
A Proof of Theorem 1

Let S be the time series with an unknown label that we wish to classify using training data. Denote
m+ , |V+|, m− , |V−| = m −m+, n+ , |R+|, n− , |R−|, and R , R+ ∪ R−. Recall that
D+ , {0, 1, . . . ,∆max}, and D , {−∆max, . . . ,−1, 0, 1, . . . ,∆max}.
As per the model, there exists a latent source V , shift ∆′ ∈ D+, and noise signal E′ such that

S = V ∗∆′ + E′. (15)

Applying a standard coupon collector’s problem result, with a training set of size n > βm logm,
then with probability at least 1−m−β+1, for each latent source V ∈ V , there exists at least one time
series R in the set R of all training data that is generated from V . Henceforth, we assume that this
event holds. In Appendix C, we elaborate on what happens if the latent sources are not uniformly
sampled.

Note that R is generated from V as

R = V ∗∆′′ + E′′, (16)

where ∆′′ ∈ D+ and E′′ is a noise signal independent of E′. Therefore, we can rewrite S in terms
of R as follows:

S = R ∗∆ + E, (17)

where ∆ = ∆′ −∆′′ ∈ D (note the change from D+ to D) and E = E′ − E′′ ∗∆. Since E′ and
E′′ are i.i.d. over time and sub-Gaussian with parameter σ, one can easily verify that E is i.i.d. over
time and sub-Gaussian with parameter

√
2σ.

We now bound the probability of error of classifier L̂(T )
θ (·; γ). The probability of error or misclassi-

fication using the first T time steps of S is given by

P
(
misclassify S using its first T time steps

)
= P(L̂

(T )
θ (S; γ) = −1|L = +1)P(L = +1)︸ ︷︷ ︸

m+/m

+P(L̂
(T )
θ (S; γ) = +1|L = −1)P(L = −1)︸ ︷︷ ︸

m−/m

. (18)

In the remainder of the proof, we primarily show how to bound P(L̂
(T )
θ (S; γ) = −1|L = +1). The

bound for P(L̂
(T )
θ (S; γ) = +1|L = −1) is almost identical. By Markov’s inequality,

P(L̂
(T )
θ (S; γ) = −1|L = +1) = P

(
1

Λ(T )(S; γ)
≥ 1

θ

∣∣∣L = +1

)
≤ θE

[
1

Λ(T )(S; γ)

∣∣∣L = +1

]
.

(19)
Now,

E
[

1

Λ(T )(S; γ)

∣∣∣L = +1

]
≤ max
r+∈R+,∆+∈D

EE
[

1

Λ(T )(r+ ∗∆+ + E; γ)

]
. (20)

With the above inequality in mind, we next bound 1/Λ(T )(r̃+ ∗ ∆̃+ + E; γ) for any choice of
r̃+ ∈ R+ and ∆̃+ ∈ D. Note that for any time series s,

1

Λ(T )(s; γ)
≤

∑
r−∈R−,
∆−∈D

exp
(
− γ‖r− ∗∆− − s‖2T

)
exp

(
− γ‖r̃+ ∗ ∆̃+ − s‖2T

) . (21)

After evaluating the above for s = r̃+ ∗ ∆̃+ + E, a bit of algebra shows that

1

Λ(T )(r̃+ ∗ ∆̃+ + E; γ)

≤
∑

r−∈R−,
∆−∈D

{
exp

(
− γ‖r̃+ ∗ ∆̃+ − r− ∗∆−‖2T

)
exp

(
− 2γ〈r̃+ ∗ ∆̃+ − r− ∗∆−, E〉T

)}
, (22)

where 〈q, q′〉T ,
∑T
t=1 q(t)q

′(t) for time series q and q′.
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Taking the expectation of (22) with respect to noise signal E, we obtain the following bound:

EE
[

1

Λ(T )(r̃+ ∗ ∆̃+ + E; γ)

]
≤ EE

[ ∑
r−∈R−,
∆−∈D

{
exp

(
− γ‖r̃+ ∗ ∆̃+ − r− ∗∆−‖2T

)
exp

(
− 2γ〈r̃+ ∗ ∆̃+ − r− ∗∆−, E〉T

)}]

(i)
=

∑
r−∈R−,
∆−∈D

exp
(
− γ‖r̃+ ∗ ∆̃+ − r− ∗∆−‖2T

) T∏
t=1

EE(t)[exp
(
− 2γ(r̃+(t+ ∆̃+)− r−(t+ ∆−))E(t)

)
]

(ii)

≤
∑

r−∈R−,
∆−∈D

exp
(
− γ‖r̃+ ∗ ∆̃+ − r− ∗∆−‖2T

) T∏
t=1

exp
(
4σ2γ2(r̃+(t+ ∆̃+)− r−(t+ ∆−))2

)
=

∑
r−∈R−,
∆−∈D

exp
(
− (γ − 4σ2γ2)‖r+ ∗∆+ − r− ∗∆−‖2T

)
≤ (2∆max + 1)n− exp

(
− (γ − 4σ2γ2)G(T )

)
, (23)

where step (i) uses independence of entries of E, step (ii) uses the fact that E(t) is zero-mean sub-
Gaussian with parameter

√
2σ, and the last line abbreviates the gap G(T ) ≡ G(T )(R+,R−,∆max).

Stringing together inequalities (19), (20), and (23), we obtain

P(L̂
(T )
θ (S; γ) = −1|L = +1) ≤ θ(2∆max + 1)n− exp

(
− (γ − 4σ2γ2)G(T )

)
. (24)

Repeating a similar argument yields

P(L̂
(T )
θ (S; γ) = +1|L = −1) ≤ 1

θ
(2∆max + 1)n+ exp

(
− (γ − 4σ2γ2)G(T )

)
. (25)

Finally, plugging (24) and (25) into (18) gives

P(L̂
(T )
θ (S; γ) 6= L) ≤ θ(2∆max + 1)

n−m+

m
exp

(
− (γ − 4σ2γ2)G(T )

)
+

1

θ
(2∆max + 1)

n+m−
m

(2∆max + 1)n+ exp
(
− (γ − 4σ2γ2)G(T )

)
=
(θm+

m
+
m−
θm

)
(2∆max + 1)n exp

(
− (γ − 4σ2γ2)G(T )

)
. (26)

This completes the proof of Theorem 1.

B Proof of Theorem 2

The proof uses similar steps as the weighted majority voting case. As before, we consider the case
when our training data sees each latent source at least once (this event happens with probability at
least 1−m−β+1).

We decompose the probability of error into terms depending on which latent source V generated S:

P(L̂
(T )
NN (S) 6= L) =

∑
v∈V

P(V = v)P(L̂
(T )
NN (S) 6= L|V = v) =

∑
v∈V

1

m
P(L̂

(T )
NN (S) 6= L|V = v).

(27)
Next, we bound each P(L̂

(T )
NN (S) 6= L|V = v) term. Suppose that v ∈ V+, i.e., v has label L = +1;

the case when v ∈ V− is similar. Then we make an error and declare L̂(T )
NN (S) = −1 when the

nearest neighbor r̂ to time series S is in the setR−, where

(r̂, ∆̂) = arg min
(r,∆)∈R×D

‖r ∗∆− S‖2T . (28)
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By our assumption that every latent source is seen in the training data, there exists r∗ ∈ R+ gener-
ated by latent source v, and so

S = r∗ ∗∆∗ + E (29)

for some shift ∆∗ ∈ D and noise signalE consisting of i.i.d. entries that are zero-mean sub-Gaussian
with parameter

√
2σ.

By optimality of (r̂, ∆̂) for optimization problem (28), we have

‖r ∗∆− (r∗ ∗∆∗ + E)‖2T ≥ ‖r̂ ∗ ∆̂− (r∗ ∗∆∗ + E)‖2T for all r ∈ R,∆ ∈ D. (30)

Plugging in r = r∗ and ∆ = ∆∗, we obtain

‖E‖2T ≥ ‖r̂ ∗ ∆̂− (r∗ ∗∆∗ + E)‖2T
= ‖(r̂ ∗ ∆̂− r∗ ∗∆∗)− E‖2T
= ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T − 2〈r̂ ∗ ∆̂− r∗ ∗∆∗, E〉T + ‖E‖2T , (31)

or, equivalently,
2〈r̂ ∗ ∆̂− r∗ ∗∆∗, E〉T ≥ ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T . (32)

Thus, given V = v ∈ V+, declaring L̂(T )
NN (S) = −1 implies the existence of r̂ ∈ R− and ∆̂ ∈ D

such that optimality condition (32) holds. Therefore,

P(L̂
(T )
NN (S) = −1|V = v)

≤ P
( ⋃
r̂∈R−,∆̂∈D

{2〈r̂ ∗ ∆̂− r∗ ∗∆∗, E〉T ≥ ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T }
)

(i)

≤ (2∆max + 1)n−P(2〈r̂ ∗ ∆̂− r∗ ∗∆∗, E〉T ≥ ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T )

≤ (2∆max + 1)n−P(exp(2λ〈r̂ ∗ ∆̂− r∗ ∗∆∗, E〉T ) ≥ exp(λ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T ))

(ii)

≤ (2∆max + 1)n− exp(−λ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T )E[exp(2λ〈r̂ ∗ ∆̂− r∗ ∗∆∗, E〉T )]

(iii)

≤ (2∆max + 1)n− exp(−λ‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T ) exp(4λ2σ2‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T )

= (2∆max + 1)n− exp(−(λ− 4λ2σ2)‖r̂ ∗ ∆̂− r∗ ∗∆∗‖2T )

≤ (2∆max + 1)n exp(−(λ− 4λ2σ2)G(T ))

(iv)

≤ (2∆max + 1)n exp
(
− 1

16σ2
G(T )

)
, (33)

where step (i) is by a union bound, step (ii) is by Markov’s inequality, step (iii) is by sub-
Gaussianity, and step (iv) is by choosing λ = 1

8σ2 .

As bound (33) also holds for P(L̂
(T )
NN (S) = +1|V = v) when instead v ∈ V−, we can now piece

together (27) and (33) to yield the final result:

P(L̂
(T )
NN (S) 6= L) =

∑
v∈V

1

m
P(L̂

(T )
NN (S) 6= L|V = v) ≤ (2∆max + 1)n exp

(
− 1

16σ2
G(T )

)
. (34)

C Handling Non-uniformly Sampled Latent Sources

When each time series generated from the latent source model is sampled uniformly at random, then
having n > m log 2m

δ (i.e., β = 1 + log 2
δ / logm) ensures that with probability at least 1 − δ

2 , our
training data sees every latent source at least once. When the latent sources aren’t sampled uniformly
at random, we show that we can simply replace the condition n > m log 2m

δ with n ≥ 8
πmin

log 2m
δ

to achieve a similar (in fact, stronger) guarantee, where πmin is the smallest probability of a particular
latent source occurring.
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Lemma 3. Suppose that the i-th latent source occurs with probability πi in the latent source model.
Denote πmin , mini∈{1,2,...,m} πi. Let ξi be the number of times that the i-th latent source appears
in the training data. If n ≥ 8

πmin
log 2m

δ , then with probability at least 1 − δ
2 , every latent source

appears strictly greater than 1
2nπmin times in the training data.

Proof. Note that ξi ∼ Bin(n, πi). We have

P
(
ξi ≤

1

2
nπmin

)
≤ P

(
ξi ≤

1

2
nπi
)

(i)

≤ exp
(
− 1

2
·

(nπi − 1
2nπi)

2

n · πi

)
= exp

(
− nπi

8

)
≤ exp

(
− nπmin

8

)
. (35)

where step (i) uses a standard binomial distribution lower tail bound. Applying a union bound,

P
( ⋃
i∈{1,2,...,m}

{
ξi ≤

1

2
nπmin

})
≤ m exp

(
− nπmin

8

)
, (36)

which is at most δ2 when n ≥ 8
πmin

log 2m
δ .

D Forecasting Trending Topics on Twitter

Twitter is a social network whose users post messages called Tweets, which are then broadcast to a
user’s followers. Often, emerging topics of interest are discussed on Twitter in real time. Inevitably,
certain topics gain sudden popularity and — in Twitter speak — begin to trend. Twitter surfaces
such topics as a list of top ten trending topics, or trends.

Data. We sampled 500 examples of trends at random from a list of June 2012 news trends and
recorded the earliest time each topic trended within the month. Before sampling, we filtered out
trends that never achieved a rank of 3 or better on the Twitter trends list5 as well as trends that lasted
for less than 30 minutes as to keep our trend examples reasonably salient. We also sampled 500
examples of non-trends at random from a list of n-grams (of sizes 1, 2, and 3) appearing in Tweets
created in June 2012, where we filter out any n-gram containing words that appeared in one of our
500 chosen trend examples. Note that as we do not know how Twitter chooses what phrases are
considered as topic phrases (and are candidates for trending topics), it’s unclear what the size of
the non-trend category is in comparison to the size of the trend category. Thus, for simplicity, we
intentionally control for the class sizes by setting them equal. In practice, one could still expressly
assemble the training data to have pre-specified class sizes and then tune θ for generalized weighted
majority voting (8). In our experiments, we just use the usual weighted majority voting (2) (i.e.,
θ = 1) to classify time series.

From these examples of trends and non-trends, we then created time series of activity for each topic
based on the rate of Tweets about that topic over time. To approximate this rate, we gathered 10% of
all Tweets from June 2012, placed them into two-minute buckets according to their timestamps, and
counted the number of Tweets in each bucket. We denote the count at the t-th time bucket as ρ(t),
which we refer to as the raw rate. We then transform the raw rate in a number of ways, summarized
in Figure 5, before using the resulting time series for classification.

We observed that trending activity is characterized by spikes above some baseline rate, whereas
non-trending activity has fewer, if any spikes. For example, a non-trending topic such as “city” has
a very high, but mostly constant rate because it is a common word. In contrast, soon-to-be-trending
topics like “Miss USA” will initially have a low rate, but will also have bursts in activity as the news
spreads. To emphasize the parts of the rate signal above the baseline and de-emphasize the parts
below the baseline, we define a baseline-normalized signal ρb(t) , ρ(t)/

∑t
τ=1 ρ(τ).

5On Twitter, trending topics compete for the top ten spots whereas we are only detecting whether a topic
will trend or not.
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Figure 5: Twitter data pre-processing pipeline: The raw rate ρ(t) counts the number of Tweets in
time bucket t. We normalize ρ(t) to make the counts relative: ρb(t) , ρ(t)/

∑t
τ=1 ρ(τ). Large

spikes are emphasized: ρb,s(t) , |ρb(t) − ρb(t − 1)|α (we use α = 1.2). Next, we smooth the
signal: ρb,s,c(t) ,

∑t
τ=t−Tsmooth+1 ρb,s(τ). Finally, we take the log: ρb,s,c,l(t) , log ρb,s,c(t).

A related observation is that the Tweet rate for a trending topic typically contains larger and more
sudden spikes than those of non-trending topics. We reward such spikes by emphasizing them,
while de-emphasizing smaller spikes. To do so, we define a baseline-and-spike-normalized rate
ρb,s(t) , |ρb(t)− ρb(t− 1)|α in terms of the already baseline-normalized rate ρb; parameter α ≥ 1
controls how much spikes are rewarded (we used α = 1.2). In addition, we convolve the result with
a smoothing window to eliminate noise and effectively measure the volume of Tweets in a sliding
window of length Tsmooth: ρb,s,c(t) ,

∑t
τ=t−Tsmooth+1 ρb,s(τ).

Finally, the spread of a topic from person to person can be thought of as a branching process in
which a population of users “affected” by a topic grows exponentially with time, with the exponent
depending on the details of the model [21]. This intuition suggests using a logarithmic scaling for
the volume of Tweets: ρb,s,c,l(t) , log ρb,s,c(t).

The resulting time series ρb,s,c,l contains data from the entire window in which data was collected.
To construct the sets of training time seriesR+ andR−, we keep only a small h-hour slice of repre-
sentative activity r for each topic. Namely, each of the final time series r used in the training data is
truncated to only contain the h hours of activity in the corresponding transformed time series ρb,s,c,l.
For time series corresponding to trending topics, these h hours are taken from the time leading up
to when the topic was first declared by Twitter to be trending. For time series corresponding to
non-trending topics, the h-hour window of activity is sampled at random from all the activity for the
topic. We empirically found that how news topics become trends tends to follow a finite number of
patterns; a few examples of these patterns are shown in Figure 3.

Experiment. For a fixed choice of parameters, we randomly divided the set of trends and non-trends
into two halves, one for training and one for testing. Weighted majority voting with the training data
was used to classify the test data. Per time series in the test data, we looked within a window of
2h hours, centered at the trend onset for trends, and sampled randomly for non-trends. We restrict
detection to this time window to avoid detecting earlier times that a topic became trending, if it
trended multiple times. We then measured the false positive rate (FPR), true positive rate (TPR),
and the time of detection if any. For trends, we computed how early or late the detection was
compared to the true trend onset. We explored the following parameters: h, the length in hours of
each example time series; T , the number of initial time steps in the observed time series s that we
use for classification; γ, the scaling parameter; Tsmooth, the width of the smoothing window. In all
cases, constant ∆max in the decision rule (2) is set to be the maximum possible, i.e., since observed
signal s has T samples, we compare s with all T -sized chunks of each time series r in training data.

For a variety of parameters, we detect trending topics before they appear on Twitter’s trending topics
list. Figure 4 (a) shows that for one such choice of parameters, we detect trending topics before
Twitter does 79% of the time, and when we do, we detect them an average of 1.43 hours earlier.
Furthermore, we achieve a TPR of 95% and a FPR of 4%. Naturally, there are tradeoffs between
the FPR, the TPR, and relative detection time that depend on parameter settings. An aggressive
parameter setting will yield early detection and a high TPR, but at the expense of a high FPR. A
conservative parameter setting will yield a low FPR, but at the expense of late detection and a low
TPR. An in-between setting can strike the right balance. We show this tradeoff in two ways. First,
by varying a single parameter at a time and fixing the rest, we generated an ROC curve that describes
the tradeoff between FPR and TPR. Figure 4 (b) shows the envelope of all ROC curves, which can
be interpreted as the best “achievable” ROC curve. Second, we broke the results up by where they
fall on the ROC curve — top (“aggressive”), bottom (“conservative”), and center (“in-between”) —
and showed the distribution of early and late relative detection times for each (Figure 4(c)).
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We discuss some fine details of the experimental setup. Due to restrictions on the Twitter data
available, while we could determine whether a trending topic is categorized as news based on user-
curated lists of “news” people on Twitter, we did not have such labels for individual Tweets. Thus,
the example time series that we use as training data contain Tweets that are both news and non-news.
We also reran our experiments using only non-news Tweets and found similar results except that we
do not detect trends as early as before; however, weighted majority voting still detects trends in
advance of Twitter 79% of the time.
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