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Abstract

Suppose k centers are fit to m points by heuristically minimizing the k-means
cost; what is the corresponding fit over the source distribution? This question is
resolved here for distributions with p ≥ 4 bounded moments; in particular, the
difference between the sample cost and distribution cost decays with m and p as
mmin{−1/4,−1/2+2/p}. The essential technical contribution is a mechanism to uni-
formly control deviations in the face of unbounded parameter sets, cost functions,
and source distributions. To further demonstrate this mechanism, a soft clustering
variant of k-means cost is also considered, namely the log likelihood of a Gaus-
sian mixture, subject to the constraint that all covariance matrices have bounded
spectrum. Lastly, a rate with refined constants is provided for k-means instances
possessing some cluster structure.

1 Introduction

Suppose a set of k centers {pi}ki=1 is selected by approximate minimization of k-means cost; how
does the fit over the sample compare with the fit over the distribution? Concretely: given m points
sampled from a source distribution ρ, what can be said about the quantities∣∣∣∣∣ 1

m

m∑
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i
‖xj − pi‖22 −

∫
min
i
‖x− pi‖22dρ(x)

∣∣∣∣∣ (k-means), (1.1)
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ln

(
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i=1

αipθi(xj)

)
−
∫

ln

(
k∑
i=1

αipθi(x)

)
dρ(x)

∣∣∣∣∣ (soft k-means), (1.2)

where each pθi denotes the density of a Gaussian with a covariance matrix whose eigenvalues lie in
some closed positive interval.

The literature offers a wealth of information related to this question. For k-means, there is firstly a
consistency result: under some identifiability conditions, the global minimizer over the sample will
converge to the global minimizer over the distribution as the sample size m increases [1]. Further-
more, if the distribution is bounded, standard tools can provide deviation inequalities [2, 3, 4]. For
the second problem, which is maximum likelihood of a Gaussian mixture (thus amenable to EM
[5]), classical results regarding the consistency of maximum likelihood again provide that, under
some identifiability conditions, the optimal solutions over the sample converge to the optimum over
the distribution [6].

The task here is thus: to provide finite sample guarantees for these problems, but eschewing bound-
edness, subgaussianity, and similar assumptions in favor of moment assumptions.
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1.1 Contribution

The results here are of the following form: givenm examples from a distribution with a few bounded
moments, and any set of parameters beating some fixed cost c, the corresponding deviations in cost
(as in eq. (1.1) and eq. (1.2)) approach O(m−1/2) with the availability of higher moments.

• In the case of k-means (cf. Corollary 3.1), p ≥ 4 moments suffice, and the rate is
O(mmin{−1/4,−1/2+2/p}). For Gaussian mixtures (cf. Theorem 5.1), p ≥ 8 moments
suffice, and the rate is O(m−1/2+3/p).

• The parameter c allows these guarantees to hold for heuristics. For instance, suppose k
centers are output by Lloyd’s method. While Lloyd’s method carries no optimality guar-
antees, the results here hold for the output of Lloyd’s method simply by setting c to be the
variance of the data, equivalently the k-means cost with a single center placed at the mean.

• The k-means and Gaussian mixture costs are only well-defined when the source distribu-
tion has p ≥ 2 moments. The condition of p ≥ 4 moments, meaning the variance has a
variance, allows consideration of many heavy-tailed distributions, which are ruled out by
boundedness and subgaussianity assumptions.

The main technical byproduct of the proof is a mechanism to deal with the unboundedness of the
cost function; this technique will be detailed in Section 3, but the difficulty and its resolution can be
easily sketched here.

For a single set of centers P , the deviations in eq. (1.1) may be controlled with an application of
Chebyshev’s inequality. But this does not immediately grant deviation bounds on another set of
centers P ′, even if P and P ′ are very close: for instance, the difference between the two costs will
grow as successively farther and farther away points are considered.

The resolution is to simply note that there is so little probability mass in those far reaches that the
cost there is irrelevant. Consider a single center p (and assume x 7→ ‖x − p‖22 is integrable); the
dominated convergence theorem grants∫
Bi

‖x− p‖22dρ(x) →
∫
‖x− p‖22dρ(x), where Bi := {x ∈ Rd : ‖x− p‖2 ≤ i}.

In other words, a ball Bi may be chosen so that
∫
Bc

i
‖x− p‖22dρ(x) ≤ 1/1024. Now consider some

p′ with ‖p− p′‖2 ≤ i. Then∫
Bc

i

‖x− p′‖22dρ(x) ≤
∫
Bc

i

(‖x− p‖2 + ‖p− p′‖2)2dρ(x) ≤ 4

∫
Bc

i

‖x− p‖22dρ(x) ≤ 1

256
.

In this way, a single center may control the outer deviations of whole swaths of other centers. Indeed,
those choices outperforming the reference score c will provide a suitable swath. Of course, it would
be nice to get a sense of the size of Bi; this however is provided by the moment assumptions.

The general strategy is thus to split consideration into outer deviations, and local deviations. The
local deviations may be controlled by standard techniques. To control outer deviations, a single pair
of dominating costs — a lower bound and an upper bound — is controlled.

This technique can be found in the proof of the consistency of k-means due to Pollard [1]. The
present work shows it can also provide finite sample guarantees, and moreover be applied outside
hard clustering.

The content here is organized as follows. The remainder of the introduction surveys related work,
and subsequently Section 2 establishes some basic notation. The core deviation technique, termed
outer bracketing (to connect it to the bracketing technique from empirical process theory), is pre-
sented along with the deviations of k-means in Section 3. The technique is then applied in Section 5
to a soft clustering variant, namely log likelihood of Gaussian mixtures having bounded spectra. As
a reprieve between these two heavier bracketing sections, Section 4 provides a simple refinement for
k-means which can adapt to cluster structure.

All proofs are deferred to the appendices, however the construction and application of outer brackets
is sketched in the text.
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1.2 Related Work

As referenced earlier, Pollard’s work deserves special mention, both since it can be seen as the origin
of the outer bracketing technique, and since it handled k-means under similarly slight assumptions
(just two moments, rather than the four here) [1, 7]. The present work hopes to be a spiritual
successor, providing finite sample guarantees, and adapting technique to a soft clustering problem.

In the machine learning community, statistical guarantees for clustering have been extensively stud-
ied under the topic of clustering stability [4, 8, 9, 10]. One formulation of stability is: if param-
eters are learned over two samples, how close are they? The technical component of these works
frequently involves finite sample guarantees, which in the works listed here make a boundedness
assumption, or something similar (for instance, the work of Shamir and Tishby [9] requires the cost
function to satisfy a bounded differences condition). Amongst these finite sample guarantees, the
finite sample guarantees due to Rakhlin and Caponnetto [4] are similar to the development here after
the invocation of the outer bracket: namely, a covering argument controls deviations over a bounded
set. The results of Shamir and Tishby [10] do not make a boundedness assumption, but the main
results are not finite sample guarantees; in particular, they rely on asymptotic results due to Pollard
[7].

There are many standard tools which may be applied to the problems here, particularly if a bound-
edness assumption is made [11, 12]; for instance, Lugosi and Zeger [2] use tools from VC theory to
handle k-means in the bounded case. Another interesting work, by Ben-david [3], develops special-
ized tools to measure the complexity of certain clustering problems; when applied to the problems
of the type considered here, a boundedness assumption is made.

A few of the above works provide some negative results and related commentary on the topic of
uniform deviations for distributions with unbounded support [10, Theorem 3 and subsequent discus-
sion] [3, Page 5 above Definition 2]. The primary “loophole” here is to constrain consideration to
those solutions beating some reference score c. It is reasonable to guess that such a condition en-
tails that a few centers must lie near the bulk of the distribution’s mass; making this guess rigorous
is the first step here both for k-means and for Gaussian mixtures, and moreover the same conse-
quence was used by Pollard for the consistency of k-means [1]. In Pollard’s work, only optimal
choices were considered, but the same argument relaxes to arbitrary c, which can thus encapsulate
heuristic schemes, and not just nearly optimal ones. (The secondary loophole is to make moment
assumptions; these sufficiently constrain the structure of the distribution to provide rates.)

In recent years, the empirical process theory community has produced a large body of work on the
topic of maximum likelihood (see for instance the excellent overviews and recent work of Wellner
[13], van der Vaart and Wellner [14], Gao and Wellner [15]). As stated previously, the choice of the
term “bracket” is to connect to empirical process theory. Loosely stated, a bracket is simply a pair
of functions which sandwich some set of functions; the bracketing entropy is then (the logarithm of)
the number of brackets needed to control a particular set of functions. In the present work, brackets
are paired with sets which identify the far away regions they are meant to control; furthermore,
while there is potential for the use of many outer brackets, the approach here is able to make use of
just a single outer bracket. The name bracket is suitable, as opposed to cover, since the bracketing
elements need not be members of the function class being dominated. (By contrast, Pollard’s use in
the proof of the consistency of k-means was more akin to covering, in that remote fluctuations were
compared to that of a a single center placed at the origin [1].)

2 Notation

The ambient space will always be the Euclidean space Rd, though a few results will be stated for a
general domain X . The source probability measure will be ρ, and when a finite sample of size m
is available, ρ̂ is the corresponding empirical measure. Occasionally, the variable ν will refer to an
arbitrary probability measure (where ρ and ρ̂ will serve as relevant instantiations). Both integral and
expectation notation will be used; for example, E(f(X)) = Eρ(f(X) =

∫
f(x)dρ(x); for integrals,∫

B
f(x)dρ(x) =

∫
f(x)1[x ∈ B]dρ(x), where 1 is the indicator function. The moments of ρ are

defined as follows.
Definition 2.1. Probability measure ρ has order-pmoment boundM with respect to norm ‖·‖ when
Eρ‖X − Eρ(X)‖l ≤M for 1 ≤ l ≤ p.
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For example, the typical setting of k-means uses norm ‖·‖2, and at least two moments are needed for
the cost over ρ to be finite; the condition here of needing 4 moments can be seen as naturally arising
via Chebyshev’s inequality. Of course, the availability of higher moments is beneficial, dropping the
rates here from m−1/4 down to m−1/2. Note that the basic controls derived from moments, which
are primarily elaborations of Chebyshev’s inequality, can be found in Appendix A.

The k-means analysis will generalize slightly beyond the single-center cost x 7→ ‖x − p‖22 via
Bregman divergences [16, 17].
Definition 2.2. Given a convex differentiable function f : X → R, the corresponding Bregman
divergence is Bf (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉.

Not all Bregman divergences are handled; rather, the following regularity conditions will be placed
on the convex function.
Definition 2.3. A convex differentiable function f is strongly convex with modulus r1 and has Lip-
schitz gradients with constant r2, both respect to some norm ‖ · ‖, when f (respectively) satisfies

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− r1α(1− α)

2
‖x− y‖2,

‖∇f(x)−∇f(y)‖∗ ≤ r2‖x− y‖,
where x, y ∈ X , α ∈ [0, 1], and ‖ · ‖∗ is the dual of ‖ · ‖. (The Lipschitz gradient condition is
sometimes called strong smoothness.)

These conditions are a fancy way of saying the corresponding Bregman divergence is sandwiched
between two quadratics (cf. Lemma B.1).
Definition 2.4. Given a convex differentiable function f : Rd → R which is strongly convex and
has Lipschitz gradients with respective constants r1, r2 with respect to norm ‖ · ‖, the hard k-means
cost of a single point x according to a set of centers P is

φf (x;P ) := min
p∈P

Bf (x, p).

The corresponding k-means cost of a set of points (or distribution) is thus computed as
Eν(φf (X;P )), and letHf (ν; c, k) denote all sets of at most k centers beating cost c, meaning

Hf (ν; c, k) := {P : |P | ≤ k,Eν(φf (X;P )) ≤ c}.

For example, choosing norm ‖ · ‖2 and convex function f(x) = ‖x‖22 (which has r1 = r2 = 2), the
corresponding Bregman divergence is Bf (x, y) = ‖x− y‖22, and Eρ̂(φf (X;P )) denotes the vanilla
k-means cost of some finite point set encoded in the empirical measure ρ̂.

The hard clustering guarantees will work with Hf (ν; c, k), where ν can be either the source distri-
bution ρ, or its empirical counterpart ρ̂. As discussed previously, it is reasonable to set c to simply
the sample variance of the data, or a related estimate of the true variance (cf. Appendix A).

Lastly, the class of Gaussian mixture penalties is as follows.
Definition 2.5. Given Gaussian parameters θ := (µ,Σ), let pθ denote Gaussian density

pθ(x) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
.

Given Gaussian mixture parameters (α,Θ) = ({αi}ki=1, {θi}ki=1) with α ≥ 0 and
∑
i αi = 1

(written α ∈ ∆), the Gaussian mixture cost at a point x is

φg(x; (α,Θ)) := φg(x; {(αi, θi) = (αi, µi, Σi)}ki=1) := ln

(
k∑
i=1

αipθi(x)

)
,

Lastly, given a measure ν, bound k on the number of mixture parameters, and spectrum bounds
0 < σ1 ≤ σ2, let Smog(ν; c, k, σ1, σ2) denote those mixture parameters beating cost c, meaning

Smog(ν; c, k, σ1, σ2) := {(α,Θ) : σ1I � Σi � σ2I, |α| ≤ k, α ∈ ∆,Eν (φg(X; (α,Θ))) ≤ c} .

While a condition of the form Σ � σ1I is typically enforced in practice (say, with a Bayesian prior,
or by ignoring updates which shrink the covariance beyond this point), the condition Σ � σ2I is
potentially violated. These conditions will be discussed further in Section 5.
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3 Controlling k-means with an Outer Bracket

First consider the special case of k-means cost.

Corollary 3.1. Set f(x) := ‖x‖22, whereby φf is the k-means cost. Let real c ≥ 0 and probability
measure ρ be given with order-p moment bound M with respect to ‖ · ‖2, where p ≥ 4 is a positive
multiple of 4. Define the quantities

c1 := (2M)1/p +
√

2c, M1 := M1/(p−2) +M2/p, N1 := 2 + 576d(c1 + c21 +M1 +M2
1 ).

Then with probability at least 1 − 3δ over the draw of a sample of size m ≥
max{(p/(2p/4+2e))2, 9 ln(1/δ)}, every set of centers P ∈ Hf (ρ̂; c, k) ∪Hf (ρ; c, k) satisfies∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣
≤ m−1/2+min{1/4,2/p}

(
4 + (72c21 + 32M2

1 )

√
1

2
ln

(
(mN1)dk

δ

)
+

√
2p/4ep

8m1/2

(
2

δ

)4/p
)
.

One artifact of the moment approach (cf. Appendix A), heretofore ignored, is the term (2/δ)4/p.
While this may seem inferior to ln(2/δ), note that the choice p = 4 ln(2/δ)/ ln(ln(2/δ)) suffices to
make the two equal.

Next consider a general bound for Bregman divergences. This bound has a few more parameters
than Corollary 3.1. In particular, the term ε, which is instantiated to m−1/2+1/p in the proof of
Corollary 3.1, catches the mass of points discarded due to the outer bracket, as well as the resolution
of the (inner) cover. The parameter p′, which controls the tradeoff between m and 1/δ, is set to p/4
in the proof of Corollary 3.1.

Theorem 3.2. Fix a reference norm ‖ · ‖ throughout the following. Let probability measure ρ be
given with order-pmoment boundM where p ≥ 4, a convex function f with corresponding constants
r1 and r2, reals c and ε > 0, and integer 1 ≤ p′ ≤ p/2− 1 be given. Define the quantities

RB := max

{
(2M)1/p +

√
4c/r1,max

i∈[p′]
(M/ε)1/(p−2i)

}
,

RC :=
√
r2/r1

(
(2M)1/p +

√
4c/r1 +RB

)
+RB ,

B :=
{
x ∈ Rd : ‖x− E(X)‖ ≤ RB

}
,

C :=
{
x ∈ Rd : ‖x− E(X)‖ ≤ RC

}
,

τ := min

{√
ε

2r2
,

ε

2(RB +RC)r2

}
,

and letN be a cover of C by ‖ · ‖-balls with radius τ ; in the case that ‖ · ‖ is an lp norm, the size of
this cover has bound

|N | ≤
(

1 +
2RCd

τ

)d
.

Then with probability at least 1 − 3δ over the draw of a sample of size m ≥
max{p′/(e2p′ε), 9 ln(1/δ)}, every set of centers P ∈ Hf (ρ; c, k) ∪Hf (ρ̂; c, k) satisfies∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ 4ε+4r2R
2
C

√
1

2m
ln

(
2|N |k
δ

)
+

√
e2p′εp′

2m

(
2

δ

)1/p′

.

3.1 Compactification via Outer Brackets

The outer bracket is defined as follows.

Definition 3.3. An outer bracket for probability measure ν at scale ε consists of two triples, one
each for lower and upper bounds.
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1. The function `, function class Z`, and set B` satisfy two conditions: if x ∈ Bc` and φ ∈ Z`,
then `(x) ≤ φ(x), and secondly |

∫
Bc

`
`(x)dν(x)| ≤ ε.

2. Similarly, function u, function class Zu, and set Bu satisfy: if x ∈ Bcu and φ ∈ Zu, then
u(x) ≥ φ(x), and secondly |

∫
Bc

u
u(x)dν(x)| ≤ ε.

Direct from the definition, given bracketing functions (`, u), a bracketed function φf (·;P ), and the
bracketing set B := Bu ∪B`,

−ε ≤
∫
Bc

`(x)dν(x) ≤
∫
Bc

φf (x;P )dν(x) ≤
∫
Bc

u(x)dν(x) ≤ ε; (3.4)

in other words, as intended, this mechanism allows deviations on Bc to be discarded. Thus to
uniformly control the deviations of the dominated functions Z := Zu ∪ Z` over the set Bc, it
suffices to simply control the deviations of the pair (`, u).

The following lemma shows that a bracket exists for {φf (·;P ) : P ∈ Hf (ν; c, k)} and compact B,
and moreover that this allows sampled points and candidate centers in far reaches to be deleted.
Lemma 3.5. Consider the setting and definitions in Theorem 3.2, but additionally define

M ′ := 2p
′
ε, `(x) := 0, u(x) := 4r2‖x− E(X)‖2, ερ̂ := ε+

√
M ′ep′

2m

(
2

δ

)1/p′

.

The following statements hold with probability at least 1 − 2δ over a draw of size m ≥
max{p′/(M ′e), 9 ln(1/δ)}.

1. (u, `) is an outer bracket for ρ at scale ερ := ε with sets B` = Bu = B and Z` = Zu =
{φf (·;P ) : P ∈ Hf (ρ̂; c, k)∪Hf (ρ; c, k)}, and furthermore the pair (u, `) is also an outer
bracket for ρ̂ at scale ερ̂ with the same sets.

2. For every P ∈ Hf (ρ̂; c, k) ∪Hf (ρ; c, k),∣∣∣∣∫ φf (x;P )dρ(x)−
∫
B

φf (x;P ∩ C)dρ(x)

∣∣∣∣ ≤ ερ = ε.

and ∣∣∣∣∫ φf (x;P )dρ̂(x)−
∫
B

φf (x;P ∩ C)dρ̂(x)

∣∣∣∣ ≤ ερ̂.
The proof of Lemma 3.5 has roughly the following outline.

1. Pick some ball B0 which has probability mass at least 1/4. It is not possible for an element
of Hf (ρ̂; c, k) ∪ Hf (ρ; c, k) to have all centers far from B0, since otherwise the cost is
larger than c. (Concretely, “far from” means at least

√
4c/r1 away; note that this term

appears in the definitions of B and C in Theorem 3.2.) Consequently, at least one center
lies near to B0; this reasoning was also the first step in the k-means consistency proof due
to k-means Pollard [1].

2. It is now easy to dominate P ∈ Hf (ρ̂; c, k) ∪ Hf (ρ; c, k) far away from B0. In particular,
choose any p0 ∈ B0 ∩ P , which was guaranteed to exist in the preceding point; since
minp∈P Bf (x, p) ≤ Bf (x, p0) holds for all x, it suffices to dominate p0. This domination
proceeds exactly as discussed in the introduction; in fact, the factor 4 appeared there, and
again appears in the u here, for exactly the same reason. Once again, similar reasoning can
be found in the proof by Pollard [1].

3. Satisfying the integral conditions over ρ is easy: it suffices to make B huge. To control the
size of B0, as well as the size of B, and moreover the deviations of the bracket over B, the
moment tools from Appendix A are used.

Now turning consideration back to the proof of Theorem 3.2, the above bracketing allows the re-
moval of points and centers outside of a compact set (in particular, the pair of compact sets B and
C, respectively). On the remaining truncated data and set of centers, any standard tool suffices; for
mathematical convenience, and also to fit well with the use of norms in the definition of moments
as well as the conditions on the convex function f providing the divergence Bf , norm structure
used throughout the other properties, covering arguments are used here. (For details, please see
Appendix B.)
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4 Interlude: Refined Estimates via Clamping

So far, rates have been given that guarantee uniform convergence when the distribution has a few
moments, and these rates improve with the availability of higher moments. These moment condi-
tions, however, do not necessarily reflect any natural cluster structure in the source distribution. The
purpose of this section is to propose and analyze another distributional property which is intended
to capture cluster structure. To this end, consider the following definition.
Definition 4.1. Real numberR and compact setC are a clamp for probability measure ν and family
of centers Z and cost φf at scale ε > 0 if every P ∈ Z satisfies

|Eν(φf (X;P ))− Eν (min {φf (X;P ∩ C) , R})| ≤ ε.

Note that this definition is similar to the second part of the outer bracket guarantee in Lemma 3.5,
and, predictably enough, will soon lead to another deviation bound.
Example 4.2. If the distribution has bounded support, then choosing a clamping valueR and clamp-
ing set C respectively slightly larger than the support size and set is sufficient: as was reasoned in
the construction of outer brackets, if no centers are close to the support, then the cost is bad. Corre-
spondingly, the clamped set of functions Z should again be choices of centers whose cost is not too
high.

For a more interesting example, suppose ρ is supported on k small balls of radius R1, where the
distance between their respective centers is some R2 � R1. Then by reasoning similar to the
bounded case, all choices of centers achieving a good cost will place centers near to each ball, and
thus the clamping value can be taken closer to R1. �

Of course, the above gave the existence of clamps under favorable conditions. The following shows
that outer brackets can be used to show the existence of clamps in general. In fact, the proof is very
short, and follows the scheme laid out in the bounded example above: outer bracketing allows the
restriction of consideration to a bounded set, and some algebra from there gives a conservative upper
bound for the clamping value.
Proposition 4.3. Suppose the setting and definitions of Lemma 3.5, and additionally define

R := 2((2M)2/p +R2
B).

Then (C,R) is a clamp for measure ρ and centerHf (ρ; c, k) at scale ε, and with probability at least
1 − 3δ over a draw of size m ≥ max{p′/(M ′e), 9 ln(1/δ)}, it is also a clamp for ρ̂ and centers
Hf (ρ̂; c, k) at scale ερ̂.

The general guarantee using clamps is as follows. The proof is almost the same as for Theorem 3.2,
but note that this statement is not used quite as readily, since it first requires the construction of
clamps.
Theorem 4.4. Fix a norm ‖ · ‖. Let (R,C) be a clamp for probability measure ρ and empirical
counterpart ρ̂ over some center class Z and cost φf at respective scales ερ and ερ̂, where f has
corresponding convexity constants r1 and r2. Suppose C is contained within a ball of radius RC ,
let ε > 0 be given, define scale parameter

τ := min

{√
ε

2r2
,
r1ε

2r2R3

}
,

and let N be a cover of C by ‖ · ‖-balls of radius τ (as per lemma B.4, if ‖ · ‖ is an lp norm, then
|N | ≤ (1 + (2RCd)/τ)d suffices). Then with probability at least 1− δ over the draw of a sample of
size m ≥ p′/(M ′e), every set of centers P ∈ Z satisfies∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ 2ε+ ερ + ερ̂ +R2

√
1

2m
ln

(
2|N |k
δ

)
.

Before adjourning this section, note that clamps and outer brackets disagree on the treatment of the
outer regions: the former replaces the cost there with the fixed value R, whereas the latter uses the
value 0. On the technical side, this is necessitated by the covering argument used to produce the
final theorem: if the clamping operation instead truncated beyond a ball of radiusR centered at each
p ∈ P , then the deviations would be wild as these balls moved and suddenly switched the value at a
point from 0 to something large. This is not a problem with outer bracketing, since the same points
(namely Bc) are ignored by every set of centers.
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5 Mixtures of Gaussians

Before turning to the deviation bound, it is a good place to discuss the condition σ1I � Σ � σ2I ,
which must be met by every covariance matrix of every constituent Gaussian in a mixture.

The lower bound σ1I � Σ, as discussed previously, is fairly common in practice, arising either
via a Bayesian prior, or by implementing EM with an explicit condition that covariance updates are
discarded when the eigenvalues fall below some threshold. In the analysis here, this lower bound is
used to rule out two kinds of bad behavior.

1. Given a budget of at least 2 Gaussians, and a sample of at least 2 distinct points, arbitrarily
large likelihood may be achieved by devoting one Gaussian to one point, and shrinking its
covariance. This issue destroys convergence properties of maximum likelihood, since the
likelihood score may be arbitrarily large over every sample, but is finite for well-behaved
distributions. The condition σ1I � Σ rules this out.

2. Another phenomenon is a “flat” Gaussian, meaning a Gaussian whose density is high along
a lower dimensional manifold, but small elsewhere. Concretely, consider a Gaussian over
R2 with covariance Σ = diag(σ, σ−1); as σ decreases, the Gaussian has large density on
a line, but low density elsewhere. This phenomenon is distinct from the preceding in that
it does not produce arbitrarily large likelihood scores over finite samples. The condition
σ1I � Σ rules this situation out as well.

In both the hard and soft clustering analyses here, a crucial early step allows the assertion that good
scores in some region mean the relevant parameter is nearby. For the case of Gaussians, the condition
σ1I � Σ makes this problem manageable, but there is still the possibility that some far away, fairly
uniform Gaussian has reasonable density. This case is ruled out here via σ2I � Σ.
Theorem 5.1. Let probability measure ρ be given with order-pmoment boundM according to norm
‖ · ‖2 where p ≥ 8 is a positive multiple of 4, covariance bounds 0 < σ1 ≤ σ2 with σ1 ≤ 1 for
simplicity, and real c ≤ 1/2 be given. Then with probability at least 1 − 5δ over the draw of a
sample of size m ≥ max

{
(p/(2p/4+2e))2, 8 ln(1/δ), d2 ln(πσ2)2 ln(1/δ)

}
, every set of Gaussian

mixture parameters (α,Θ) ∈ Smog(ρ̂; c, k, σ1, σ2) ∪ Smog(ρ; c, k, σ1, σ2) satisfies∣∣∣∣∫ φg(x; (α,Θ))dρ(x)−
∫
φg(x; (α,Θ))dρ̂(x)

∣∣∣∣
= O

(
m−1/2+3/p

(
1 +

√
ln(m) + ln(1/δ) + (1/δ)4/p

))
,

where the O(·) drops numerical constants, polynomial terms depending on c, M , d, and k, σ2/σ1,
and ln(σ2/σ1), but in particular has no sample-dependent quantities.

The proof follows the scheme of the hard clustering analysis. One distinction is that the outer bracket
now uses both components; the upper component is the log of the largest possible density — indeed,
it is ln((2πσ1)−d/2) — whereas the lower component is a function mimicking the log density of
the steepest possible Gaussian — concretely, the lower bracket’s definition contains the expression
ln((2πσ2)−d/2) − 2‖x − Eρ(X)‖22/σ1, which lacks the normalization of a proper Gaussian, high-
lighting the fact that bracketing elements need not be elements of the class. Superficially, a second
distinction with the hard clustering case is that far away Gaussians can not be entirely ignored on
local regions; the influence is limited, however, and the analysis proceeds similarly in each case.
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A Moment Bounds

This section provides the basic probability controls resulting from moments. The material deals with
the following slight generalization of the bounded moment definition from Section 2.
Definition A.1. A function τ : X → Rd has order-p moment bound M for probability measure ρ
with respect to norm ‖ · ‖ if Eρ(‖τ(X)‖l) ≤M for all 1 ≤ l ≤ p. (For convenience, measure ρ and
norm ‖ · ‖ will be often be implicit.)

To connect this to the earlier definition, simply choose the map τ(x) := x − Eρ(X). As was the
case in Section 2, this definition requires a uniform bound across all lth moments for 1 ≤ l ≤ p. Of
course, working with a probability measure implies these moments are all finite when just the pth

moment is finite. The significance of working with a bound across all moments will be discussed
again in the context of Lemma A.3 below.

The first result controls the measures of balls thanks to moments. This result is only stated for the
source distribution ρ, but Hoeffding’s inequality suffices to control ρ̂.
Lemma A.2. Suppose τ has order-p moment bound M . Then for any ε > 0,

Pr
[
‖τ(X)‖ ≤ (M/ε)1/p

]
≥ 1− ε.

Proof. If M = 0, the result is immediate. Otherwise, when M > 0, for any R > 0, by Chebyshev’s
inequality,

Pr [‖τ(X)‖ < R] = 1− Pr [‖τ(X)‖ ≥ R] ≥ 1− E‖τ(X)‖p

Rp
≥ 1− M

Rp
;

the result follows by choosing R := (M/ε)1/p.

The following fact will be the basic tool for controlling empirical averages via moments. Both the
statement and proof are close to one by Tao [18, Equation 7], which rather than bounded moments
uses boundedness (almost surely). As discussed previously, the term 1/δ1/l overtakes ln(1/δ) when
l = ln(1/δ)/ ln(ln(1/δ)).

For simplicity, this result is stated in terms of univariate random variables; to connect with the earlier
development, the random variable X will be substituted with the map x 7→ ‖τ(x)‖.
Lemma A.3. (Cf. Tao [18, Equation 7].) Let m i.i.d. copies {Xi}mi=1 of a random variable X ,
even integer p ≥ 2, real M > 0 with E(|X − E(X)|l) ≤ M for 2 ≤ l ≤ p, and ε > 0 be given. If
m ≥ p/(Me), then

Pr

(∣∣∣∣∣ 1n∑
i

Xi − E(X)

∣∣∣∣∣ ≥ ε
)
≤ 2

(ε
√
m)p

(
Mpe

2

)p/2
.

In other words, with probability at least 1− δ over a draw of size m ≥ p/(Me),∣∣∣∣∣ 1n∑
i

Xi − E(X)

∣∣∣∣∣ ≤
√
Mpe

2m

(
2

δ

)1/p

.

Proof. Without loss of generality, suppose E(X1) = 0 (i.e., given Y1 with E(Y1) 6= 0, work with
Xi := Yi − E(Y1)). By Chebyshev’s inequality,

Pr

(∣∣∣∣∣ 1

m

∑
i

Xi

∣∣∣∣∣ ≥ ε
)
≤

E
∣∣ 1
m

∑
iXi

∣∣p
εp

=
E |
∑
iXi|p

(mε)p
. (A.4)

Recalling p is even, consider the term

E

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
p

= E

(∑
i

Xi

)p
=

∑
i1,i2,...,ip∈[m]

E

 p∏
j=1

Xij

 .
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If some ij is equal to none of the others, then, by independence, a term E(Xij ) = 0 is introduced
and the product vanishes; thus the product is nonzero when each ij has some copy ij = ij′ , and
thus there are at most p/2 distinct values amongst {ij}pj=1. Each distinct value contributes a term
E(X l) ≤ E(|X|l) ≤M for some 2 ≤ l ≤ p, and thus

E

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
p

≤
p/2∑
r=1

MrNr, (A.5)

whereNr is the number of ways to choose a multiset of size p from [m], subject to the constraint that
each number appears at least twice, and at most r distinct numbers appear. One way to over-count
this is to first choose a subset of size r from m, and then draw from it (with repetition) p times:

Nr ≤
(
m

r

)
rp ≤ mrrp

r!
≤ mrrp

(r/e)r
= (me)rrp−r.

Plugging this into eq. (A.5), and thereafter re-indexing with r := p/2− j,

E

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
p

≤
p/2∑
r=1

(Mme)rrp−r ≤
p/2∑
r=1

(Mme)r(p/2)p−r

≤
p/2∑
j=0

(Mme)p/2−j(p/2)p/2+j ≤
(
Mmpe

2

)p/2 p/2∑
j=0

( p

2Mme

)j
.

Since p ≤Mme,

E

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
p

≤ 2

(
Mmpe

2

)p/2
,

and the result follows by plugging this into eq. (A.4).

Thanks to Chebyshev’s inequality, proving Lemma A.3 boils down to controlling E|
∑
iXi|p, which

here relied on a combinatorial scheme by Tao [18, Equation 7]. There is, however, another approach
to controlling this quantity, namely Rosenthal inequalities, which write this pth moment of the sum
in terms of the 2nd and pth moments of individual random variables (general material on these bounds
can be found in the book of Boucheron et al. [12, Section 15.4], however the specific form provided
here is most easily presented by Pinelis and Utev [19]). While Rosenthal inequalities may seem a
more elegant approach, they involve different constants, and thus the approach and bound here are
followed instead to suggest further work on how to best control E|

∑
iXi|p.

Returning to task, as was stated in the introduction, the dominated convergence theorem provides
that

∫
Bi
‖x‖22dρ(x) →

∫
‖x‖22dρ(x) (assuming integrability of x 7→ ‖x‖22), where the sequence of

balls {Bi}∞i=1 grow in radius without bound; moment bounds allow the rate of this process to be
quantified as follows.

Lemma A.6. Suppose τ has order-p moment bound M , and let 0 < k < p be given. Then for any
ε > 0, the ball

B :=
{
x ∈ X : ‖τ(X)‖ ≤ (M/ε)1/(p−k)

}
satisfies ∫

Bc

‖τ(x)‖kdρ(x) ≤ ε.

Proof. Let the B be given as specified; an application of Lemma A.2 with ε′ := (εp/Mk)1/(p−k)

yields ∫
1[x ∈ Bc]dρ(x) = Pr[‖τ(x)‖ > (M/ε)1/(p−k)] = Pr[‖τ(x)‖ > (M/ε′)1/p] ≤ ε′.
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By Hölder’s inequality with conjugate exponents p/k and p/(p−k) (where the condition 0 < k < p
means each lies within (1,∞)),∫

Bc

‖τ(x)‖kdρ(x) =

∫
‖τ(x)‖k1[x ∈ Bc]dρ(x)

≤
(∫
‖τ(x)‖k(p/k)dρ(x)

)k/p(∫
1[x ∈ Bc]p/(p−k)dρ(x)

)(p−k)/p

≤ (M)
k/p

(
εp/(p−k)

Mk/(p−k)

)(p−k)/p

= ε

as desired.

Lastly, thanks to the moment-based deviation inequality in Lemma A.3, the deviations on this outer
region may be controlled. Note that in order to control the k-means cost (i.e., an exponent k = 2),
at least 4 moments are necessary (p ≥ 4).

Lemma A.7. Let integers k ≥ 1 and p′ ≥ 1 be given, and set p̃ := k(p′+1). Suppose τ has order-p̃
moment bound M , and let ε > 0 be arbitrary. Define the radius R and ball B as

R := max{(M/ε)1/(p̃−ik) : 1 ≤ i < p̃/k} and B := {x ∈ X : ‖τ(x)‖ ≤ R} ,

and setM ′ := 2p
′
ε. With probability at least 1−δ over the draw of a sample of sizem ≥ p′/(M ′e),∣∣∣∣∫
Bc

‖τ(x)‖kdρ̂(x)−
∫
Bc

‖τ(x)‖kdρ(x)

∣∣∣∣ ≤
√
M ′ep′

2m

(
2

δ

)1/p′

.

Proof. Consider a fixed 1 ≤ i < p̃/k = p′ + 1, and set l = ik. Let Bl be the ball provided by
Lemma A.6 for exponent l. Since B ⊇ Bl,∫

Bc

‖τ(x)‖ldρ(x) ≤
∫
Bc

l

‖τ(x)‖ldρ(x) ≤ ε.

As such, by Minkowski’s inequality, since z 7→ zl is convex for l ≥ 1,(∫ ∣∣∣∣‖τ(x)‖1[x ∈ Bc]−
∫
Bc

‖τ(x)‖dρ(x)

∣∣∣∣l dρ(x)

)1/l

≤
(∫

Bc

‖τ(x)‖ldρ(x)

)1/l

+

(∫
Bc

‖τ(x)‖dρ(x)

)l/l
≤ 2

(∫
Bc

‖τ(x)‖ldρ(x)

)1/l

,

meaning∫ ∣∣∣∣‖τ(x)‖1[x ∈ Bc]−
∫
Bc

‖τ(x)‖dρ(x)

∣∣∣∣l dρ(x) ≤ 2l
∫
Bc

‖τ(x)‖l ≤ 2l
∫
Bc

l

‖τ(x)‖l ≤ 2lε.

Since l = ik had 1 ≤ i < p̃/k = p′ + 1 arbitrary, it follows that the map x 7→ ‖τ(x)‖k1[x ∈ Bc]
has its first p′ moments bounded by 2p

′
ε.

The finite sample bounds will now proceed with an application of Lemma A.3, where the random
variable X will be the map x 7→ ‖τ(x)‖k1[x ∈ Bc]. Plugging the above moment bounds for this
random variable into Lemma A.3, the result follows.
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B Deferred Material from Section 3

Before proceeding with the main proofs, note that Bregman divergences in the setting here are
sandwiched between quadratics.
Lemma B.1. If differentiable f is r1 strongly convex with respect to ‖ · ‖, then Bf (x, y) ≥
r1‖x − y‖2. If differentiable f has Lipschitz gradients with parameter r2 with respect to ‖ · ‖,
then Bf (x, y) ≤ r2‖x− y‖2.

Proof. The first part (strong convexity) is standard (see for instance the proof by Shalev-Shwartz [20,
Lemma 13], or a similar proof by Hiriart-Urruty and Lemaréchal [21, Theorem B.4.1.4]). For the
second part, by the fundamental theorem of calculus, properties of norm duality, and the Lipschitz
gradient property,

f(x) = f(y) + 〈∇f(y), x− y〉+

∫ 1

0

〈∇f(y + t(x− y))−∇f(y), x− y〉 dt

≤ f(y) + 〈∇f(y), x− y〉+

∫ 1

0

‖∇f(y + t(x− y))−∇f(y)‖∗‖x− y‖dt

≤ f(y) + 〈∇f(y), x− y〉+
r2

2
‖x− y‖2.

(The preceding is also standard; see for instance the beginning of a proof by Hiriart-Urruty and
Lemaréchal [21, Theorem E.4.2.2], which only differs by fixing the norm ‖ · ‖2.)

B.1 Proof of Lemma 3.5

The first step is the following characterization of Hf (ν; c, k): at least one center must fall within
some compact set. (The lemma works more naturally with the contrapositive.) The proof by Pollard
[1] also started by controlling a single center.
Lemma B.2. Consider the setting of Lemma 3.5, and additionally define the two balls

B0 :=
{
x ∈ Rd : ‖x− Eρ(X)‖ ≤ (2M)1/p

}
,

C0 :=
{
x ∈ Rd : ‖x− Eρ(X)‖ ≤ (2M)1/p +

√
4c/r1

}
,

Then ρ(B0) ≥ 1/2, and for any center set P , if P ∩C0 = ∅ then Eρ(φf (X;P )) ≥ 2c. Furthermore,
with probability at least 1− δ over a draw from ρ of size at least

m ≥ 9 ln

(
1

δ

)
.

then ρ̂(B0) > 1/4 and P ∩ C0 = ∅ implies Eρ̂(φf (X;P )) > c.

Proof. The guarantee ρ(B0) ≥ 1/2 is direct from Lemma A.2 with moment map τ(x) := x −
Eρ(X). By Hoeffding’s inequality and the lower bound on m, with probability at least 1− δ,

ρ̂(B0) ≥ ρ(B0)−

√
1

2m
ln

(
1

δ

)
>

1

4
.

By the definition of C0, every p ∈ Cc0 and x ∈ B0 satisfies
Bf (x, p) ≥ r1‖x− p‖2 ≥ 4c.

Now let ν denote either ρ or ρ̂; then for any set of centers P with P ∩ C0 = ∅ (meaning P ⊆ Cc0),∫
φf (x;P )dν(x) =

∫
min
p∈P

Bf (x, p)dν(x)

≥
∫
B0

min
p∈P

Bf (x, p)dν(x)

≥
∫
B0

min
p∈P

4cdν(x)

= 4cν(B0).

Instantiating ν with ρ or ρ̂, the results follow.
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With this tiny handle on the structure of a set of centers P satisfying φf (x;P ) ≤ c, the proof of
Lemma 3.5 follows.

Proof of Lemma 3.5. Throughout both sections, let B0 and C0 be as defined in Lemma B.2; it fol-
lows by Lemma B.2, with probability at least 1 − δ, that P ∈ Hf (ρ; c, k) ∪ Hf (ρ̂; c, k) implies
P ∩ C0 6= ∅. Henceforth discard this failure event, and fix any P ∈ Hf (ρ; c, k) ∪Hf (ρ̂; c, k).

1. Since P ∩C0 6= ∅, fix some p0 ∈ P ∩C0. SinceB ⊇ C0 by definition, it follows, for every
x ∈ Bc that

φf (x;P ) = min
p∈P

Bf (x, p) ≤ r2‖x− p0‖2 ≤ r2(‖x− Eρ(X)‖+ ‖p0 − Eρ(X)‖)2

≤ 4r2‖x− Eρ(X)‖2 = u(x).

Additionally,
`(x) = 0 ≤ min

p∈P
r1‖x− p‖2 ≤ φf (x;P ),

meaning u and ` properly bracket Z` = Zu over Bc; what remains is to control their mass
over Bc.

Since ` = 0, ∣∣∣∣∫
Bc

`(x)dρ̂(x)

∣∣∣∣ =

∣∣∣∣∫
Bc

`(x)dρ(x)

∣∣∣∣ = 0 < ε.

Next, for u with respect to ρ, the result follows from the definition of u together with
Lemma A.6 (using the map τ(x) = x− Eρ(X) together with exponent 2).

Lastly, to control u with respect to ρ̂, note that p′ ≤ p/2−1 means p̃ := 2(p′+1) ≤ p, and
thus the map τ(x) := ‖x−Eρ(X)‖2 has order-p̃ moment bound M . Thus, by Lemma A.7
and the triangle inequality,∣∣∣∣∫

Bc

u(x)dρ̂(x)

∣∣∣∣ ≤ ε+

√
M ′ep′

2m

(
2

δ

)1/p′

= ερ̂.

2. Throughout this proof, let ν denote either ρ or ρ̂; the above established∣∣∣∣∫
Bc

u(x)dν(x)

∣∣∣∣ ≤ εν ,
where in the case of ν = ρ̂, this statement holds with probability 1− δ; henceforth discard
this failure event, and thus the statement holds for both cases.

By definition of C, for any p ∈ Cc and x ∈ B,

Bf (x, p) ≥ r1‖x− p‖2 ≥ r1

(√
r2/r1

(
(2M)1/p +

√
4c/r1 +RB

))2

= r2

(
(2M)1/p +

√
4c/r1 +RB

)2

.

On the other hand, fixing any p0 ∈ P ∩ C0 (which was guaranteed to exist at the start of
this proof), since C0 ⊆ C,

sup
x∈B

φf (x;P ∩ C) ≤ sup
x∈B

r2‖x− p0‖2 ≤ r2

(
(2M)1/p +

√
4c/r1 +RB

)2

.

Consequently, no element of B is closer to an element of P ∩ C than to any element of
P \ C. As such,∫

φf (x;P )dν(x) ≥
∫
B

φf (x;P )dν(x) +

∫
Bc

`(x)dν(x) =

∫
B

φf (x;P ∩ C)dν(x).

(Note here that `(x) = 0 was used directly, rather than the ε provided by outer covering;
in the case of Gaussian mixtures, both bracket elements are nonzero, and ε will be used.)
This establishes one direction of the bound.
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For the other direction, note that adding centers back in only decreases cost (because
minp∈P∩C is replaced with minp∈P ), and thus recalling the properties of the outer bracket
element u established above,∫

B

φf (x;P ∩ C)dν(x) =

∫
φf (x;P ∩ C)dν(x)−

∫
Bc

φf (x;P ∩ C)dν(x)

≥
∫
φf (x;P ∩ C)dν(x)−

∫
Bc

u(x)dν(x)

≥
∫
φf (x;P )dν(x)− εν ,

which gives the result(s).

B.2 Covering Properties

The next step is to control the deviations over the bounded portion; this is achieved via uniform
covers, as developed in this subsection.

First, another basic fact about Bregman divergences.
Lemma B.3. Let differentiable convex function f be given with Lipschitz gradient constant r2 with
respect to norm ‖ · ‖, and let Bf be the corresponding Bregman divergence. For any {x, y, z} ⊆ X ,

Bf (x, z) ≤ Bf (x, y) + Bf (y, z) + r2‖x− y‖‖y − z‖.
Similarly, given finite sets Y ⊆ X and Z ⊆ X , and letting Y (p) and Z(p) respectively select (any)
closest point in Y and Z to p according to Bf , meaning

Y (p) := arg min
y∈Y

Bf (y, p) and Z(p) := arg min
z∈Z

Bf (z, p),

then

min
z∈Z

Bf (x, z) ≤ min
y∈Y

Bf (x, y) + Bf (Y (x), Z(Y (x))) + r2‖x− Y (x)‖‖Y (x)− Z(Y (x))‖.

Proof. By definition of Bf , properties of dual norms, and the Lipschitz gradient property,

Bf (x, z)− Bf (x, y)− B(y, z) = f(x)− f(z)− f(x) + f(y)− f(y) + f(z)

− 〈∇f(z), x− z〉+ 〈∇f(y), x− y〉+ 〈∇f(z), y − z〉
= 〈∇f(y)−∇f(z), x− y〉
≤ ‖∇f(y)−∇f(z)‖∗‖x− y‖
≤ r2‖y − z‖‖x− y‖;

rearranging this inequality gives the first statement.

The second statement follows the first instantiated with y = Y (x) and z = Z(Y (x)), since

min
z∈Z

Bf (x, z) ≤ Bf (x, Z(Y (x)))

≤ Bf (x, Y (x)) + Bf (Y (x), Z(Y (x))) + r2‖x− Y (x)‖‖Y (x)− Z(Y (x))‖,
and using Bf (x, Y (x)) = miny∈Y Bf (x, y).

The covers will be based on norm balls; the following estimate is useful.
Lemma B.4. If ‖ · ‖ is an lp norm over Rd, then the ball of radius R admits a cover N with size

|N | ≤
(

1 +
2Rd

τ

)d
.

Proof. It suffices to grid the B with l∞ balls centered at grid points at scale τ/d; the result follows
since the l∞ balls of radius τ/d are contained in lp balls of radius τ for all p ≥ 1.
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The uniform covering result is as follows.

Lemma B.5. Let scale ε > 0, ball B := {x ∈ Rd : ‖x − E(X)‖ ≤ R}, parameter set Z := {x ∈
Rd : ‖x − E(X)‖ ≤ R2}, and differentiable convex function f with Lipschitz gradient parameter
r2 with respect to norm ‖ · ‖ be given. Define resolution parameter

τ := min

{√
ε

2r2
,

ε

2(R2 +R)r2

}
,

and letN be set of centers for a cover of Z by ‖ · ‖-balls of radius τ (see Lemma B.4 for an estimate
when ‖ · ‖ is an lp norm). It follows that there exists a uniform cover F at scale ε with cardinality
|N |k, meaning for any collection P = {pi}li=1 with pi ∈ Z and l ≤ k, there is a cover element Q
with

sup
x∈B

∣∣∣∣min
p∈P

Bf (x, p)−min
q∈Q

Bf (x, q)

∣∣∣∣ ≤ ε.

Proof. Given a collection P as specified, choose Q so that for every p ∈ P , there is q ∈ Q with
‖p− q‖ ≤ τ , and vice versa. By Lemma B.3 (and using the notation therein), for any x ∈ Bc,

min
p∈P

Bf (x, p) ≤ min
q∈Q

Bf (x, q) + Bf (Q(x), P (Q(x))) + r2‖x−Q(x)‖‖Q(x)− P (Q(x))‖

≤ min
q∈Q

Bf (x, q) + r2τ
2 + r2τ(R+R2)

≤ min
q∈Q

Bf (x, q) + ε;

the reverse inequality holds for the same reason, and the result follows.

B.3 Proof of Theorem 3.2 and Corollary 3.1

First, the proof of the general rate forHf (ν; c, k).

Proof of Theorem 3.2. For convenience, define M ′ = 2p
′
ε. By Lemma B.5, let N be a cover of the

set C, whereby every set of centers P ⊆ C with |P | ≤ k has a cover element Q ∈ N k with

sup
x∈B

∣∣∣∣min
p∈P

Bf (x, p)−min
q∈Q

Bf (x, q)

∣∣∣∣ ≤ ε; (B.6)

when ‖ · ‖ is an lp norm, Lemma B.4 provides the stated estimate of its size. Since B ⊆ C and

sup
x∈B

sup
p∈C

Bf (x, p) ≤ r2 sup
x∈B

sup
p∈C
‖x− p‖2 ≤ 4r2R

2
C ,

it follows by Hoeffding’s inequality and a union bound over N k that with probability at least 1− δ,

sup
Q∈Nk

∣∣∣∣∫
B

φ(x;Q)dρ̂(x)−
∫
B

φ(x;Q)dρ(x)

∣∣∣∣ ≤ 4r2R
2
C

√
1

2m
ln

(
2|N |k
δ

)
. (B.7)

For the remainder of this proof, discard the corresponding failure event.

Now let any P ∈ Hf (ρ; c, k) ∪Hf (ρ̂; c, k) be given, and let Q ∈ N k be a cover element satisfying
eq. (B.6) for P ∩ C. By eq. (B.6), eq. (B.7), and Lemma 3.5 (and thus discarding an additional
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failure event having probability 2δ),∣∣∣∣∫ φf (x;P )dρ(x)−
∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ ∣∣∣∣∫ φf (x;P )dρ(x)−
∫
B

φf (x;P ∩ C)dρ(x)

∣∣∣∣
+

∣∣∣∣∫
B

φf (x;P ∩ C)dρ(x)−
∫
B

φf (x;Q)dρ(x)

∣∣∣∣
+

∣∣∣∣∫
B

φf (x;Q)dρ(x)−
∫
B

φf (x;Q)dρ̂(x)

∣∣∣∣
+

∣∣∣∣∫
B

φf (x;Q)dρ̂(x)−
∫
B

φf (x;P ∩ C)dρ̂(x)

∣∣∣∣
+

∣∣∣∣∫
B

φf (x;P ∩ C)dρ̂(x)−
∫
φf (x;P )dρ̂(x)

∣∣∣∣
≤ 2ε+ 4r2R

2
C

√
1

2m
ln

(
2|N |k
δ

)
+ ερ + ερ̂,

and the result follows by unwrapping the definitions of ερ and ερ̂ from Lemma 3.5, and M ′ = 2p
′
ε

as above.

The more concrete bound for the k-means cost is proved as follows.

Proof of Corollary 3.1. Set

ε := m−1/2+1/p, p′ := p/4, M ′ := 2p
′
ε = 2p/4m−1/2+1/p,

and recall f(x) := ‖x‖22 has convexity constants r1 = r2 = 2. Since

m =
√
m
√
m ≥ p

√
m

2p/4+2e
≥ p′m1/2−1/p

2p′e
=

p′

M ′e

and p′ = p/2 − p/4 ≤ p/2 − 1, the conditions for Theorem 3.2 are met, and thus with probability
at least 1− δ,∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ 4ε+ 4R2
C

√
1

2m
ln

(
2|N |k
δ

)
+

√
2p/4epε

8m

(
2

δ

)4/p

,

where

RC := (2M)1/p +
√

2c+ 2RB ,

RB := max

{
(2M)1/p +

√
2c,max

i∈[p′]
(M/ε)1/(p−2i)

}
,

|N | ≤
(

1 +
2RCd

τ

)d
,

τ := min

{√
ε

4
,

ε

4(RB +RC)

}
.

To simplify these quantities, since ε ≤ 1, the term 1/ε1/(p−2i), as i ranges between 1 and p− 2p′, is
maximized at i = 1/(p− 2p′) = 2/p. Therefore, by choice of M1 and ε,

RB ≤ c1 + (M/ε)1/(p−2) + (M/ε)1/(p−2p′) ≤ c1 + (M1/(p−2) +M1/(p−2p′))/ε2/p

= c1 +M1m
1/p−2/p2 .

Consequently,

RC = c1 + 2RB ≤ 3c1 + 2M1m
1/p−2/p2 and R2

C ≤ 18c21 + 8M2
1m

2/p−4/p2 .

17



This entails
2RCd

τ
≤ 2RCd

(
2m1/4−1/(2p) + 4(RB +RC)m1/2−1/p

)
≤ 8d

(
(3c1 + 2M1m

1/p−2/p2)m1/4−1/(2p) + (36c21 + 16M2
1m

2/p−4/p2)m1/2−1/p
)

≤ 288dm(c1 + c21 +M1 +M2
1 ).

Secondly,

R2
C√
m
≤ (18c21 + 8M2

1m
2/p−4/p2)m−1/2 ≤ mmin{1/4,−1/2+2/p}(18c21 + 8M2

1 ).

The last term is direct, since√
ε/m = m−1/4+1/(2p)−1/2 = m−1/2+1/(2p)m−1/4.

Combining these pieces, the result follows.

C Deferred Material from Section 4

First, the deferred proof that outer brackets give rise to clamps.

Proof of Proposition 4.3. Throughout this proof, let ν refer to either ρ or ρ̂, with εν similarly refer-
ring to either ερ or ερ̂. Let P ∈ Hf (ρ; c, k) ∪Hf (ρ̂; c, k) be given.

One direction is direct:∫
φf (x;P )dν(x) ≥

∫
φf (x;P ∩ C)dν(x)

≥
∫

min{φf (x;P ∩ C), R}dν(x).

For the second direction, with probability at least 1 − δ, Lemma B.2 grants the existence of p′ ∈
P ∩ C0 ⊆ P ∩ C. Consequently, for any x ∈ B,

min
p∈P

Bf (x, p) ≤ min
p∈P∩C

Bf (x, p) ≤ Bf (x, p′)

≤ r2‖x− p′‖2 ≤ 2r2

(
‖x− Eρ(X)‖2 + ‖p′ − Eρ(X)‖2

)
≤ R;

in other words, if x ∈ B, then min{φf (x;P ∩ C), R} = φf (x;P ∩ C). Combining this with the
last part of Lemma 3.5.∫

min{φf (x;P ∩ C), R}dν(x) ≥
∫
B

min{φf (x;P ∩ C), R}dν(x)

≥
∫
B

φf (x;P ∩ C)dν(x)

≥
∫
φf (x;P )dν(x)− εν .

The proof of Theorem 4.4 will depend on the following uniform covering property of the clamped
cost (which mirrors Lemma B.5 for the unclamped cost).
Lemma C.1. Let scale ε > 0, clamping value R3, parameter set C contained within a ‖ · ‖-ball
of some radius R2, and differentiable convex function f with Lipschitz gradient parameter r2 and
strong convexity modulus r1 with respect to norm ‖ · ‖ be given. Define resolution parameter

τ := min

{√
ε

2r2
,
r1ε

2r2R3

}
,

18



and letN be set of centers for a cover of C by ‖ · ‖-balls of radius τ (see Lemma B.4 for an estimate
when ‖ · ‖ is an lp norm). It follows that there exists a uniform cover F at scale ε with cardinality
|N |k, meaning for any collection P = {pi}li=1 with pi ∈ C and l ≤ k, there is a cover element Q
with

sup
x

∣∣∣∣min

{
R3,min

p∈P
Bf (x, p)

}
−min

{
R3,min

q∈Q
Bf (x, q)

}∣∣∣∣ ≤ ε.
Proof. Given a collection P as specified, choose Q so that for every p ∈ P , there is q ∈ Q with
‖p− q‖ ≤ τ , and vice versa.

First suppose minq∈Q Bf (x, q) ≥ R3; then

min

{
R3,min

p∈P
Bf (x, p)

}
≤ R3 = min

{
R3,min

q∈Q
Bf (x, q)

}
as desired.

Otherwise, minq∈Q Bf (x, q) < R3, which by the sandwiching property (cf. Lemma B.1) means

r1‖x−Q(x)‖ ≤ Bf (x,Q(x)) < R3.

By Lemma B.3,

min

{
R3,min

p∈P
Bf (x, p)

}
≤ min

{
R3,min

q∈Q
Bf (x, q) + Bf (Q(x), P (Q(x))) + r2‖x−Q(x)‖‖Q(x)− P (Q(x))‖

}
≤ min

{
R3,min

q∈Q
Bf (x, q) + r2τ

2 + r2τ‖x−Q(x)‖
}

≤ min

{
R3,min

q∈Q
Bf (x, q) + r2τ

2 +
r2R3

r1
τ

}
≤ min

{
R3,min

q∈Q
Bf (x, q)

}
+ ε.

The reverse inequality is analogous.

The proof of Theorem 4.4 follows.

Proof of Theorem 4.4. This proof is a minor alteration of the proof of Theorem 3.2.

By Lemma C.1, let N be a cover of the set C, whereby every set of centers P ⊆ C with |P | ≤ k
has a cover element Q ∈ N k with

sup
x
|min{φf (x;P ), R} −min{φf (x;Q), R}| ≤ ε; (C.2)

when ‖ · ‖ is an lp norm, Lemma B.4 provides the stated estimate of its size. Since
min{φf (x;Q), R} ∈ [0, R], it follows by Hoeffding’s inequality and a union bound over N k that
with probability at least 1− δ,

sup
Q∈Nk

∣∣∣∣∫
B

φf (x;Q)dρ̂(x)−
∫
B

φf (x;Q)dρ(x)

∣∣∣∣ ≤ R
√

1

2m
ln

(
2|N |k
δ

)
. (C.3)

For the remainder of this proof, discard the corresponding failure event.
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Now let any P ∈ Z be given, and let Q ∈ N k be a cover element satisfying eq. (C.2) for P ∩C. By
eq. (C.2), eq. (C.3), and lastly by the definition of clamp,∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ ∣∣∣∣∫ φf (x;P )dρ(x)−
∫

min{φf (x;P ∩ C), R}dρ(x)

∣∣∣∣
+

∣∣∣∣∫ min{φf (x;P ∩ C), R}dρ(x)−
∫

min{φf (x;Q), R}dρ(x)

∣∣∣∣
+

∣∣∣∣∫ min{φf (x;Q), R}dρ(x)−
∫

min{φf (x;Q), R}dρ̂(x)

∣∣∣∣
+

∣∣∣∣∫ min{φf (x;Q), R}dρ̂(x)−
∫

min{φf (x;P ∩ C), R}dρ̂(x)

∣∣∣∣
+

∣∣∣∣∫ min{φf (x;P ∩ C), R}dρ̂(x)−
∫
φf (x;P )dρ̂(x)

∣∣∣∣
≤ 2ε+ ερ + ερ̂ +R2

√
1

2m
ln

(
2|N |k
δ

)
.

D Deferred Material from Section 5

The following notation for restricting a Gaussian mixture to a certain set of means will be convenient
throughout this section.

Definition D.1. Given a Gaussian mixture with parameters (α,Θ) (where α = {αi}ki=1 and Θ =
{θi}ki=1 = {(µi, Σi)}ki=1), and a set of means B ⊆ Rd, define

(α,Θ) uB := {({αi}i∈I , {(µi, Σi)}i∈I) : I = {1 ≤ i ≤ k : µi ∈ B}} .

(Note that potentially
∑
i∈I αi < 1, and thus the terminology partial Gaussian mixture is sometimes

employed.)

D.1 Constructing an Outer Bracket

The first step is to show that pushing a mean far away from a region will rapidly decrease its density
there, which is immediate from the condition σ1I � Σ � σ2I .

Lemma D.2. Let probability measure ρ, accuracy ε > 0, covariance lower bound 0 < σ1 ≤ σ2,
and radius R with corresponding l2 ball B := {x ∈ Rd : ‖x− Eρ(X)‖2 ≤ R} be given. Define

R1 :=

√
2σ2 ln

(
1

(2πσ1)d/2ε2

)
R2 := R+R1,

B2 := {µ ∈ Rd : ‖µ− Eρ(X)‖2 ≤ R2}.

If θ = (µ,Σ) is the parameterization of a Gaussian density pθ with σ1I � Σ � σ2I but µ 6∈ B2,
then pθ(x) < ε for every x ∈ B.

Proof. Let Gaussian parameters θ = (µ,Σ) be given with σ1I � Σ � σ2I , but µ 6∈ B2. By the
definition of B2, for any x ∈ B1,

pθ(x) < (2πσ1)−d/2 exp(−R2
1/(2σ2)) = ε.

The upper component of the outer bracket will be constructed first (and indeed used in the construc-
tion of the lower component).
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Lemma D.3. Let probability measure ρ with order-p moment bound with respect to ‖ · ‖2, target
accuracy ε > 0, and covariance lower bound 0 < σ1 be given. Define

pmax := (2πσ1)−d/2,

u(x) := ln(pmax),

Ru := (M | ln(pmax)|/ε)1/p,

Bu :=
{
x ∈ Rd : ‖x− Eρ(X)‖2 ≤ Ru

}
.

If pθ denotes a Gaussian density with parameters θ = (µ,Σ) satisfying Σ � σ1I , then pθ ≤ u
everywhere. Additionally, ∣∣∣∣∣

∫
Bc

u

u(x)dρ(x)

∣∣∣∣∣ ≤
∫
Bc

u

|u(x)|dρ(x) ≤ ε,

and with probability at least 1− δ over the draw of m points from ρ,∣∣∣∣∣
∫
Bc

u

u(x)dρ̂(x)

∣∣∣∣∣ ≤
∫
Bc

u

|u(x)|dρ̂(x) ≤ ε+ | ln(pmax)|

√
1

2m
ln

(
1

δ

)
.

(That is to say, u is the upper part of an outer bracket for all Gaussians (and mixtures thereof) where
each covariance Σ satisfies Σ � σ1I .)

Proof. Let pθ with θ = (µ,Σ) satisfying Σ � σ1I be given. Then

pθ(x) ≤ 1√
(2π)dσd1

exp( 0 ) = pmax.

Next, given the form of Bu, if ln(pmax) = 0, the result is immediate, thus suppose ln(pmax) 6= 0;
Lemma A.2 provides that ρ(Bu) ≥ 1− ε/| ln(pmax)|, whereby∣∣∣∣∣

∫
Bc

u

u(x)dρ(x)

∣∣∣∣∣ ≤
∫
Bc

u

|u(x)|dρ(x) = | ln(pmax)|ρ(Bcu) ≤ ε.

For the finite sample guarantee, by Hoeffding’s inequality,

ρ̂(Bcu) ≤ ρ(Bcu) +

√
1

2m
ln

(
1

δ

)
≤ ε

| ln(pmax)|
+

√
1

2m
ln

(
1

δ

)
,

which gives the result similarly to the case for ρ.

From, here, a tiny control on Smog(ν; c, k, σ1, σ2) emerges, analogous to Lemma B.2 forHf (ν; c, k).
Lemma D.4. Let covariance bounds 0 < σ1 ≤ σ2, cost c ≤ 1/2, and probability measure ρ with
order-p moment bound M with respect to ‖ · ‖2 be given. Define

pmax := (2πσ1)−d/2,

R3 := (2M | ln(pmax)|)1/p,

R4 := (2M)1/p,

R5 :=

√
2σ2

(
ln

(
8e

(2πσ1)d/2

)
− 4c

)
.

R6 := max{R3, R4}+R5.

B6 := {x ∈ Rd : ‖x− Eρ(X)‖2 ≤ R6}.
Suppose

m ≥ 2 ln(1/δ) max{4, | ln(pmax)|2}.
With probability at least 1 − 2δ, given any (α,Θ) ∈ Smog(ρ; c, k, σ1, σ2) ∪ Smog(ρ̂; c, k, σ1, σ2),
the restriction (α′,Θ′) = (α,Θ) u B6 is nonempty, and moreover satisfies

∑
αi∈α′ αi ≥

exp(4c)/(8epmax).

21



Proof. Define

B3 :=
{
x ∈ Rd : ‖x− Eρ(X)‖2 ≤ max{R3, R4}

}
.

Since B3 has radius at least R4, Lemma A.2 provides

ρ(B3) ≥ 1/2,

and Hoeffding’s inequality and the lower bound on m provide (with probability at least 1− δ)

ρ̂(B3) ≥ 1

2
−

√
2

m
ln

(
1

δ

)
>

1

4
.

Additionally, since B3 also has radius at least R3, by Lemma D.3, the choice of B3, and the lower
bound on m, and letting B4 denote the ball of radius R3,∣∣∣∣∣

∫
Bc

3

udρ

∣∣∣∣∣ ≤
∫
Bc

4

|u|dρ ≤
∫
Bc

4

|u|dρ ≤ 1/2 and

∣∣∣∣∣
∫
Bc

3

udρ̂

∣∣∣∣∣ < 1,

where the statement for ρ̂ is with probability at least 1−δ. For the remainder of the proof, let ν refer
to either ρ or ρ̂, and discard the 2δ failure probability of either of the above two events.

For convenience, define p0 := exp(4c)/(8e), whereby

R5 =

√
2σ2 ln

(
1

p0(2πσ1)d/2

)
.

By Lemma D.2, any Gaussian parameters θ = (µ,Σ) with σ1I � Σ � σ2I and µ 6∈ B6 have
pθ(x) < p0 everywhere on B3. As such, a mixture (α,Θ) where each θi ∈ Θ satisfies these
conditions also satisfies∫

ln

(∑
i

αipθi

)
dν ≤

∫
B3

ln

 ∑
(αi,θi)∈(α,Θ)uB6

αipθi +
∑

(αi,θi) 6∈(α,Θ)uB6

αipθi

 dν +

∫
Bc

3

udν

< ln

 ∑
(αi,θi)∈(α,Θ)uB6

αipmax +
∑

αi,θi)6∈(α,Θ)uB6

αip0

 ν(B3) + 1

Suppose contradictorily that (α,Θ) u B6 = ∅ or
∑

(αi,θi)∈(α,Θ)uB6
αi < p0/pmax. But c ≤ 1/2

implies p0 ≤ 1/2 and so ln(2p0) ≤ 0, thus ln(2p0)ν(B3) ≤ ln(2p0)/4 which together with p0 ≤
exp(4c)/(8e) and the above display gives∫

ln

(∑
i

αipθi

)
dν < ln(2p0)/4 + 1 ≤ c,

which contradicts Eν(φg(X; (α,Θ))) ≥ c.

Now that significant weight can be shown to reside in some restricted region, the outer bracket and
its basic properties follow (i.e., the analog to Lemma 3.5).
Lemma D.5. Let target accuracy 0 < ε ≤ 1, covariance bounds 0 < σ1 ≤ σ2 with σ1 ≤ 1, target
cost c, confidence parameter δ ∈ (0, 1], probability measure ρ with order-p moment bound M with
respect to ‖ · ‖2 with p ≥ 4, and integer 1 ≤ p′ ≤ p/2− 1. Define first the basic quantities

M ′ := 2p
′
ε,

pmax := (2πσ1)−d/2,

R6 := (2M | ln(pmax)|)1/p + (2M)1/p +

√
2σ2

(
ln

(
8e

(2πσ1)d/2

)
− 4c

)
,

B6 := {x ∈ Rd : ‖x− Eρ(X)‖2 ≤ R6‖}.
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Additionally define the outer bracket elements

Z` :=

{
(α,Θ) : ∀(αi, (µi, θi)) ∈ (α,Θ) � µi ∈ B6, σ1I � Σ � σ2I,

∑
i

αi ≥ exp(4c)/(8epmax)

}
,

c` := 4c− ln(8epmax)− d

2
ln(2πσ2),

`(x) := c` −
2

σ1
‖x− Eρ(X)‖22,

u(x) := ln(pmax),

ερ̂ := ε+ (|c`|+ | ln(pmax)|)

√
1

2m
ln

(
1

δ

)
+

√
M ′ep′

2m

(
2

δ

)1/p′

,

M1 := (2M |c`|)1/p + (4Mσ1)1/(p−2) + max
1≤i≤p′

M1/(p−2i) + (M | ln(pmax))1/p,

RB = R6 +M1/ε
1/(p−2p′),

B := {x ∈ Rd : ‖x− Eρ(X)‖2 ≤ RB}.

The following statements hold with probability at least 1− 4δ over a draw of size

m ≥ max
{
p′/(M ′e), 8 ln(1/δ), 2| ln(pmax)|2 ln(1/δ)

}
.

1. (u, `) is an outer bracket for ρ at scale ερ := ε with sets B` := Bu := B, center set class
Z` as above, and Zu = Smog(ρ;∞, k, σ1, σ2). Additionally, (u, `) is also an outer bracket
for ρ̂ at scale ερ̂ with the same sets.

2. Define

RC := 1 +RB(1 +
√

8σ2/σ1) +
√

4σ2 ln(1/ε) +

√
2σ2

(
ln

(
64e2(2πσ2)d

(2π)dp4
max

)
− 8c

)
,

C := {µ ∈ Rd : ‖x− Eρ(X)‖2 ≤ RC}.

Every (α,Θ) ∈ Smog(ρ; c, k, σ1, σ2)∪Smog(ρ̂; c, k, σ1, σ2) satisfies
∑

(αi,θi)∈(α,Θ)uC αi ≥
exp(4c)/(8epmax), and∣∣∣∣∫ φg(x; (α,Θ))dρ(x)−

∫
B

φg(x; (α,Θ) u C)dρ(x)

∣∣∣∣ ≤ ερ = 2ε

and ∣∣∣∣∫ φg(x; (α,Θ))dρ̂(x)−
∫
B

φg(x; (α,Θ) u C)dρ̂(x)

∣∣∣∣ ≤ ε+ ερ̂.

Proof of Lemma D.5. It is useful to first expand the choice ofRB , which was chosen large enough to
carry a collection of other radii. In particular, since ε ≤ 1, then 1/ε ≥ 1, and therefore 1/εa ≤ 1/εb

when a ≤ b. As such, since p′ ≤ p/2− 1,

RB = R6 +M1/ε
1/(p−2p′)

= R6 +

(
(2M |c`|)1/p + (4Mσ1)1/(p−2) + max

1≤i≤p′
M1/(p−2i) + (M | ln(pmax))1/p

)
/ε1/(p−2p′)

≥ R6 +

(
(2M |c`|/ε)1/p + (4Mσ1/ε)

1/(p−2) + max
1≤i≤p′

(M/ε)1/(p−2i) + (M | ln(pmax)|/ε)1/p

)
.

Since every term is nonnegative, RB dominates each individual term.

1. The upper bracket and its guarantees were provided by Lemma D.3; note that ερ̂ is defined
large enough to include the deviations there, and similarly RB ≥ (M | ln(pmax)|/ε)1/p

means the B here is defined large enough to contain the Bu there; correspondingly, discard
a failure event with probability mass at most δ.
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Let the lower bracket be defined as in the statement; note that its properties are much more
conservative as compared with the upper bracket. Let (α,Θ) ∈ Z` be given. For every
θi = (µi, Σi), ‖µi − Eρ(X)‖2 ≤ R6, whereas RB ≥ R6 meaning x ∈ Bc implies
‖x− Eρ(X)‖2 ≥ R6, so

‖x− µi‖2 ≤ ‖x− Eρ(X)‖2 + ‖µi − Eρ(X)‖2 ≤ 2‖x− Eρ(X)‖2,

which combined with σ1I � Σi � σ2I gives

ln

(∑
i

αipθi(x)

)
≥ ln

(∑
i

αi
1

(2πσ2)d/2
exp

(
− 1

2σ1
‖x− µi‖22

))

≥ ln(p0/pmax)− d

2
ln(2πσ2)− 2

σ1
‖x− Eρ(X)‖22

= `(x),

which is the dominance property.

Next come the integral properties of `. By Lemma A.2 and since RB ≥ (2M |c`|/ε)1/p,∣∣∣∣∫
Bc

c`dρ

∣∣∣∣ ≤ ∫
Bc

|c`|dρ ≤
∫
Bc

|c`|dρ = ρ(Bc)|c`| ≤ ε/2.

Similarly, by Hoeffding’s inequality, with probability at least 1− δ,∣∣∣∣∣
∫
Bc

`

c`dρ̂

∣∣∣∣∣ ≤ ε/2 + |c`|

√
1

2m
ln

(
1

δ

)
.

Now define

`1(x) := − 2

σ1
‖x− Eρ(X)‖22 = `(x)− c`.

By Lemma A.6 and since RB ≥ (4σ1M/ε)1/(p−2),∣∣∣∣∫
Bc

`1dρ

∣∣∣∣ ≤ ∫
Bc

|`1|dρ =
2

σ1

∫
Bc

‖x− Eρ(X)‖22dρ(x) ≤ ε/2.

Furthermore by Lemma A.7 and the above estimate, and since RB ≥
max1≤i≤p′(M/ε)1/(p−2i) (where the maximum is attained at one of the endpoints),
then with probability at least 1− δ∣∣∣∣∫

Bc

`1dρ̂

∣∣∣∣ ≤ ε

2
+

√
M ′ep′

2m

(
2

δ

)1/p′

.

Unioning together the above failure probabilities, the general controls for ` = c`+`1 follow
by the triangle inequality and definition of ερ̂.

2. Throughout the following, let ν denote either ρ or ρ̂, and correspondingly let εν respec-
tively refer to ερ or ερ̂; let the above bracketing properties hold throughout (with events
appropriately discarded for ρ̂). Furthermore, for convenience, define

p0 := exp(4c)/(8e).

Let any (α,Θ) be given with (α,Θ) ∈ Smog(ρ; c, k, σ1, σ2) ∪ Smog(ρ̂; c, k, σ1, σ2). Define
the two index sets

IC := {i ∈ [k] : (αi, θi) ∈ (α,Θ) u C},
I6 := {i ∈ [k] : (αi, θi) ∈ (α,Θ) uB6}.

By Lemma D.4, with probability at least 1 − δ,
∑
i∈I6 αi ≥ p0/pmax; henceforth discard

the corresponding failure event, bringing the total discarded probability mass to 4δ.
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To start, since ln(·) is concave and thus ln(a+ b) ≤ ln(a) + b/a for any positive a, b,∫
ln

(∑
i

αipθi(x)

)
dν(x) ≤

∫
B

ln

(∑
i

αipθi(x)

)
dν(x) +

∫
Bc

u(x)dν(x)

≤
∫
B

ln

(∑
i∈IC

αipθi(x)

)
dν(x) +

∫
B

∑
i 6∈IC αipθi(x)∑
i∈IC αipθi(x)

dν(x) + εν .

In order to control the fraction, both the numerator and denominator will be uniformly
controlled for every x ∈ B, whereby the result follows since ν is a probability measure
(i.e., the integral is upper bounded with an upper bound on the numerator times ν(B) ≤ 1
divided by a lower bound on the denominator).

For the purposes of controlling this fraction, define

p1 :=
1

(2πσ2)d/2
exp

(
−R

2
B +R2

6

σ

)
,

p2 := εp1p0/pmax,

Observe, by choice of RC and since σ1 ≤ 1, that

RB +

√√√√2σ2 ln

(
1

p2
2(2π)dσd−1

1

)
≤ RB +

√
2σ2 ln

(
64e2p2

max(2πσ2)d exp(2(R2
B +R2

6))

ε2 exp(8c)(2π)dσd1

)

≤ RB +

√
2σ2

(
ln

(
64e2(2πσ2)d

ε2(2π)dp4
max

)
− 8c− 4R2

B/σ

)

≤ RB +

√
2σ2

(
ln

(
64e2(2πσ2)d

(2π)dp4
max

)
− 8c

)
+
√

4σ2 ln(1/ε) +RB
√

8σ2/σ1

≤ RC .

For the denominator, first note for every x ∈ B and parameters θ = (µ,Σ) with σ1I �
Σ � σ2I and µ ∈ B6 that

pθ(x) ≥ 1

(2πσ2)d/2
exp

(
− 1

2σ1
‖x− µ‖22

)
≥ 1

(2πσ2)d/2
exp

(
− 1

2σ1
(‖x− Eρ(X)‖2 + ‖Eρ(X)− µi‖2)

2

)
≥ p1.

Consequently, for x ∈ B,∑
i∈IC

αipi(x) ≥
∑
i∈I6

αipi(x) ≥ p1

∑
i∈I6

αi ≥ p1p0/pmax.

For the numerator, by choice of C (as developed above with the definitions of p1 and p2)
and an application of Lemma D.2, for pi corresponding to i 6∈ IC ,

pi(x) ≤ εp1p0/pmax = p2.

It follows that the fractional term is at most ε, which gives the first direction of the desired
inequality.

To get the other direction, since
∑
i∈I6 αi ≥ p0/pmax due to Lemma D.4 as discussed

above, it follows that (α,Θ) u B6 ∈ Z`, meaning the corresponding partial Gaussian
mixture can be controlled by `. As such, since R6 ≤ RB thus I6 ⊆ IC , and since ln is
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nondecreasing,∫
B

ln

(∑
i∈IC

αipi

)
dν =

∫
ln

(∑
i∈IC

αipi

)
dν −

∫
Bc

ln

(∑
i∈IC

αipi

)
dν

≤
∫

ln

(∑
i∈IC

αipi

)
dν −

∫
Bc

ln

(∑
i∈I6

αipi

)
dν

≤
∫

ln

(∑
i∈IC

αipi

)
dν −

∫
Bc

`dν

≤
∫

ln

(∑
i∈IC

αipi

)
dν + εν

≤
∫

ln

(∑
i

αipi

)
dν + εν .

D.2 Uniform Covering of Gaussian Mixtures

First, a helper lemma for covering covariance matrices.
Lemma D.6. Let scale ε > 0 and eigenvalue bounds 0 < σ1 ≤ σ2 be given. There exists a subset
M of the positive definite matrices satisfying σ1I �M � σ2I so that

|M| ≤ (1 + 32σ2/ε)
d2

((
1 +

σ2 − σ1

ε/2

)d
+

(
ln(σ2/σ1)

ε/d

)d)
,

and for any A with σ1I � A � σ2I , there exists B ∈M with

exp(−ε) ≤ |A|
|B|
≤ exp(ε) and ‖A−B‖2 ≤ ε.

Proof. The mechanism of the proof is to separately cover the set of orthogonal matrices and the set
of possible eigenvalues; this directly leads to the determinant control, and after some algebra, the
spectral norm control follows as well.

With foresight, set the scales

τ := ε/(8σ2),

τ ′ := ε/2,

τ ′′ := exp(ε/d).

First, a cover of the orthogonal d×dmatrices at scale τ is constructed as follows. The entries of these
orthogonal matrices are within [−1,+1], thus first construct a cover Q′ of all matrices [−1,+1]d×d

at scale τ/2 according to the maximum-norm, which simply measures the max among entrywise
differences; this cover can be constructed by gridding each coordinate at scale τ/2, and thus

|Q′| ≤ (1 + 4/τ)d
2

.

Now, to produce a cover of the orthogonal matrices, for each M ′ ∈ Q′, if it is within max-norm
distance τ/2 of some orthogonal matrix M , include M in the new cover Q; otherwise, ignore M ′.
Since Q′ was a max-norm cover of [−1,+1]d×d at scale τ/2, then Q must be a max-norm cover of
the orthogonal matrices at scale τ (by the triangle inequality), and it still holds that

|Q| ≤ (1 + 4/τ)d
2

.

Since the max-norm is dominated by the spectral norm, for any orthogonal matrix O, there exists
Q ∈M with ‖O −Q‖2 ≤ τ .
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Second, a cover of the set of possible eigenvalues is constructed as follows; since both a mul-
tiplicative and an additive guarantee are needed for the eigenvalues, two covers will be unioned
together. First, produce a cover L1 of the set [σ1, σ2]d at scale τ ′ entrywise as usual, which means
|L1| ≤ (1 + (σ2 − σ1)/τ ′)d. Second, the cover L2 will cover each coordinate multiplicatively,
meaning each coordinate cover consists of σ1, σ1τ

′′, σ1(τ ′′)2, and so on; consequently, this cover
has size |L2| ≤ ln(σ2/σ1)/ ln(τ ′′). Together, the cover L := L1 ∪ L2 has size

|L| ≤
(

1 +
σ2 − σ1

τ ′

)d
+

(
ln(σ2/σ1)

ln(τ ′′)

)d
,

and for any vector Λ ∈ [σ1, σ2]d, there exists Λ′ ∈ L with

1

τ ′′
≤ max

i
Λ′i/Λi ≤ τ ′′ and max

i
|Λ′i − Λi| ≤ τ.

Note there was redundancy in this construction: L need only contain nondecreasing sequences.

The final coverM is thus the cross product of Q and L, and correspondingly its size is the product
of their sizes. Given any A with σ1I � A � σ2I with spectral decomposition O>1 Λ1O1, pick a
corresponding O2 ∈ Q which is closest to O1 in spectral norm, and Λ2 ∈ L which is closest to Λ1

in max-norm, and set B = O>2 Λ2O2. By the multiplicative guarantee on L, it follows that(
1

τ ′′

)d
≤ |Λ2|
|Λ1|

=
|B|
|A|
≤ (τ ′′)d;

by the choice of τ ′′, the determinant guarantee follows. Secondly, relying on a few properties of
spectral norms (‖XY ‖2 ≤ ‖X‖2‖Y ‖2 for square matrices, and ‖Z‖2 = 1 for orthogonal matrices,
and of course the triangle inequality),

‖A−B‖2 =
∥∥(O1 −O2 +O2)>Λ1(O1 −O2 +O2)> −O>2 Λ2O2

∥∥
2

≤ ‖O>2 Λ1O2 −O>2 Λ2O2‖2 + 2‖O>2 Λ1(O1 −O2)‖2 + ‖(O1 −O2)>Λ1(O1 −O2)‖2
≤ ‖Λ1 − Λ2‖2 + 2‖O1 −O2‖2‖Λ1‖2 + ‖O1 −O2‖2‖Λ1‖2(‖O1‖2 + ‖O2‖2)

≤ τ ′ + 4τσ2,

and the second guarantee follows by choice of τ and τ ′.

The covering lemma is as follows.
Lemma D.7. Let scale ε > 0, ball B := {x ∈ Rd : ‖x− E(X)‖ ≤ R}, mean set X := {x ∈ Rd :
‖x − E(X)‖ ≤ R2}, covariance eigenvalue bounds 0 < σ1 ≤ σ2, mass lower bound c1 > 0, and
number of mixtures k > 0 be given. Then there exists a cover set N (where (µ,Σ) ∈ N has µ ∈ X
and σ1I � Σ � σ2I) of size

|N | ≤

((
ln(1/α0)

ln(τ0)
+

1− α0

τ4

)
·
(

1 +
2R2d

τ1

)d
· (1 + 32/(σ1τ2))d

2

((
1 +

σ−1
1 − σ−1

2

τ2/2

)d
+

(
ln(σ2/σ1)

τ2/d

)d))k
where

τ0 := exp(ε/4),

τ1 := min

{
εσ1

16(R+R2)
,

√
εσ1

8

}
,

τ2 :=
ε

4 max{1, (R+R2)2}
,

pmin :=
1

(2πσ2)d/2
exp(−(R+R2)2/(2σ1)),

pmax := (2πσ1)−d/2,

α0 :=
εc1pmin

4k(pmax + εpmin/2)
,

τ4 := α0,
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(whereby pmin ≤ pθ(x) ≤ pmax for x ∈ B and θ = (µ,Σ) satisfies µ ∈ X and σ1I � Σ � σ2I ,)
so that for every partial Gaussian mixture (α,Θ) = {(αi, µi, Σi)} with αi ≥ 0, c1 ≤

∑
i αi ≤ 1,

µi ∈ X , and σ1I � Σi � σ2I there is an element (α′,Θ′) ∈ N with weights c1−kα0 ≤
∑
i α
′
i ≤ 1

so that, for every x ∈ B,
| ln(pα,Θ(x))− ln(pα′,Θ′(x))| ≤ ε.

Proof. The proof controls components in two different ways. For those where the weight αi is
not too small, both αi and pθi are closely (multiplicatively) approximated. When αi is small, its
contribution can be discarded. Between these two cases, the bound follows.

Note briefly that for any θ = (µ,Σ) with µ ∈ X and σ1I � Σ � σ2I ,

pθ(x) ≤ 1

(2πσ1)d/2
exp( 0 ) = pmax,

pθ(x) ≥ 1

(2πσ2)d/2
exp(−‖x− µ‖22/(2σ1))

≥ 1

(2πσ2)d/2
exp(−(‖x− Eρ(X)‖2 + ‖µ− Eρ(X)‖)2/(2σ1))

= pmin.

Next, the covers of each element of the Gaussian mixture are as follows.

1. Union together a multiplicatively grid of [α0, 1] at scale τ0 (meaning produce a sequence
of the form α0, α0τ0, α0τ

2
0 , and so on), and an additive grid of [α0, 1] at scale τ4; together,

the grid has a size of at most
ln(1/α0)

ln(τ0)
+

1− α0

τ4
.

2. Grid the candidate center set X at scale τ1, which by Lemma B.5 can be done with size at
most (

1 +
2R2d

τ1

)d
.

3. Lastly, grid the inverse of covariance matrices (sometimes called precision matrices), mean-
ing σ−1

2 I � Σ−1 � σ−1
1 , whereby Lemma D.6 grants that a cover of size

(1 + 32/(σ1τ2))d
2

((
σ−1

1 − σ−1
2

τ2/2

)d
+

(
ln(σ1/σ2)

τ2/d

)d)
suffices to provide that for any permissible Σ−1, there exists a cover element A with

exp(−τ2) ≤ |Σ
−1|
|A|

≤ exp(τ2) and ‖Σ−1 −A‖2 ≤ τ2.

Producting the size of these various covers and raising to the power k (to handle at most k compo-
nents), the cover size in the statement is met.

Now consider a component (αi, µi, Σi) with αi ≥ α0; a relevant cover element (ai, ci, Bi) is chosen
as follows.

1. Choose the largest ai ≤ αi in the gridding of [α0, 1], whereby it follows that
∑
i ai ≤∑

i αi ≤ 1, and also

τ−1
0 ≤ ai/αi ≤ τ0 and ai ≥ αi − τ4.

Thanks to the second property,

∑
αi≥α0

ai ≥

 ∑
αi≥α0

αi

− kτ4.
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2. Choose ci in the grid on X so that ‖µi − ci‖ ≤ τ1.

3. Choose covariance Bi so that

exp(−τ2) ≤ |Bi|
|Σi|

≤ exp(τ2) and ‖Σ−1 −B−1
i ‖2 ≤ τ2.

The first property directly controls for the determinant term in the Gaussian density. To
control the Mahalanobis term, note that the above display, combined with ‖µi − ci‖ ≤ τ1,
gives, for every x ∈ B,∣∣(x− µi)>Σ−1

i (x− µi)− (x− ci)>B−1
i (x− ci)

∣∣
=
∣∣(x− µi)>Σ−1

i (x− µi)− (x− ci)>(B−1
i −Σ

−1
i + Σ−1

i )(x− ci)
∣∣

≤
∣∣(x− µi)>Σ−1

i (x− µi)− (x− ci)>Σ−1
i (x− ci)

∣∣+ ‖x− ci‖22‖B−1
i −Σ

−1
i ‖2

≤
∣∣(x− µi)>Σ−1

i (x− µi)− (x− ci)>Σ−1
i (x− ci)

∣∣+ (R+R2)2τ2

≤
∣∣(x− µi)>Σ−1

i (x− µi)− (x− ci)>Σ−1
i (x− ci)

∣∣+ ε/4.

Continuing with the (still uncontrolled) first term,∣∣(x− µi)>Σ−1
i (x− µi)− (x− ci)>Σ−1

i (x− ci)
∣∣

=
∣∣(x− µi)>Σ−1

i (x− µi)− (x− µi + µi − ci)>Σ−1
i (x− µi + µi − ci)

∣∣
≤ 2‖x− µi‖2‖µi − ci‖2‖Σ−1‖2 + ‖µi − ci‖22‖Σ−1‖2
≤ 2(R+R2)τ1/σ1 + τ2

1 /σ1

≤ ε/4.

Combining these various controls with the choices of scale parameters, for some provided probabil-
ity αipi and cover element probability aip′i, it follows for x ∈ B that

exp(−3ε/4) ≤ αipi(x)

aip′i(x)
≤ exp(3ε/4).

Lastly, when αi < α0, simply do not bother to exhibit a cover element.

To show | ln(pα,Θ(x))− ln(pα′,Θ′(x))| ≤ ε, consider the two directions separately as follows.

1. Given the various constructions above, since ln is nondecreasing,

ln

(∑
i

aipθ′i(x)

)
≤ ln

 ∑
αi≥α0

αipθi(x) exp(3ε/4) +
∑
αi<α0

αipθi(x)


≤ ln

(∑
i

αipθi(x)

)
+

3ε

4
.

2. On the other hand,

ln

(∑
i

αipθi(x)

)
= ln

 ∑
αi≥α0

αipθi(x) +
∑
αi<α0

αipθi(x)


≤ ln

 ∑
αi≥α0

aipθ′i(x) exp(3ε/4) + kα0pmax


= ln

(
(1 + ε/4)

∑
αi≥α0

aipθ′i(x) exp(3ε/4)

− ε/4
∑
αi≥α0

aipθ′i(x) exp(3ε/4) + kα0pmax

)
.
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But since
∑
i ai ≥ c1 − k(τ4 + α0),

−ε/4
∑
αi≥α0

aipθ′i(x) exp(3ε/4) ≤ −(ε/4)(c1 − k(τ4 + α0))pmin + kα0pmax ≤ 0.

As such, since (1 + ε/4) ≤ exp(ε/4), the result follows in this case as well.

D.3 Proof of Theorem 5.1

Proof of Theorem 5.1. This proof is based on the proof of Theorem 3.2. Let the various quantities
in Lemma D.5 be given; in particular, let balls B,C and their radii RB , RC be as provided there.
Additionally, define p0 := exp(4c)/8e for convenience. Near the end of the proof, the choices
p′ = p/4 and ε := m−1/2+1/p will be made.

By Lemma D.7, let N be a cover of the set C, with all parameters having the same names as those
here, except the R there is the radius RB here, and R2 there is radius RC here, the lower bound
c1 is p0/pmax. By the construction of the cover there, every set of partial Gaussian parameters
(α,Θ) ∈ C with

∑
αi
αi ≥ c1 = p0/pmax and cardinality at most k has a cover element Q ∈ N

with
sup
x∈B
|φg(x; (α,Θ))− φg(x;Q)| ≤ ε; (D.8)

note that Lemma D.7 also provides the stated estimate of the size. Next, note for x ∈ B and every
cover element Q ∈ N that Lemma D.7 provides

ln((c1 − kα0)pmin) ≤ pQ(x) ≤ ln(pmax)

where c1 = p0/pmax as above and

α0 =
εc1pmin

4k(pmax + εpmin/2)
≤ εc1pmin

4kpmax
,

which combined with ε ≤ 2 and pmin ≤ pmax gives

c1 − kα0 ≥ c1
(

1− εpmin

4pmax

)
≥ c1

2
.

Thus, by Hoeffding’s inequality,

sup
Q∈N

∣∣∣∣∫
B

φg(x;Q)dρ̂(x)−
∫
B

φg(x;Q)dρ(x)

∣∣∣∣ ≤ ln

(
pmax

pmin(c1 − kα0)

)√
1

2m
ln

(
2|N |
δ

)

≤ ln

(
2p2

max

pminp0

)√
1

2m
ln

(
2|N |
δ

)
. (D.9)

For the remainder of this proof, discard the corresponding failure event.

To further simplify eq. (D.9), note firstly that

ln

(
1

pmin

)
= ln

(
(2πσ2)d/2 exp((RB +RC)2/(2σ1))

)
= ln((2πσ2)d/2) + 2R2

C/σ1,

where

R2
C ≤ 3R2

B(1 +
√

8σ2/σ1)2 + 12σ2 ln(1/ε) + 6σ2

(
ln

(
64e2(2πσ2)d

(2π)dp4
max

)
− 8c

)
and

R2
B ≤ 2R2

6 +M2
1 /ε

2/(p−2p′).
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Next, to control |N |, the scale term τ = min{τ1, τ2} must first be controlled. Since ε ≤ 1 and
σ1 ≤ 1 and RC ≥ 1,

τ ≥ εσ1

16(RB +RC)2
≥ εσ1

64R2
C

,

and thus

ln
( ε
τ

)
≤ ln(64R2

C/σ1).

Together with τ0 = exp(ε/4) and α0 ≥ εc1pmin/(8kpmax) = p0pmin/(8kp
2
max), and letting O(·)

swallow terms depending only on numerical constants, c, σ1, and σ2, but in particular not touching
terms depending on ε, d, k or m or δ,

ln(|N |) ≤ ln

((5

ε

(
8kp2

max

εp0pmin

))(
3RCd

τ

)d(
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σ1τ

)d2 ((
σ−1

1

τ/2

)d
+

(
ln(σ2/σ1)

τ/2

)d))k
≤ 3d2k (5 ln(1/ε) + ln(1/pmin) + 3 ln(ε/τ) + ln(RC) +O(1))

≤ 3d2k
(
5 ln(1/ε) + 2R2

C/σ1 + 3 ln(ε/τ) + 4 ln(RC) +O(1)
)

= O
(
d2k(ln(1/ε) + ε−2/(p−2p′)

)
.

Together, the full expression in eq. (D.9) may be simplified down to

sup
Q∈N

∣∣∣∣∫
B

φg(x;Q)dρ̂(x)−
∫
B

φg(x;Q)dρ(x)

∣∣∣∣
≤ O

(
poly(d, k)

(
1

ε

)2/(p−2p′)
√

(ln(1/ε) + (1/ε)2/(p−2p′) + ln(1/δ))

m

)

≤ O

(
poly(d, k)

(
ε−3/(p−2p′)

√
m

+

√
(ln(1/ε) + ln(1/δ))

m

))

≤ O

(
poly(d, k)

(
m−1/2+3/p +

√
(ln(m) + ln(1/δ))

m

))
(D.10)

where the final step used the choice p′ = p/4 and ε := m−1/2+1/p.

Now let any (α,Θ) ∈ Smog(ρ; c, k, σ1, σ2) ∪ Smog(ρ̂; c, k, σ1, σ2) be given, and let Q ∈ N be a
cover element satisfying eq. (D.8) for (α, θ)uC. By eq. (D.8), eq. (D.9), and Lemma D.5 (and thus
discarding an additional failure event having probability 4δ),∣∣∣∣∫ φg(x; (α,Θ))dρ(x)−

∫
φg(x; (α,Θ))dρ̂(x)

∣∣∣∣ ≤ ∣∣∣∣∫ φg(x; (α,Θ))dρ(x)−
∫
B

φg(x; (α,Θ) u C)dρ(x)

∣∣∣∣
+

∣∣∣∣∫
B

φg(x; (α,Θ) u C)dρ(x)−
∫
B

φg(x;Q)dρ(x)

∣∣∣∣
+

∣∣∣∣∫
B

φg(x;Q)dρ(x)−
∫
B

φg(x;Q)dρ̂(x)

∣∣∣∣
+

∣∣∣∣∫
B

φg(x;Q)dρ̂(x)−
∫
B

φg(x; (α,Θ) u C)dρ̂(x)

∣∣∣∣
+

∣∣∣∣∫
B

φg(x; (α,Θ) u C)dρ̂(x)−
∫
φg(x; (α,Θ))dρ̂(x)

∣∣∣∣
≤ 4ε+ ln

(
2p2

max

pminp0

)√
1

2m
ln

(
2|N |
δ

)
+ ερ + ερ̂,

= poly(d,k)O(m−1/2+3/p
(

1 +
√

ln(m) + ln(1/δ) + (1/δ)4/p
)
,

where the final step uses the above simplification of the cover term, the choices ε = m−1/2+1/p and
p′ = p/4, and additionally unwrapping the forms of ερ and ερ̂ from Lemma D.5.
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