grapHs7,,) has a limit object that preserves many local and global ptigseof the
graphs in the sequence. This limit object, which is callegtaphon can be represented by mea-
surable functionsv : [0,1]> — [0,1], in a way that anyw’ obtained from measure preserving
transformations ofv describes the same graphon.

Graphons are usually seen as kernel functions for randowonletmodels[[18]. To construct an
n-vertex random grap8(n, w) for a givenw, we first assign a random labe] ~ Uniform[0, 1] to
each vertex € {1,...,n}, and connect any two verticésnd; with probabilityw(u;, u;), i.e.,

PI‘(G[LJ]:1|U17UJ):U)(UZ,U7), za]:1a7na (1)

whereG(i, j] denotes théi, j)th entry of the adjacency matrix representing a particidatization
of G(n,w) (See Figurgll). As an example, we note that the stochastiksimdel is the case where
w(z,y) is a piecewise constant function.

The problem of interest is defined as follows: Given a seqeei@T’ observedirectedgraphs
G4, ...,Gor, can we make an estimateof w, such thatv — w with high probability a1 — oo?
This question has been loosely attempted in the literabutayone of which has a complete solution.
For example, Lloyd et al[ [19] proposed a Bayesian estimaithiout a consistency proof; Choi and
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Figure 1: [Left] Given a graphom : [0,1]*> — [0,1], we draw i.i.d. samples;, u; from
Uniform[0,1] and assigrG.[i, j] = 1 with probability w(u,,v;), fort = 1,...,2T. [Middle]
Heat map of a graphom. [Right] A random graph generated by the graphon shown imrtiulle.
Rows and columns of the graph are ordered by increasingstead ofi for better visualization.

Wolfe [9] studied the consistency properties, but did nowte algorithms to estimate the graphon.
To the best of our knowledge, the only method that estimatgshgpns consistently, besides ours, is
USVT [8]. However, our algorithm has better complexity amtizrforms USVT in our simulations.
More recently, other groups have begun exploring appraachated to ours [28, 24].

The proposed approximation procedure require® be piecewise Lipschitz. The basic idea is to
approximatev by a two-dimensional step functian with diminishing intervals as increases.The
proposed method is called the stochastic blockmodel ajppation (SBA) algorithm, as the idea of
using a two-dimensional step function for approximatioaegsiivalent to using the stochastic block
models[[10[ 22, 13,17, 25]. The SBA algorithm is defined up torpgations of the nodes, so the
estimated graphon isot canonical. However, this does not affect the consistenapeties of the
SBA algorithm, as the consistency is measured w.r.t. thelgrnathat generates the graphs.

2 Stochastic blockmodel approximation: Procedure

In this section we present the proposed SBA algorithm anmldssits basic properties.

2.1 Assumptions on graphons

We assume thab is piecewise Lipschita.e., there exists a sequence of non-overlaping intervals
I, = [ag—1, ay] defined by0 = ag < ... < ax = 1, and a constant > 0 such that, for any
(z1,y1) and(x2, y2) € Iij = I; x I,

lw(z1,y1) — w(ze,y2)| < L(Jo1 — 22| + |y1 — y2l) -

For generality we assume to be asymmetrice., w(u,v) # w(v, u), S0 that symmetric graphons
can be considered as a special case. Consequently, a ramdpmdgn, w) generated byw is
directed,.e, G[i, j] # G[j,1].

2.2 Similarity of graphon slices

The intuition of the proposed SBA algorithm is that if the ginan is smooth, neighboring cross-
sections of the graphon should be similar. In other wordsyd labelsu; andw; are closei.e,,
lu; — u;| = 0, then the difference between the row sli¢e$u;, -) — w(u;, -)| and the column slices
|w(-,u;) — w(-,u;)| should also be small. To measure the similarity between &bels using the
graphon slices, we define the following distance
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Thus,d;; is small only if both row and column slices of the graphon anglar.

The usage ofl;; for graphon estimation will be discussed in the next sulisect But before
we proceed, it should be noted that in practige has to be estimated from the observed graphs

G1,...,Gor. To derive an estimatoi—j of d;;, it is helpful to expresg;; in a way that the estima-
tors can be easily obtained. To this end, we let

1 1
cij—/o w(z, wi)w(z, u;)de and Tij —/0 w(ug, y)w(u;, y)dy,

and express;; asd;; = [(c” Cij—Cji+Cj5)+ (rii—rij —rji+rjj)} . Inspecting this expression,
we consider the foIIowmg estimators foy; andr;;:
1 . .
/c\fj = ﬁ Z th [kv Z] Z Gtz [kv j] ) (3)
1<t; <T T<ta<2T
1 ) .
fr‘\fj = ﬁ Z th [Z, k] Z Gtz [.77 k] . (4)
1<t1<T T<te<2T

Here, the superscrigt can be interpreted as the dummy variablesndy in definingc;; andr;;,
respectively. Summing all possibi¢s yields an estimatod;; that looks similar ta;;:

K P T
[ YA -7 =T ) (@ - - ) ®)
kes
whereS = {1,...,n}\{i, j} is the set of summation indices.

The motivation of defining the estimators id (3) abH (4) i¢ thaow of the adjacency matri[i, -]
is fully characterized by the corresponding row of the gmapl(u;, -). Thus the expected value of

T (Zlgtlg G, [i, -]) is w(u;,-), and hencel Y-, s 7% is an estimator for;;. To theoretically

justify this intuition, we will show in Sectioh]3 that;; is indeed a good estimator: it is not only
unbiased, but is also concentrated rodgdor largen. Furthermore, we will show that it is possible
to use a random subset Sfinstead of{1,...,n}\{i,j} to achieve the same asymptotic behavior.
As a result, the estimation @f; can be performed locally in a neighborhood @nd, instead of
all n vertices.

2.3 Blocking the vertices

The similarity metrio@7 discussed above suggests one simple method to approxinigte piece-

wise constant functiom (i.e., a stochastic block- model) Givery, ..., Gor, we can cluster the
(unknown) labelgu, ..., u,} into K bIocksBl, .. BK using a procedure described below. Once
the blocksB,, ..., By are defined, we can then determiﬁeui, u;) by computing the empirical
frequency of edges that are present across blﬁgkamdﬁ B
w(ui,u;) = Yo Y 5= (Galiesdy] + Galivs i) + -+ Garliz, 4y)),  (6)
1Bil B, | B,| i eB. B, 2T

whereB; is the block containing; so that summingz:|x, y] overz € B, andy € Ej yields an
estimate of the expected number of edges linking blﬁghndﬁj.

To cluster the unknown labels:y, . . ., u,, } we propose a greedy approach as shown in Algorithm
[ Starting withQ = {u,...,u,}, we randomly p|ck a nodg, and call it thep|vot Then for all
other vertices, € Q\{i,}, we compute the dlstan@g 4, and check WhethefZ 4, < A? for some
precision parametet > 0. If dzp,lu < A?, then we assign, to the same block as,. Therefore,
after scanning througf once, a blockB; = {ips vy %0y, - - -} Will be defined. By updating? as
Q<+ Q\El, the process repeats urflil= (.



The proposed greedy algorithm is only a local solution inressedhat it does not return the globally
optimal clusters. However, as will be shown in Secfibn $ialgh the clustering algorithm is not
globally optimal, the estimated graphanis still guaranteed to be a consistent estimate of the true
graphonw asn — oo. Since the greedy algorithm is numerically efficient, itvesras a practical
computational tool to estimate.

2.4 Main algorithm

Algorithm 1 Stochastic blockmodel approximation

Input: A set of observed graplds,, . . ., Gor and the precision parametar.

Output: Estimated stochastic blocks, . .., Bk.
Initialize: 2 = {1,...,n}, andk = 1.
while Q # () do
Randomly choose a vertéx from 2 and assign it as the pivot fds,: By, + ip.
for Every other vertices, € Q\{i,} do
Compute the distance estimatg ;, .
Ifd;,:, < A2, then assign, as a member (ﬁk: Ek 1y
end for N
Update2: 2 <+ Q\ By.
Update counterk « k + 1.
end while

Algorithm [T illustrates the pseudo-code for the proposedhsistic block-model approximation.
The complexity of this algorithm i©(T'SKn), whereT is half the number of observationS,is
the size of the neighborhoo#; is the number of blocks andis number of vertices of the graph.

3 Stochastic blockmodel approximation: Theory of estimatn

In this section we present the theoretical aspects of thpgsed SBA algorithm. We will first

discuss the properties of the estimafgr, and then show the consistency of the estimated graphon
w. Details of the proofs can be found in the supplementary riahte

3.1 Concentration analysis oﬁij

Our first theorem below shows that the proposed estim%}ds both unbiased, and is concentrated
around its expected valug;.

Theorem 1. The estimator@j for d,; is unbiased, i.eIE[cZ-j] = d,;. Further, for anye > 0,

Pr [ (/l\” — dij

62
> e} < 8~ T, @)

whereS is the size of the neighborhodtd and27T" is the number of observations.

Proof. Here we only highlight the important steps to present theition. The basic idea of the
proof is to zoom-in a microscopic term @j} and show that it is unbiased. To this end, we use the
fact thatGy, [i, k] andG., [j, k] are conditionally independent an, to show

E[th[ivk]Gb []v k] | uk] = Pr[th[iv k] =1,Gy, [.]7 k] =1 | uk]

@ Pr(Gy, [i K] = 1| u] PrlGry [ k] = 1| we]

= w(u;, ug)w(uj, ug),
which then implie€[7}; | ux] = w(ui, up)w(u;, ux), and by iterated expectation we have};] =
]E[]E[ﬁj | ux]] = r;;. The concentration inequality follows from a similar ideabbund the variance
of ?’fj and apply Bernstein’s inequality. O



ThatGy, [i, k] andGy,[J, k] are conditionally independent an, is a critical fact for the success of
the proposed algorithm. It also explains why at least 2 iedelgntly observed graphs are necessary,
for otherwise we cannot separate the probability in the s@@nuality above marked witfa).

3.2 Choosing the number of blocks

The performance of the Algorithinh 1 is sensitive to the nundb®tocks it defines. On the one hand,

it is desirable to have more blocks so that the graphon camely fapproximated. But on the other
hand, if the number of blocks is too large then each blockauilitain only few vertices. This is bad
because in order to estimate the value on each block, a suffictumber of vertices in each block is
required. The trade-off between these two cases is coadirbly the precision parametar a large

A generates few large clusters, while smalgenerates many small clusters. A precise relationship
between the\ and K, the number of blocks generated the algorithm, is given iecran 2.

Theorem 2. Let A be the accuracy parameter arid be the number of blocks estimated by Algo-

rithm[d, then
QLV?2
A

g ——_sat
S 8n‘e 128/’1‘+16A2/37 (8)

Pr | K >

wherelL is the Lipschitz constant ard is the number of Lipschitz blocksin

In practice, we estimaté using a cross-validation scheme to find the optimal 2D histagbin
width [27]. The idea is to test a sequence of potential vahies and seek the one that minimizes
the cross validation risk, defined as

-~ 2 n+1 X e
T == " hm =1 DB} ©)

wherep; = |§j|/n andh = 1/K. Algorithm[2 details the proposed cross-validation scheme

Algorithm 2 Cross Validation
Input: Graphs=4, ..., Gor.

Output: BIocksf?l, . ,EK, and optimalA.
for a sequence dA’s do

Estimate block9§1, el f?K from Gy, ..., Gor. [Algorithm[I]]

Computep; = |B,|/n, for j = 1 VK.

Compute/(A) = ﬁ R oy ZJ D3 withh =1/K.
end for R R N
Pick theA with minimumJ(A), and the correspondingy, . . ., Bx.

3.3 Consistency ofv

The goal of our next theorem is to show thais a consistent estimate of i.e., W — w asn — oo.
To begin with, let us first recall two commonly used metric:

Definition 1. The mean squared error (MSE) and mean absolute error (MA&Yafined as

MSE (@ — Z Z wlug,,ug,) — D(ug,, uj,))?

=1 ]U_l

MAE(@ =— Z Z lw(ug,,uj,) — W(ui,,uj,)|

1y=17,=1

Theorem 3. If S € ©(n) andA € w <(@) 4> No(1), then

lim EMAE(@)] =0 and  lim E[MSE(®)] = 0.

n—r oo n—oo



Proof. The details of the proof can be found in the supplementargnzt Here we only outline
the key steps to present the intuition of the theorem. Théafckheorenl B is to show convergence
of |W(us, u;) — w(us, uj)| The idea is to consider the following two quantities:

w(u oD wlui,ug,),
(i, 15) = |B||g|

[ 631J GB

1 ..
( Ui, J) B Z Z 2T Gl[lzvjy]+G2[lzajy]+---+G2T[Zzajy])a
|Bi| By 7|1 B.i.ch,

so that if we can bound;iﬂ(ui,uj) — w(ug, uy)| and|w(u,, u;) — wW(u;, uj)|, then consequently
|@(u;, uj) —w(ui, uj)| can also be bounded.

The bound for the first termw(u;, uj) — w(u;, u;)| is shown in Lemmall: By Algorithr]1, any
vertexi, € B is guaranteed to be within a distanfefrom the pivot ofB Sincew(u;, u;) is an
average oveB; andBj, by Theoreniil a probability bound involvily can be obtained.

The bound for the second tef (u;, u;) —w(u;, u;)| is shownin Lemmal2. Different from Lemma
[, here we need to consider two possible situations: eitfeeirttermediate estimaté(u;, u;) is

close to the ground truttv(u;,, u;), or W(u;, u;) is far from the ground truthw(u,, w;). This ac-
counts for the sum in Lemnia 2. Individual bounds are deriasitd on Lemmid 1 and TheorEn 1.

Combining Lemmall and Lemrh& 2, we can then bound the errorravd sonvergence. O
Lemma 1. For anyi, € B; andj, € f}j,
~ o~ sat
Pr [m(ui,uj) —w(ug,,uy,)| > 8A1/2L1/4} < 32|B;| | Byl srmisa7s, (10)
Lemma 2. For anyi, € B; andj, € f}j,

o~ R R 4
Pr [l@'j — W > 8A1/2L1/4} < 2e~256(T|Bi||B;|VLA) | 32|Bi|2|3j|26_‘32/T‘i§f2/3‘)_ (11)

The conditionS € ©(n) is necessary to make Theorgin 3 valid, becauseisf independent of:,
the right hand sides of (10) arld {11) cannot apprdeeben ifn — co. The condition onA is also
important as it forces the numerators and denominatorsarexponentials of (10) anf{111) to be
well behaved.

4 Experiments

In this section we evaluate the proposed SBA algorithm byéigpsome empirical results. For the
purpose of comparison, we consider (i) the universal semgudlue thresholding (USVT)[8]; (ii)
the largest-gap algorithm (LG)I[7]; (iii) matrix completidrom few entries (OptSpace) [17].

4.1 Estimating stochastic blockmodels

Accuracy as a function of growing graph size. Our first experiment is to evaluate the proposed
SBA algorithm for estimating stochastic blockmodels. Fas purpose, we generate (arbitrarily) a
graphon
0.8 0.9 04 05
w— 0.1 0.6 0.3 0.2
103 0.2 0.8 03]’
04 0.1 0.2 09

which represents a piecewise constant function with4 equi-space blocks.

(12)

Since USVT and LG use only one observed graph whereas thesedSBA require at leagt
observations, in order to make the comparison fair, we uge@hthe nodes for SBA by generating
two independen§ x 3 observed graphs. For USVT and LG, we use anen observed graph.

Figure[2(a) shows the asymptotic behavior of the algoritiuinenn grows. FiguréR(b) shows the
estimation error of SBA algorithm &6 grows for graphs of size 200 vertices.



|
o
o
I

N

(XX KK
e

8K ae

! | !
DA
w N ke

AbB A A A A A A

@ -2.4f

log,o(MAE

—©— Proposed
=25 | ... % Largest Gap

! { ! { !
NN N NN
© © N o &

—— OptSpace D
—A— USVT
) 200 200 600 800 1000 %% 5 10 15 20 25 30 3 40
n 2T
(a) Growing graph size; (b) Growing no. observation8]’

Figure 2: (a) MAE reduces as graph size grows. For the fesroéthe amount of data that can be
used, we usé x 7 x 2 observations for SBA, and x n x 1 observation for USVT/[8] and LG
[7]. (b) MAE of the proposed SBA algorithm reduces when mdrsesvationd” is available. Both
plots are averaged over 100 independent trials.

Accuracy as a function of growing number of blocks. Our second experimentis to evaluate the
performance of the algorithms d§, the number of blocks, increases. To this end, we consider a
sequence of<, and for eachK’ we generate a graphan of K x K blocks. Each entry of the
block is a random number generated from Uniffiim]. Same as the previous experiment, we fix
n = 200 andT = 1. The experiment is repeated over 100 trials so that in evalya different
graphon is generated. The result shown in Fiflire 3(a) itedhat while estimation error increases
asK grows, the proposed SBA algorithm still attains the lowegtHfor all K.
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Figure 3: (a) AsK increases, MAE of all three algorithm increases but SBA atikins the lowest
MAE. Here, we us€; x 5 x 2 observations for SBA, and x n x 1 observation for USVT/[8] and
LG [7]. (b) Estimation of graphon in the presence of missingd: As the amount of missing links
increases, estimation error also increases.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of prgh@&@BA algorithm when there are
missing edges in the observed graph. To model missing edgesynstruct am x n binary matrix

M with probability Pr[M[i, 5] = 0] = £, where0 < ¢ < 1 defines the percentage of missing
edges. Givet§, 27" matrices are generated with missing edges, and the obsgrapls are defined
asM; ® Gy,...,Msr ® Gor, where® denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphiom the presence of missing links.



The modification of the proposed SBA algorlthm for the casssing links is m|n|mal when com-

puting [8), instead of averaging over alle B; andj, € BJ, we only average, € B; andj, € B

that are not masked out by all’s. Figure B(b) shows the result of average over 100 mdepmznde
trials. Here, we consider the graphon giverlinl (12), with 200 andT" = 1. It is evident that SBA
outperforms its counterparts at a lower rate of missingslink

4.3 Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algarithestimating continuous graphons.
Here, we consider two of the graphons reported in [8]:

1
1+ exp{—50(u? +v2)}’
whereu, v € [0,1]. Here,w, can be considered as a special case of the Eigenmodel [1&femt |
feature relational model [21].

wr (u,v) = and ws(u,v) = uv,

The results in Figuriel4 shows that while both algorithms liangroved estimates whengrows, the
performance depends on whichwof andw- that we are studying. This suggests that in practice the
choice of the algorithm should depend on the expected siriof the graphon to be estimated: If the
graph generated by the graphon demonstrates some low-rapé&rgies, then USVT is likely to be

a better option. For more structured or complex graphonpithygosed procedure is recommended.

=2.9 T T T T —0.6 T
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Figure 4: Comparison between SBA and USVT in estimating tarttiouous graphong; andws;.
Evidently, SBA performs better far; (high-rank) and worse faw, (low-rank).

5 Concluding remarks

We presented a new computational tool for estimating graph@he proposed algorithm approx-
imates the continuous graphon by a stochastic block-madethich the first step is to cluster
the unknown vertex labels into blocks by using an empiristingate of the distance between two
graphon slices, and the second step is to build an empiiigtaigram to estimate the graphon. Com-
plete consistency analysis of the algorithm is derived. dlgerithm was evaluated experimentally,
and we found that the algorithm is effective in estimatingchlstructured graphons.

Implementation of the SBA algorithm is available online #ipk://github.com/airoldilab/SBA.
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