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Abstract

Non-parametric approaches for analyzing network data based on exchangeable
graph models (ExGM) have recently gained interest. The key object that defines
an ExGM is often referred to as agraphon. This non-parametric perspective on
network modeling poses challenging questions on how to makeinference on the
graphon underlying observed network data. In this paper, wepropose a computa-
tionally efficient procedure to estimate a graphon from a setof observed networks
generated from it. This procedure is based on a stochastic blockmodel approxi-
mation (SBA) of the graphon. We show that, by approximating the graphon with
a stochastic block model, the graphon can be consistently estimated, that is, the
estimation error vanishes as the size of the graph approaches infinity.

1 Introduction

Revealing hidden structures of a graph is the heart of many data analysis problems. From the well-
known small-world network to the recent large-scale data collected from online service providers
such as Wikipedia, Twitter and Facebook, there is always a momentum in seeking better and more
informative representations of the graphs [1, 14, 29, 3, 26,12]. In this paper, we develop a new com-
putational tool to study one type of non-parametric representations which recently draws significant
attentions from the community [4, 19, 5, 30, 23].

The root of the non-parametric model discussed in this paperis in the theory of exchangeable ran-
dom arrays [2, 15, 16], and it is presented in [11] as a link connecting de Finetti’s work on partial
exchangeability and graph limits [20, 6]. In a nutshell, thetheory predicts that every convergent
sequence of graphs(Gn) has a limit object that preserves many local and global properties of the
graphs in the sequence. This limit object, which is called agraphon, can be represented by mea-
surable functionsw : [0, 1]2 → [0, 1], in a way that anyw′ obtained from measure preserving
transformations ofw describes the same graphon.

Graphons are usually seen as kernel functions for random network models [18]. To construct an
n-vertex random graphG(n,w) for a givenw, we first assign a random labelui ∼ Uniform[0, 1] to
each vertexi ∈ {1, . . . , n}, and connect any two verticesi andj with probabilityw(ui, uj), i.e.,

Pr (G[i, j] = 1 | ui, uj) = w(ui, uj), i, j = 1, . . . , n, (1)

whereG[i, j] denotes the(i, j)th entry of the adjacency matrix representing a particular realization
of G(n,w) (See Figure 1). As an example, we note that the stochastic block-model is the case where
w(x, y) is a piecewise constant function.

The problem of interest is defined as follows: Given a sequence of 2T observeddirectedgraphs
G1, . . . , G2T , can we make an estimatêw of w, such that̂w → w with high probability asn→∞?
This question has been loosely attempted in the literature,but none of which has a complete solution.
For example, Lloyd et al. [19] proposed a Bayesian estimatorwithout a consistency proof; Choi and
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Figure 1: [Left] Given a graphonw : [0, 1]2 → [0, 1], we draw i.i.d. samplesui, uj from
Uniform[0,1] and assignGt[i, j] = 1 with probabilityw(ui, uj), for t = 1, . . . , 2T . [Middle]
Heat map of a graphonw. [Right] A random graph generated by the graphon shown in themiddle.
Rows and columns of the graph are ordered by increasingui, instead ofi for better visualization.

Wolfe [9] studied the consistency properties, but did not provide algorithms to estimate the graphon.
To the best of our knowledge, the only method that estimates graphons consistently, besides ours, is
USVT [8]. However, our algorithm has better complexity and outperforms USVT in our simulations.
More recently, other groups have begun exploring approaches related to ours [28, 24].

The proposed approximation procedure requiresw to be piecewise Lipschitz. The basic idea is to
approximatew by a two-dimensional step function̂w with diminishing intervals asn increases.The
proposed method is called the stochastic blockmodel approximation (SBA) algorithm, as the idea of
using a two-dimensional step function for approximation isequivalent to using the stochastic block
models [10, 22, 13, 7, 25]. The SBA algorithm is defined up to permutations of the nodes, so the
estimated graphon isnot canonical. However, this does not affect the consistency properties of the
SBA algorithm, as the consistency is measured w.r.t. the graphon that generates the graphs.

2 Stochastic blockmodel approximation: Procedure

In this section we present the proposed SBA algorithm and discuss its basic properties.

2.1 Assumptions on graphons

We assume thatw is piecewise Lipschitz, i.e., there exists a sequence of non-overlaping intervals
Ik = [αk−1, αk] defined by0 = α0 < . . . < αK = 1, and a constantL > 0 such that, for any
(x1, y1) and(x2, y2) ∈ Iij = Ii × Ij ,

|w(x1, y1)− w(x2, y2)| ≤ L (|x1 − x2|+ |y1 − y2|) .
For generality we assumew to be asymmetrici.e., w(u, v) 6= w(v, u), so that symmetric graphons
can be considered as a special case. Consequently, a random graphG(n,w) generated byw is
directed,i.e., G[i, j] 6= G[j, i].

2.2 Similarity of graphon slices

The intuition of the proposed SBA algorithm is that if the graphon is smooth, neighboring cross-
sections of the graphon should be similar. In other words, iftwo labelsui anduj are closei.e.,
|ui− uj| ≈ 0, then the difference between the row slices|w(ui, ·)−w(uj , ·)| and the column slices
|w(·, ui) − w(·, uj)| should also be small. To measure the similarity between two labels using the
graphon slices, we define the following distance

dij =
1

2

(∫ 1

0

[w(x, ui)− w(x, uj)]
2
dx+

∫ 1

0

[w(ui, y)− w(uj , y)]
2
dy

)
. (2)
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Thus,dij is small only if both row and column slices of the graphon are similar.

The usage ofdij for graphon estimation will be discussed in the next subsection. But before
we proceed, it should be noted that in practicedij has to be estimated from the observed graphs
G1, . . . , G2T . To derive an estimator̂dij of dij , it is helpful to expressdij in a way that the estima-
tors can be easily obtained. To this end, we let

cij =

∫ 1

0

w(x, ui)w(x, uj)dx and rij =

∫ 1

0

w(ui, y)w(uj , y)dy,

and expressdij asdij = 1
2

[
(cii−cij−cji+cjj)+(rii−rij−rji+rjj)

]
. Inspecting this expression,

we consider the following estimators forcij andrij :

ĉkij =
1

T 2




∑

1≤t1≤T

Gt1 [k, i]







∑

T<t2≤2T

Gt2 [k, j]


 , (3)

r̂kij =
1

T 2




∑

1≤t1≤T

Gt1 [i, k]







∑

T<t2≤2T

Gt2 [j, k]


 . (4)

Here, the superscriptk can be interpreted as the dummy variablesx andy in definingcij andrij ,
respectively. Summing all possiblek’s yields an estimator̂dij that looks similar todij :

d̂ij =
1

2

[
1

S

∑

k∈S

{(
r̂kii − r̂kij − r̂kji + r̂kjj

)
+
(
ĉkii − ĉkij − ĉkji + ĉkjj

)}
]
, (5)

whereS = {1, . . . , n}\{i, j} is the set of summation indices.

The motivation of defining the estimators in (3) and (4) is that a row of the adjacency matrixG[i, ·]
is fully characterized by the corresponding row of the graphonw(ui, ·). Thus the expected value of
1
T

(∑
1≤t1≤T Gt1 [i, ·]

)
is w(ui, ·), and hence1S

∑
k∈S r̂kij is an estimator forrij . To theoretically

justify this intuition, we will show in Section 3 that̂dij is indeed a good estimator: it is not only
unbiased, but is also concentrated rounddij for largen. Furthermore, we will show that it is possible
to use a random subset ofS instead of{1, . . . , n}\{i, j} to achieve the same asymptotic behavior.
As a result, the estimation ofdij can be performed locally in a neighborhood ofi andj, instead of
all n vertices.

2.3 Blocking the vertices

The similarity metricd̂ij discussed above suggests one simple method to approximatew by a piece-
wise constant function̂w (i.e., a stochastic block-model). GivenG1, . . . , G2T , we can cluster the
(unknown) labels{u1, . . . , un} intoK blocksB̂1, . . . , B̂K using a procedure described below. Once
the blocksB̂1, . . . , B̂K are defined, we can then determineŵ(ui, uj) by computing the empirical
frequency of edges that are present across blocksB̂i andB̂j :

ŵ(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jy∈B̂j

1

2T
(G1[ix, jy] +G2[ix, jy] + . . .+G2T [ix, jy]) , (6)

whereB̂i is the block containingui so that summingGt[x, y] overx ∈ B̂i andy ∈ B̂j yields an
estimate of the expected number of edges linking blockB̂i andB̂j.

To cluster the unknown labels{u1, . . . , un} we propose a greedy approach as shown in Algorithm
1. Starting withΩ = {u1, . . . , un}, we randomly pick a nodeip and call it thepivot. Then for all
other verticesiv ∈ Ω\{ip}, we compute the distancêdip,iv and check whether̂dip,iv < ∆2 for some

precision parameter∆ > 0. If d̂ip,iv < ∆2, then we assigniv to the same block asip. Therefore,

after scanning throughΩ once, a blockB̂1 = {ip, iv1 , iv2 , . . .} will be defined. By updatingΩ as
Ω← Ω\B̂1, the process repeats untilΩ = ∅.
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The proposed greedy algorithm is only a local solution in a sense that it does not return the globally
optimal clusters. However, as will be shown in Section 3, although the clustering algorithm is not
globally optimal, the estimated graphon̂w is still guaranteed to be a consistent estimate of the true
graphonw asn → ∞. Since the greedy algorithm is numerically efficient, it serves as a practical
computational tool to estimatew.

2.4 Main algorithm

Algorithm 1 Stochastic blockmodel approximation

Input: A set of observed graphsG1, . . . , G2T and the precision parameter∆.
Output: Estimated stochastic blockŝB1, . . . , B̂K .
Initialize: Ω = {1, . . . , n}, andk = 1.
while Ω 6= ∅ do

Randomly choose a vertexip fromΩ and assign it as the pivot for̂Bk: B̂k ← ip.
for Every other verticesiv ∈ Ω\{ip} do

Compute the distance estimated̂ip,iv .

If d̂ip,iv ≤ ∆2, then assigniv as a member of̂Bk: B̂k ← iv.
end for
UpdateΩ: Ω← Ω\B̂k.
Update counter:k ← k + 1.

end while

Algorithm 1 illustrates the pseudo-code for the proposed stochastic block-model approximation.
The complexity of this algorithm isO(TSKn), whereT is half the number of observations,S is
the size of the neighborhood,K is the number of blocks andn is number of vertices of the graph.

3 Stochastic blockmodel approximation: Theory of estimation

In this section we present the theoretical aspects of the proposed SBA algorithm. We will first
discuss the properties of the estimatord̂ij , and then show the consistency of the estimated graphon
ŵ. Details of the proofs can be found in the supplementary material.

3.1 Concentration analysis ofd̂ij

Our first theorem below shows that the proposed estimatord̂ij is both unbiased, and is concentrated
around its expected valuedij .

Theorem 1. The estimator̂dij for dij is unbiased, i.e.,E[d̂ij ] = dij . Further, for anyǫ > 0,

Pr
[∣∣∣d̂ij − dij

∣∣∣ > ǫ
]
≤ 8e−

Sǫ2

32/T+8ǫ/3 , (7)

whereS is the size of the neighborhoodS, and2T is the number of observations.

Proof. Here we only highlight the important steps to present the intuition. The basic idea of the
proof is to zoom-in a microscopic term ofr̂kij and show that it is unbiased. To this end, we use the
fact thatGt1 [i, k] andGt2 [j, k] are conditionally independent onuk to show

E[Gt1 [i, k]Gt2 [j, k] | uk] = Pr[Gt1 [i, k] = 1, Gt2 [j, k] = 1 | uk]

(a)
= Pr[Gt1 [i, k] = 1 | uk] Pr[Gt2 [j, k] = 1 | uk]

= w(ui, uk)w(uj , uk),

which then impliesE[r̂kij | uk] = w(ui, uk)w(uj , uk), and by iterated expectation we haveE[r̂kij ] =

E[E[r̂kij | uk]] = rij . The concentration inequality follows from a similar idea to bound the variance
of r̂kij and apply Bernstein’s inequality.

4



ThatGt1 [i, k] andGt2 [j, k] are conditionally independent onuk is a critical fact for the success of
the proposed algorithm. It also explains why at least 2 independently observed graphs are necessary,
for otherwise we cannot separate the probability in the second equality above marked with(a).

3.2 Choosing the number of blocks

The performance of the Algorithm 1 is sensitive to the numberof blocks it defines. On the one hand,
it is desirable to have more blocks so that the graphon can be finely approximated. But on the other
hand, if the number of blocks is too large then each block willcontain only few vertices. This is bad
because in order to estimate the value on each block, a sufficient number of vertices in each block is
required. The trade-off between these two cases is controlled by the precision parameter∆: a large
∆ generates few large clusters, while small∆ generates many small clusters. A precise relationship
between the∆ andK, the number of blocks generated the algorithm, is given in Theorem 2.

Theorem 2. Let∆ be the accuracy parameter andK be the number of blocks estimated by Algo-
rithm 1, then

Pr

[
K >

QL
√
2

∆

]
≤ 8n2e

− S∆4

128/T+16∆2/3 , (8)

whereL is the Lipschitz constant andQ is the number of Lipschitz blocks inw.

In practice, we estimate∆ using a cross-validation scheme to find the optimal 2D histogram bin
width [27]. The idea is to test a sequence of potential valuesof ∆ and seek the one that minimizes
the cross validation risk, defined as

Ĵ(∆) =
2

h(n− 1)
− n+ 1

h(n− 1)

K∑

j=1

p̂2j , (9)

wherep̂j = |B̂j |/n andh = 1/K. Algorithm 2 details the proposed cross-validation scheme.

Algorithm 2 Cross Validation

Input: GraphsG1, . . . , G2T .
Output: BlocksB̂1, . . . , B̂K , and optimal∆.
for a sequence of∆’s do

Estimate blockŝB1, . . . , B̂K fromG1, . . . , G2T . [Algorithm 1]
Computêpj = |B̂j |/n, for j = 1, . . . ,K.
ComputeĴ(∆) = 2

h(n−1) − n+1
h(n−1)

∑K
j=1 p̂

2
j , with h = 1/K.

end for
Pick the∆ with minimumĴ(∆), and the correspondinĝB1, . . . , B̂K .

3.3 Consistency of̂w

The goal of our next theorem is to show thatŵ is a consistent estimate ofw, i.e., ŵ → w asn→∞.
To begin with, let us first recall two commonly used metric:

Definition 1. The mean squared error (MSE) and mean absolute error (MAE) are defined as

MSE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

(w(uiv , ujv )− ŵ(uiv , ujv ))
2

MAE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

|w(uiv , ujv)− ŵ(uiv , ujv )| .

Theorem 3. If S ∈ Θ(n) and∆ ∈ ω

((
log(n)

n

) 1
4

)
∩ o(1), then

lim
n→∞

E[MAE(ŵ)] = 0 and lim
n→∞

E[MSE(ŵ)] = 0.
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Proof. The details of the proof can be found in the supplementary material . Here we only outline
the key steps to present the intuition of the theorem. The goal of Theorem 3 is to show convergence
of |ŵ(ui, uj)− w(ui, uj)|. The idea is to consider the following two quantities:

w(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx),

ŵ(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jy∈B̂j

1

2T
(G1[ix, jy] +G2[ix, jy] + . . .+G2T [ix, jy]) ,

so that if we can bound|w(ui, uj) − w(ui, uj)| and |w(ui, uj) − ŵ(ui, uj)|, then consequently
|ŵ(ui, uj)− w(ui, uj)| can also be bounded.

The bound for the first term|w(ui, uj) − w(ui, uj)| is shown in Lemma 1: By Algorithm 1, any
vertexiv ∈ B̂i is guaranteed to be within a distance∆ from the pivot ofB̂i. Sincew(ui, uj) is an
average over̂Bi andB̂j , by Theorem 1 a probability bound involving∆ can be obtained.

The bound for the second term|w(ui, uj)−ŵ(ui, uj)| is shown in Lemma 2. Different from Lemma
1, here we need to consider two possible situations: either the intermediate estimatew(ui, uj) is
close to the ground truthw(ui, uj), or w(ui, uj) is far from the ground truthw(ui, uj). This ac-
counts for the sum in Lemma 2. Individual bounds are derived based on Lemma 1 and Theorem 1.

Combining Lemma 1 and Lemma 2, we can then bound the error and show convergence.

Lemma 1. For anyiv ∈ B̂i andjv ∈ B̂j ,

Pr
[
|w(ui, uj)− w(uiv , ujv )| > 8∆1/2L1/4

]
≤ 32|B̂i| |B̂j|e−

S∆4

32/T+8∆2/3 . (10)

Lemma 2. For anyiv ∈ B̂i andjv ∈ B̂j ,

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
≤ 2e−256(T |B̂i| |B̂j |

√
L∆) + 32|B̂i|2|B̂j |2e−

S∆4

32/T+8∆2/3) . (11)

The conditionS ∈ Θ(n) is necessary to make Theorem 3 valid, because ifS is independent ofn,
the right hand sides of (10) and (11) cannot approach0 even ifn→∞. The condition on∆ is also
important as it forces the numerators and denominators in the exponentials of (10) and (11) to be
well behaved.

4 Experiments

In this section we evaluate the proposed SBA algorithm by showing some empirical results. For the
purpose of comparison, we consider (i) the universal singular value thresholding (USVT) [8]; (ii)
the largest-gap algorithm (LG) [7]; (iii) matrix completion from few entries (OptSpace) [17].

4.1 Estimating stochastic blockmodels

Accuracy as a function of growing graph size. Our first experiment is to evaluate the proposed
SBA algorithm for estimating stochastic blockmodels. For this purpose, we generate (arbitrarily) a
graphon

w =



0.8 0.9 0.4 0.5
0.1 0.6 0.3 0.2
0.3 0.2 0.8 0.3
0.4 0.1 0.2 0.9


 , (12)

which represents a piecewise constant function with4× 4 equi-space blocks.

Since USVT and LG use only one observed graph whereas the proposed SBA require at least2
observations, in order to make the comparison fair, we use half of the nodes for SBA by generating
two independentn2 × n

2 observed graphs. For USVT and LG, we use onen× n observed graph.

Figure 2(a) shows the asymptotic behavior of the algorithmswhenn grows. Figure 2(b) shows the
estimation error of SBA algorithm asT grows for graphs of size 200 vertices.
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Figure 2: (a) MAE reduces as graph size grows. For the fairness of the amount of data that can be
used, we usen2 × n

2 × 2 observations for SBA, andn × n × 1 observation for USVT [8] and LG
[7]. (b) MAE of the proposed SBA algorithm reduces when more observationsT is available. Both
plots are averaged over 100 independent trials.

Accuracy as a function of growing number of blocks. Our second experiment is to evaluate the
performance of the algorithms asK, the number of blocks, increases. To this end, we consider a
sequence ofK, and for eachK we generate a graphonw of K × K blocks. Each entry of the
block is a random number generated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 andT = 1. The experiment is repeated over 100 trials so that in every trial a different
graphon is generated. The result shown in Figure 3(a) indicates that while estimation error increases
asK grows, the proposed SBA algorithm still attains the lowest MAE for all K.
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Figure 3: (a) AsK increases, MAE of all three algorithm increases but SBA still attains the lowest
MAE. Here, we usen2 × n

2 × 2 observations for SBA, andn× n× 1 observation for USVT [8] and
LG [7]. (b) Estimation of graphon in the presence of missing links: As the amount of missing links
increases, estimation error also increases.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of proposed SBA algorithm when there are
missing edges in the observed graph. To model missing edges,we construct ann× n binary matrix
M with probabilityPr[M [i, j] = 0] = ξ, where0 ≤ ξ ≤ 1 defines the percentage of missing
edges. Givenξ, 2T matrices are generated with missing edges, and the observedgraphs are defined
asM1 ⊙ G1, . . . ,M2T ⊙ G2T , where⊙ denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphonŵ in the presence of missing links.
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The modification of the proposed SBA algorithm for the case missing links is minimal: when com-
puting (6), instead of averaging over allix ∈ B̂i andjy ∈ B̂j , we only averageix ∈ B̂i andjy ∈ B̂j

that are not masked out by allM ′s. Figure 3(b) shows the result of average over 100 independent
trials. Here, we consider the graphon given in (12), withn = 200 andT = 1. It is evident that SBA
outperforms its counterparts at a lower rate of missing links.

4.3 Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algorithm in estimating continuous graphons.
Here, we consider two of the graphons reported in [8]:

w1(u, v) =
1

1 + exp{−50(u2 + v2)} , and w2(u, v) = uv,

whereu, v ∈ [0, 1]. Here,w2 can be considered as a special case of the Eigenmodel [13] or latent
feature relational model [21].

The results in Figure 4 shows that while both algorithms haveimproved estimates whenn grows, the
performance depends on which ofw1 andw2 that we are studying. This suggests that in practice the
choice of the algorithm should depend on the expected structure of the graphon to be estimated: If the
graph generated by the graphon demonstrates some low-rank properties, then USVT is likely to be
a better option. For more structured or complex graphons theproposed procedure is recommended.
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Figure 4: Comparison between SBA and USVT in estimating two continuous graphonsw1 andw2.
Evidently, SBA performs better forw1 (high-rank) and worse forw2 (low-rank).

5 Concluding remarks

We presented a new computational tool for estimating graphons. The proposed algorithm approx-
imates the continuous graphon by a stochastic block-model,in which the first step is to cluster
the unknown vertex labels into blocks by using an empirical estimate of the distance between two
graphon slices, and the second step is to build an empirical histogram to estimate the graphon. Com-
plete consistency analysis of the algorithm is derived. Thealgorithm was evaluated experimentally,
and we found that the algorithm is effective in estimating block structured graphons.

Implementation of the SBA algorithm is available online at https://github.com/airoldilab/SBA.
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