
Learning with Invariance via Linear Functionals on
Reproducing Kernel Hilbert Space

Xinhua Zhang
Machine Learning Research Group
National ICT Australia and ANU

xinhua.zhang@nicta.com.au

Wee Sun Lee
Department of Computer Science
National University of Singapore

leews@comp.nus.edu.sg

Yee Whye Teh
Department of Statistics

University of Oxford
y.w.teh@stats.ox.ac.uk

Abstract

Incorporating invariance information is important for many learning problems. To
exploit invariances, most existing methods resort to approximations that either
lead to expensive optimization problems such as semi-definite programming, or
rely on separation oracles to retain tractability. Some methods further limit the
space of functions and settle for non-convex models. In this paper, we propose a
framework for learning in reproducing kernel Hilbert spaces (RKHS) using local
invariances that explicitly characterize the behavior of the target function around
data instances. These invariances are compactly encoded as linear functionals
whose value are penalized by some loss function. Based on a representer theo-
rem that we establish, our formulation can be efficiently optimized via a convex
program. For the representer theorem to hold, the linear functionals are required
to be bounded in the RKHS, and we show that this is true for a variety of com-
monly used RKHS and invariances. Experiments on learning with unlabeled data
and transform invariances show that the proposed method yields better or similar
results compared with the state of the art.

1 Introduction
Invariances are among the most useful prior information used in machine learning [1]. In many
vision problems such as handwritten digit recognition, detectors are often supposed to be invariant
to certain local transformations, such as translation, rotation, and scaling [2, 3]. One way to utilize
this invariance is by assuming that the gradient of the function is small along the directions of trans-
formation at each data instance. Another important scenario is semi-supervised learning [4], which
relies on reasonable priors over the relationship between the data distribution and the discriminant
function [5, 6]. It is commonly assumed that the function does not change much in the proximity of
each observed data instance, which reflects the typical clustering structure in the data set: instances
from the same class are clustered together and away from those of different classes [7–9]. Another
popular assumption is that the function varies smoothly over the graph Laplacian [10–12].

A number of existing works have established a mathematical framework for learning with invari-
ance. Suppose T (x, θ) transforms a data point x by an operator T with a parameter θ (e.g. T for
rotation and θ for the degree of rotation). Then to incorporate invariance, the target function f is
assumed to be (almost) invariant over T (x,Θ) := {T (x, θ) : θ ∈ Θ}, where Θ controls the lo-
cality of invariance. The consistency of this framework was shown by [13] in the context of robust
optimization [14]. However, in practice it usually leads to a large or infinite number of constraints,
and hence tractable formulations inevitably rely on approximating or restricting the invariance under
consideration. Finally, this paradigm gets further complicated when f comes from a rich space of
functions, e.g. the reproducing kernel Hilbert space (RKHS) induced by universal kernels.

In [15], all perturbations within the ellipsoids around instances are treated as invariances. This led to
a second order cone program, which is difficult to solve efficiently. In [16], a discrete set of Θ that
corresponds to feature deletions [17] are considered. The problem is reduced to a quadratic program,
but at the cost of blowing up the number of variables which makes scaling to large problems chal-

1

mailto:xinhua.zhang@nicta.com.au
mailto:leews@comp.nus.edu.sg
mailto:y.w.teh@stats.ox.ac.uk

lenging. A one step approximation of T (x,Θ) via the even-order Taylor expansions around θ = 0
is used in [18]. This results in a semi-definite programming, which is still hard to solve. A further
simplification was introduced by [19], which performed sparse approximations of T (x,Θ) by find-
ing (via an oracle) the most violating instance under the current solution. Besides yielding a cheap
quadratic program at each iteration, it also improved upon the Virtual Support Vector approach in
[20], which did not have a clear optimization objective despite a similar motivation of sparse ap-
proximation. However, tractable oracles are often unavailable, and so a simpler approximation can
be performed by merely enforcing the invariance of f along some given directions, e.g. the tangent
direction ∂

∂θ |θ=0T (x, θ). This idea was used in [21] in a nonlinear RKHS, but their direction of per-
turbation was not in the original space but in the RKHS. By contrast, [3] did penalize the gradient
of f in the original feature space, but their function space was limited to neural networks and only
locally optimal solutions were found.

The goal of our paper, therefore, is to develop a new framework that: (1) allows a variety of invari-
ances to be compactly encoded over a rich family of functions like RKHS, and (2) allows the search
of the optimal function to be formulated as a convex program that is efficiently solvable. The key
requirement to our approach is that the invariances can be characterized by linear functionals that
are bounded (§ 2). Under this assumption, we are able to formulate our model into a standard regu-
larized risk minimization problem, where the objective consists of the sum of loss functions on these
linear functionals, the usual loss functions on the labeled training data, and a regularization penalty
based on the RKHS norm of the function (§ 3). We give a representer theorem that guarantees that
the cost can be minimized by linearly combining a finite number of basis functions1. Using convex
loss, the resulting optimization problem is a convex program, which can be efficiently solved in a
batch or online fashion (§ 5). Note [23] also proposed an operator based model for invariance, but
did not derive a representer theorem and did not study the empirical performance.

We also show that a wide range of commonly used invariances can be encoded as bounded linear
functionals. This include derivatives, transformation invariances, and local averages in commonly
used RKHSs such as those defined by Gaussian and polynomial kernels (§ 4). Experiment show that
the use of some of these invariances within our framework yield better or similar results compared
to the state of the art.

Finally, we point out that our focus is to find a function in a given RKHS which respects the pre-
specified invariances. We are not constructing kernels that instantiate the invariance, e.g. [24, 25].

2 Preliminaries
Suppose features of training examples lie in a domain X. A function k : X × X → R is called a
positive semi-definite kernel (or simply kernel) if for all l ∈ N and all x1, . . . , xl ∈ X, the l× l Gram
matrixK := (k(xi, xj))ij is symmetric positive semi-definite. Example kernels on Rn×Rn include
polynomial kernel of degree r, which are defined as k(x1,x2) = (x1 · x2 + 1)r,2 as well as Gaus-
sian kernels, defined as k(x1,x2) = κσ(x1,x2) where κσ(x1,x2) := exp(−‖x1 − x2‖2 /(2σ2)).
More comprehensive introductions to kernels are available in, e.g., [26–28].

Given k, let H0 be the set of all finite linear combinations of functions in {k(x, ·) : x ∈ X}, and en-
dow on H0 an inner product as 〈f, g〉 =

∑p
i=1

∑q
j=1 αiβjk(xi, yj) where f(·) =

∑p
i=1 αik(xi, ·)

and g(·) =
∑q
j=1 βjk(yj , ·). Note 〈f, g〉 is invariant to the form of expansion of f and g [26, 27].

Using the positive semi-definite properties of k, it is easy to show that H0 is an inner product space,
and we call its completion under 〈·, ·〉 as a reproducing kernel Hilbert space (RKHS) H induced by k.
For any f ∈ H, the reproducing property implies f(x) = 〈f, k(x, ·)〉 and we denote ‖f‖2 := 〈f, f〉.

2.1 Operators and Representers
Definition 1 (Bounded Linear Operator and Functional). A linear operator T is a mapping from a
vector space V to a vector space W, such that T (x + y) = Tx + Ty and T (αx) = α · Tx for all
x, y ∈ V and scalar α ∈ R. T is also called a functional if W = R. In the case that V and W are
normed, T is called bounded if c := supx∈V,‖x‖V=1 ‖Tx‖W is finite, and we call c as the norm of
the operator, denoted by ‖T‖.

1A similar result was provided in [22], but not in the context of learning with invariance.
2We write a variable in boldface if it is a vector in a Euclidean space.

2

Example 1. Let H be an RKHS induced by a kernel k defined on X × X. Then for any x ∈ X, the
linear functional T : H → R defined as T (f) := f(x) is bounded since |f(x)| = |〈f, k(x, ·)〉| ≤
‖k(x, ·)‖ · ‖f‖ = k(x, x)1/2‖f‖ by the Cauchy-Schwarz inequality.

Boundedness of linear functionals is particularly useful thanks to the Riesz representation theorem
which establishes their one-to-one correspondence to V [29].
Theorem 1 (Riesz representation Theorem). Every bounded linear functional L on a Hilbert space
V can be represented in terms of an inner product L(x) = 〈x, z〉 for all x ∈ V, where the representer
of the functional, z ∈ V, has norm ‖z‖ = ‖L‖ and is uniquely determined by L.
Example 2. Let H be the RKHS induced by a kernel k. For any functional L on H, the representer
z can be constructed as z(x) = 〈z, k(x, ·)〉 = L(k(x, ·)) for all x ∈ X. By Theorem 1, z ∈ H.
Using Riesz’s representer theorem, it is not hard to show that for any bounded linear operator T :
V → V where V is Hilbertian, there exists a unique bounded linear operator T ∗ : V → V such that
〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ V. T ∗ is called the adjoint operator. So continuing Example 2:
Example 3. Suppose the functional L has the form L(f) = T (f)(x0), where x0 ∈ X and T : H→
H is a bounded linear operator on H. Then the representer of L is z = T ∗(k(x0, ·)) because
∀ x ∈ X, z(x) = L(k(x, ·)) = T (k(x, ·))(x0) = 〈T (k(x, ·)), k(x0, ·)〉 = 〈k(x, ·), T ∗(k(x0, ·))〉. (1)
Riesz’s theorem will be useful for our framework since it allows us to compactly represent function-
als related to local invariances as elements of the RKHS.

3 Regularized Risk Minimization in RKHS with Invariances

To simplify the presentation, we first describe our framework in the settings of semi-supervised
learning [SSL, 4], and later show how to extend it to other learning scenarios in a straightforward
way. In SSL, we wish to learn a target function f both from labeled data and from local invariances
extracted from labeled and unlabeled data. Let (x1, y1), . . . , (xl, yl) be the labeled training data,
and `1(f(x), y) be the loss function on f when the training input x is labeled as y. In this paper we
restrict `1 to be convex in its first argument, e.g. logistic loss, hinge loss, and squared loss.

We measure deviations from local invariances around each labeled or unlabeled input instance, and
express them as bounded linear functionals Ll+1(f), . . . , Ll+m(f) on the RKHS H. The linear
functionals are associated with another convex loss function `2(Li(f)) penalizing violations of the
local invariances. As an example, the derivative of f with respect to an input feature at some training
instance x is a linear functional in f , and the loss function penalizes large values of the derivative
at x using, e.g., squared loss, absolute loss, and ε-insensitive loss. Section 4 describes other local
invariances we can consider and shows that these can be expressed as bounded linear functionals.

Finally, we penalize the complexity of f via the squared RKHS norm ‖f‖2. Putting together the
loss and regularizer, we set out to minimize the regularized risk functional over f ∈ H:

min
f∈H

1

2
‖f‖2 + λ

l∑
i=1

`1(f(xi), yi) + ν

l+m∑
i=l+1

`2 (Li(f)) , (2)

where λ, ν > 0. By the convexity of `1 and `2, (2) must be a convex optimization problem. However
it is still in the function space and involves functionals. In order to derive an efficient optimization
procedure, we now derive a representer theorem showing that the optimal solution lies in the span of
a finite number of functions associated with the labeled data and the representers of the functionals
Li. Similar results are available in [22].
Theorem 2. Let H be the RKHS defined by the kernel k. Let Li (i = l + 1, . . . , l +m) be bounded
linear functionals on H with representers zi. Then the optimal solution to (2) must be in the form of

g(·) =

l∑
i=1

αik(xi, ·) +

l+m∑
i=l+1

αizi(·) (3)

Furthermore, the parameters α = (α1, . . . , αl+m)′ (finite dimensional) can be found by minimizing

λ

l∑
i=1

`1(〈k(xi, ·), f〉 , yi) + ν

l+m∑
i=l+1

`2 (〈zi, f〉) +
1

2
α′Kα, where f =

l∑
i=1

αik(xi, ·) +

l+m∑
i=l+1

αizi. (4)

Here Kij=〈k̂i, k̂j〉, where k̂i=k(xi, ·) if i ≤ l, and k̂i = zi(·) otherwise. (Proof is in Appendix A.)

3

Theorem 2 is similar to the results in [18, Proposition 3] and [19, Eq 8], where the optimal function
lies in the span of a finite number of representers. However, our model is quite different in that it
uses the representers of the linear functionals corresponding to the invariance, rather than virtual
samples drawn from the invariant neighborhood. This could result in more compact models because
the invariance (e.g. rotation) is enforced by a single representer, rather than multiple virtual examples
(e.g. various degrees of rotation) drawn from the trajectory of invariant transforms. By the expansion
of f in (4), the labeling of a new instance x depends not only on k(x, xi) that often measures the
similarity between x and training examples, but also takes into account the extent to which k(x, ·),
as a function, conforms to the prior invariances.

Computationally, 〈k(xi, ·), zj〉 is straightforward based on the definition of Lj . The efficient com-
putation of 〈zi, zj〉 depends on the specific kernels and invariances, as we will show in Section
4. In the simplest case, consider the commonly used graph Laplacian regularizer [10, 11] which,
given the similarity measure wij between xi and xj , can be written as

∑
ij wij(f(xi)− f(xj))

2 =∑
ij wij(Lij(f))2, where Lij(f) = 〈f, k(xi, ·)− k(xj , ·)〉 is linear and bounded. Then 〈zij , zpq〉 =

k(xi, xp) + k(xj , xq) − k(xj , xp) − k(xi, xq). Another generic approach is to use the assumption
in Example 3 that 〈zs, f〉 = Ls(f) = Ts(f)(xs), ∀s ∈ {i, j}. Then
〈zi, zj〉=Li(zj)=Ti(zj)(xi) = 〈Ti(zj), k(xi, ·)〉 = 〈zj , T ∗i (k(xi, ·))〉 = Tj(T

∗
i (k(xi, ·)))(xj). (5)

In practice, classifiers such as the support vector machine often use an additional constant term (bias)
that is not penalized in the optimization. This is equivalent to searching f over F +H, where F is a
finite set of basis functions. A similar representer theorem can be established (see Appendix A).

4 Local Invariances as Bounded Linear Functionals
Interestingly, many useful local invariances can be modeled as bounded linear functionals. If it can
be expressed in terms of function values f(x), then it must be bounded as shown in Example 1.

In general, boundedness hinges on the functional and the RKHS H. When H is finite dimensional,
such as that induced by linear or polynomial kernels, all linear functionals on H must be bounded:
Theorem 3 ([29, Thm 2.7-8]). Linear functionals on finite dimensional normed space are bounded.

However, in most nonparametric statistics problems that are of interest, the RKHS is infinite dimen-
sional. So the boundedness requires a more refined analysis depending on the specific functional.

4.1 Differentiation Functional

In semi-supervised learning, a common prior is that the discriminant function f does not change
rapidly around sampled points. Therefore, we expect the norm of the gradient at these locations is
small. Suppose X ⊆ Rn is an open set, and k is continuously differentiable on X2. Then we are
interested in linear functionals Lxi,d(f) := ∂f(x)

∂xd
|x=xi , where xd stands for the d-th component of

the vector x. Then Lxi,d must be bounded:
Theorem 4. Lxi,d is bounded on H with respect to the RKHS norm.
Proof. This result is immediate from the inequality given by [28, Corollary 4.36]:∣∣∣∣ ∂∂xd ∣∣∣x=xi

f(x)

∣∣∣∣ ≤ ‖f‖(∂2

∂xd∂yd

∣∣∣
x=y=xi

k(x,y)
) 1

2

. �

Let us denote the representer of Lxi,d as zi,d. Indeed, [28, Corollary 4.36] established the same
result for higher order partial derivatives, which can be easily used in our framework as well.

The inner product between representers can be computed by definition:

〈zi,d, zj,d′〉 =
∂

∂yd′

∣∣∣∣
y=xj

zi,d(y) =
∂

∂yd′

∣∣∣∣
y=xj

〈zi,d, k(y, ·)〉 =
∂2

∂yd′∂xd

∣∣∣∣
x=xi,y=xj

k(x,y). (6)

If k is considered as a function on (x,y) ∈ R2n, this implies that the inner product 〈zi,d, zj,d′〉 is the
(xd, yd

′
)-th element of the Hessian of k evaluated at (xi,xj), which could be interpreted as some

sort of “covariance” between the two invariances with respect to the touchstone function k.

Applying (6) to the polynomial kernel k(x,y) = (〈x,y〉+ 1)r, we derive

〈zi,d, zj,d′〉 = r(〈xi,xj〉+ 1)r−2[(r − 1)xd
′

i x
d
j + (〈xi,xj〉+ 1)δd=d′], (7)

4

where δd=d′ = 1 if d = d′, and 0 otherwise. For Gaussian kernels k(x,y) = κσ(x,y), we can take
another path that is different from (6). Note that Lxi,d(f) = T (f)(xi) where T : f 7→ ∂f

∂xd
, and it

is straightforward to verify that T is bounded with T ∗ = −T for Gaussian RKHS. So applying (5),

〈zi,d, zj,d′〉 =
∂

∂yd′

∣∣∣∣
y=xj

(
− ∂

∂yd
k(xi,y)

)
=
k(xi,xj)

σ4
[σ2δd=d′ − (xdi − xdj)(xd

′

i − xd
′

j)]. (8)

By Theorem 1, it immediately follows that the norm of Lxi,d is
√
〈zi,d, zi,d〉 = 1/σ.

4.2 Transformation Invariance

Invariance to known local transformations of input has been used successfully in supervised learning
[3]. Here we show that transformation invariance can be handled in our framework via representers
in RKHS. In particular, gradients with respect to the transformations are bounded linear functionals.

Following [3], we first require a differentiable function g that maps points from a space S to R,
where S lies in a Euclidean space.3 For example, an image can be considered as a function g that
maps points in the plane S = R2 to the intensity of the image at that point. Next, we consider a
family of bijective transformations tα : S 7→ S, which is differentiable in both the input and the
parameter α. For instance, translation, rotation, and scaling can be represented as mappings t(1)α ,
t
(2)
α , and t(3)α respectively:(

x
y

)
t(1)α7−→

(
x+ αx
y + αy

)
,

(
x
y

)
t(2)α7−→

(
x cosα− y sinα
x sinα− y cosα

)
,

(
x
y

)
t(3)α7−→

(
x+ αx
y + αy

)
.

Based on tα, we define a family of operators Tα : RS → RS as Tα(g) = g ◦ t−1α . The
function Tα(g)(x, y) gives us the intensity at location (x, y) of the image translated by an off-
set (αx, αy), rotated by an angle α, or scaled by an amount α. Finally we sample from S a
fixed number of locations S := {s1, . . . , sq}, and present to the learning algorithm a vector
I(g,α;S) := (Tα(g)(s1)′, . . . , Tα(g)(sq)

′)′. Digital images are discretization of real images where
we sample at fixed pixel locations of the function g to obtain a fixed sized vector. Clearly, for a fixed
g, the sampled observation I(g,α;S) is a vector valued function of α.

The following result allows our framework to use derivatives with respect to the parameters in α.
Theorem 5. Let F be a normed vector space of functions that map from the range of I(g,α;S) to R.
Suppose the linear functional that maps f ∈ F to ∂f(u)

∂uj

∣∣
u=u0

is bounded for any u0 and coordinate
j, and its norm is denoted as Cj . Then the functional Lg,d,S: f 7→ ∂

∂αd

∣∣
α=0

f(I(g,α;S)), i.e.
derivatives with respect to each of the components in α, must be bounded linear functionals on F.

Proof. Let Ij(g,α;S) be the j-th component of I(g,α;S). Using the chain rule, for any f ∈ F

|Lg,d,S(f)| =
∣∣∣∣ ∂f(I(g,α;S))

∂αd

∣∣∣∣
α=0

∣∣∣∣ =

∣∣∣∣∣∣
q∑
j=1

∂f(u)

∂uj

∣∣∣∣
u=I(g,0;S)

· ∂I
j(g,α;S)

∂αd

∣∣∣∣
α=0

∣∣∣∣∣∣
(by definition of ‖f‖) ≤

q∑
j=1

(Cj ‖f‖) ·
∣∣∣∣ ∂Ij(g,α;S)

∂αd

∣∣∣∣
α=0

∣∣∣∣ = ‖f‖ ·
q∑
j=1

Cj

∣∣∣∣ ∂Ij(g,α;S)

∂αd

∣∣∣∣
α=0

∣∣∣∣ .
The proof is completed by noting that the last summation is a finite constant independent of f . �

Corollary 1. The derivatives ∂
∂αd

∣∣∣
α=0

f(I(g,α;S)) with respect to each of the component in α are
bounded linear functionals on the RKHS defined by the polynomial and Gaussian kernels.

To compute the inner product between representers, let zg,d,S be the representer ofLg,d,S and denote

vg,d,S = ∂I(g,α;S)
∂αd

|α=0. Then 〈k(x, ·), zg,d,S〉 =
〈
∂
∂y

∣∣
y=I(g,0,S)

k(x,y),vg,d,S

〉
and

〈zg,d,S , zg′,d′,S′〉 =

〈
vg,d,S ,

∂

∂x

∣∣∣
x=I(g,0,S)

(〈
vg′,d′,S′ ,

∂

∂y

∣∣∣
y=I(g′,0,S′)

k(x,y)

〉)〉
. (9)

3In practice, S can be a discrete domain such as the pixel coordinate of an image. Then g can be extended
to an interpolated continuous space via convolution with a Gaussian. See [3, § 2.3] for more details.

5

4.3 Local Averaging
Using gradients to enforce the local invariance that the target function does not change much around
data instances increases the number of basis functions by a factor of n, where n is the number of
gradient directions that we use. The optimization problem can become computationally expensive if
n is large. When we do not have useful information about the invariant directions, it may be useful
to have methods that do not increase the number of basis functions by much. Consider functionals

Lxi(f) =

∫
X

f(τ)p(xi − τ)dτ − f(xi), (10)

where p(·) is a probability density function centered at zero. Minimizing a loss with such linear
functionals will favor functions whose local averages given by the integral are close to the function
values at data instances. If p(·) is selected to be a low pass filter, the function should be smoother
and less likely to change in regions with more data points but is less constrained to be smooth in
regions where the data points are sparse. Hence, such loss functions may be appropriate when we
believe that data instances from the same class are clustered together.

To use the framework we have developed, we need to select the probability density p(·) and the
kernel k such that Lxi(f) is a bounded linear functional.
Theorem 6. Assume there is a constant C > 0 such that k(x,x) ≤ C2 for all x ∈ X. Then the
linear functional Lxi in (10) is bounded in the RKHS defined by k for any probability density p(·).

See proof in Appendix B. As a result, radial kernels such as Gaussian and exponential kernels make
Lxi bounded. k(x,x) is not bounded for polynomial kernel, but it has been covered by Theorem 3.

To allow for efficient implementation, the inner product between representers of invariances must
be computed efficiently. Unlike differentiation, integration often does not result in a closed form
expression. Fortunately, analytic evaluation is feasible for the Gaussian kernel κσ(xi,xj) together
with the Gaussian density function p(x) = (θ

√
2π)−nκθ(x,0), because the convolution of two

Gaussian densities is still a Gaussian density (see derivation in Appendix B):
〈zxi , zxj 〉 = κσ(xi,xj) + (1 + 2θ/σ)−nκσ+2θ(xi,xj)− 2(1 + θ/σ)−nκσ+θ(xi,xj).

5 Optimization
The objective (2) can be optimized by many algorithms, such as stochastic gradient [30], bundle
method [19, 31], and (randomized) coordinate descent in its dual (4) [32]. Since all computational
strategies rely on kernel evaluation, we prefer the dual approach. In particular, (4) allows an uncon-
strained optimization and the nonsmooth regions in `1 or `2 can be easily approximated by smooth
surrogates [33]. So without loss of generality, we assume `1 and `2 are smooth. Our approach can
work in both batch and coordinate-wise, depending on the scale of different problems.

In the batch setting, the major challenge is the cost in computing the gradient when the number
of invariance is large. For example, consider all derivatives at all labeled examples x1, . . . ,xl and
let N = (〈zi,d′ , zj,d′〉)(i,d),(j,d′) ∈ Rnl×nl as in (8). Then given α = (α′1, . . . ,α

′
l)
′ ∈ Rnl, the

bottleneck of computation is g := Nα, which costs O(l2n2) time and O(l2n2) space to store N in
a vanilla implementation. However, since the kernel matrices often employ rich structures, a careful
treatment can reduce the cost by an order of magnitude, e.g. intoO(l2n) time andO(nl+l2) space in
this case. Specifically, denoteK = (k(xi,xj))ij ∈ Rl×l, and three n×lmatricesX = (x1, . . . ,xl),
A = (α1, . . . ,αl), and G = (gd,i). Then one can show
G = σ−4

[
σ2AK +XQ−X ◦ (1n ⊗ 1′lQ)

]
, where Qij = Kij(Λji − Λii), Λ = X ′A. (11)

Here ◦ stands for Hadamard product, and ⊗ is Kronecker product. 1n ∈ Rn is a vector of straight
one. The computational cost is dominated by X ′A, AK, and XQ, which are all O(l2n).

When the number of invariance is huge, a batch solver can be slow and coordinate-wise updates can
be more efficient. In each iteration, it picks a coordinate in α and optimizes the objective over all the
coordinates picked so far, leaving the rest elements to zero. [32] selected the coordinate randomly,
while another strategy is to choose the steepest descent coordinate. Clearly, it is useful only when
this selection can be performed efficiently, which depends heavily on the structure of the problem.

6 Experimental Result
We compared our approach,which is henceforth referred to as InvSVM,with state-of-the-art methods

6

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Decision boundary for the two moon dataset with ν = 0, 0.01, 0.1, and 1 (left to right).

in (semi-)supervised learning using invariance to differentiation and transformation.

6.1 Invariance to Differentiation: Transduction on Two Moon Dataset

As a proof of concept, we experimented with the “two moon” dataset shown in Figure 1, with
only l = 2 labeled data instances (red circle and black square). We used the Gaussian kernel with
σ = 0.25 and the gradient invariances on both labeled and unlabeled data. The loss `1 and `2 are
logistic and squared loss respectively, with λ = 1, and ν ∈ {0, 0.01, 0.1, 1}. (4) was minimized
by a L-BFGS solver [34]. In Figure 1, from left to right our method lays more and more emphasis
on placing the separation boundary in low density regions, which allows unlabeled data to improve
the classification accuracy. We also tried hinge loss for `1 and ε-insensitive loss for `2 with similar
classification results.

6.2 Invariance to Differentiation: Semi-supervised Learning on Real-world Data.

Datasets. We used 9 datasets for binary classification from [4] and the UCI repository [35]. The
number of features (n) and instances (t) are given in Table 1. All feature vectors were normalized
to zero mean and unit length.

Algorithms. We trained InvSVM with hinge loss for `1 and squared loss for `2. The differentiation
invariance was used over the whole dataset, i.e. m = nt in (4), and the gradient computation was
accelerated by (11). We compared InvSVM with the standard SVM, and a state-of-the-art semi-
supervised learning algorithm LapSVM [36], which uses manifold regularization based on graph
Laplacian [11, 37]. All three algorithms used Gaussian kernel with the bandwidth σ set to be the
median of pairwise distance among all instances.

Settings. We trained SVM, LapSVM, and InvSVM on a subset of l ∈ {30, 60, 90} labeled ex-
amples, and compared their test error on the other t − l examples in each dataset. We used 5 fold
stratified cross validation (CV) to select the values of λ and ν for InvSVM. CV was also applied
to LapSVM for choosing the number of nearest neighbor for graph construction, weight on the
Laplacian regularizer, and the standard RKHS norm regularizer. For each fold of CV, InvSVM and
LapSVM used the other 4 folds (45 l points) as labeled data, and the remaining t− 4

5 l points as unla-
beled data. The error on the 1

5 l points was then used for CV. Finally the random selection of l labeled
examples was repeated for 10 times, and we reported the mean test error and standard deviation.

Results. It is clear from Table 1 that in most cases InvSVM achieves lower or similar test er-
ror compared to SVM and LapSVM. Both LapSVM and InvSVM are implementations of the low
density prior. To this end, LapSVM enforces smoothness of the discrimination function over neigh-
boring instances, while InvSVM directly penalizes the gradient at instances and does not require a
notion of neighborhood. The lower error of InvSVM suggests the superiority of the use of gradient,
which is enabled by our representer based approach. Besides, SVM often performs quite well when
the number of labeled data is large, with similar error as LapSVM. But still, InvSVM can attain
even lower error.

6.3 Transformation Invariance

Next we study the use of transformation invariance for supervised learning. We used the handwritten
digits from the MNIST dataset [38] and compared InvSVM with the virtual sample SVM (VirSVM)
which constructs additional instances by applying the following transformations to the training data:
2-pixel shifts in 4 directions, rotations by±10 degrees, scaling by±0.1 unit, and shearing in vertical
or horizontal axis by ±0.1 unit. For InvSVM, the derivative ∂

∂α |α=0I(g,α;S) was approximated
with the difference that results from the above transformation. We considered binary classification
problems by choosing four pairs of digits (4-vs-9, 2-vs-3, and 6-vs-5 are hard, while 7-vs-1 is

7

Table 1: Test error of SVM, LapSVM, and InvSVM for semi-supervised learning. The best result
(including tie) that is statistically significant in each setting is highlighted in bold. No number is
highlighted if there is no significant difference between the three methods.

Method heart (n = 13, t = 270) BCI (n = 117, t = 400) bupa (n = 6, t = 245)

l = 30 l = 60 l = 90 l = 30 l = 60 l = 90 l = 30 l = 60 l = 90

SVM 23.5±2.08 21.4±0.23 20.0±1.11 44.6±1.89 39.0±3.41 34.6±3.25 36.2±5.53 37.9±5.80 36.9±1.80

LapSVM 23.2±1.68 22.7±1.92 20.7±2.10 44.8±2.72 45.4±2.25 36.1±3.92 36.6±5.98 40.7±4.05 37.1±1.58

InvSVM 22.3±1.27 20.2±1.01 19.6±2.79 45.3±3.59 38.4±4.41 32.7±2.27 38.2±4.46 35.4±1.85 35.2±0.45

g241c (n = 241, t = 1500) g241n (n = 241, t = 1500) Australian (n = 14, t = 690)

l = 30 l = 60 l = 90 l = 30 l = 60 l = 90 l = 30 l = 60 l = 90

SVM 32.9±1.59 27.1±0.92 24.8±1.99 34.6±2.52 28.3±2.65 25.6±1.48 20.6±4.18 21.7±11.3 15.3±0.86

LapSVM 37.1±1.25 28.4±2.44 29.7±1.57 37.7±5.76 29.9±2.41 25.9±1.49 21.9±9.27 15.6±2.49 14.7±0.16

InvSVM 33.1±0.49 26.4±1.14 23.4±1.36 35.4±1.57 28.4±3.03 22.3±4.69 17.7±1.74 16.4±1.11 15.6±0.77

ionosphere (n = 34, t = 351) sonar (n = 60, t = 208) USPS (n = 241, t = 1500)

l = 30 l = 60 l = 90 l = 30 l = 60 l = 90 l = 30 l = 60 l = 90

SVM 12.5±3.12 8.71±1.62 7.17±1.67 30.9±2.53 22.7±0.39 20.6±4.81 14.9±0.26 12.6±2.04 11.3±2.06

LapSVM 14.9±1.73 9.05±1.05 7.66±1.53 29.4±2.33 22.9±0.17 24.9±1.29 15.3±1.10 12.3±1.74 11.1±1.81

InvSVM 7.58±1.29 7.90±0.23 7.02±0.88 31.6±4.68 24.1±2.06 21.8±3.91 15.4±4.02 12.2±2.93 11.3±1.63

5 10 15
5

10

15

E
rr

or
 o

f I
nv

S
V

M

Error of VirSVM

(a) 4 (pos) vs 9 (neg)

4 6 8

4

5

6

7

8

E
rr

or
 o

f I
nv

S
V

M

Error of VirSVM

(b) 2 (pos) vs 3 (neg)

5 10

4

6

8

10

E
rr

or
 o

f I
nv

S
V

M

Error of VirSVM

(c) 6 (pos) vs 5 (neg)

0.5 1 1.5 2
0.5

1

1.5

2

E
rr

or
 o

f I
nv

S
V

M
Error of VirSVM

(d) 7 (pos) vs 1 (neg)

Figure 2: Test error (in percentage) of InvSVM versus SVM with virtual sample.

easier). As the real distribution of digit is imbalanced and invariance is more useful when the
number of labeled data is low, we randomly chose n+ = 50 labeled images for one class and
n− = 10 images for the other. Accordingly the supervised loss was normalized within each class:
n−1+

∑
i:yi=1 `1(f(xi), 1) + n−1−

∑
i:yi=−1 `1(f(xi),−1). Logistic loss and ε-insensitive loss were

used for `1 and `2 respectively. All parameters were set by 5 fold CV and the test error was measured
on the rest images in the dataset. The whole process was repeated for 20 times.

In Figure 2, InvSVM generally yields lower error than VirSVM, which suggests that compared
with drawing virtural samples from the invariance, it seems more effective to directly enforce a flat
gradient like in [3].

7 Conclusion and Discussion
We have shown how to model local invariances by using representers in RKHS. This subsumes a
wide range of invariances that are useful in practice, and the formulation can be optimized efficiently.

For future work, it will be interesting to extend the framework to a broader range of learning tasks.
A potential application is to the problem of imbalanced data learning, where one wishes to keep
the decision boundary further away from instances of the minority class and closer to the instances
of majority class. It will also be interesting to generalize the framework to invariances that are not
directly linear. For example, the total variation `(f) :=

∫ b
a
|f ′(x)|dx (a, b ∈ R) is not linear, but

we can treat the integral of absolute value as a loss function and take the derivative as the linear
functional: Lx(f) = f ′(x) and `(f) =

∫ b
a
|Lx(f)|dx. As a result, the optimization may have to

resort to sparse approximation methods. Finally the norm of the linear functional does affect the
optimization efficiency, and a detailed analysis will be useful for choosing the linear functionals.

8

References
[1] G. E. Hinton. Learning translation invariant recognition in massively parallel networks. In Proceedings

Conference on Parallel Architectures and Laguages Europe, pages 1–13. Springer, 1987.
[2] M. Ferraro and T. M. Caelli. Lie transformation groups, integral transforms, and invariant pattern recog-

nition. Spatial Vision, 8:33–44, 1994.
[3] P. Simard, Y. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in pattern recognition-

tangent distance and tangent propagation. In Neural Networks: Tricks of the Trade, pages 239–274, 1996.
[4] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, 2006.
[5] S. Ben-David, T. Lu, and D. Pal. Does unlabeled data provably help? Worst-case analysis of the sample

complexity of semi-supervised learning. In COLT, 2008.
[6] T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for classification problems.

In ICML, 2000.
[7] O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In NIPS, 2003.
[8] T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.
[9] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In ICML, 2001.

[10] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In AI-Stats, 2005.
[11] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields and harmonic

functions. In ICML, 2003.
[12] D. Zhou and B. Schölkopf. Discrete regularization. In Semi-Supervised Learning, pages 221–232. MIT

Press, 2006.
[13] H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector machines. Journal

of Machine Learning Research, 10:3589–3646, 2009.
[14] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press, 2008.
[15] C. Bhattacharyya, K. S. Pannagadatta, and A. J. Smola. A second order cone programming formulation

for classifying missing data. In NIPS, 2005.
[16] A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature deletion. In ICML, 2006.
[17] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. In KDD, 2004.
[18] T. Graepel and R. Herbrich. Invariant pattern recognition by semidefinite programming machines. In

NIPS, 2004.
[19] C. H. Teo, A. Globerson, S. Roweis, and A. Smola. Convex learning with invariances. In NIPS, 2007.
[20] D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 46:161–

190, 2002.
[21] O. Chapelle and B. Schölkopf. Incorporating invariances in nonlinear support vector machines. In NIPS,

2001.
[22] G. Wahba. An introduction to model building with reproducing kernel Hilbert spaces. Technical Report

TR 1020, University of Wisconsin-Madison, 2000.
[23] A. J. Smola and B. Schölkopf. On a kernel-based method for pattern recognition, regression, approxima-

tion and operator inversion. Algorithmica, 22:211–231, 1998.
[24] C. Walder and O. Chapelle. Learning with transformation invariant kernels. In NIPS, 2007.
[25] C. Burges. Geometry and invariance in kernel based methods. In B. Schölkopf, C. Burges, and A. Smola,

editors, Advances in Kernel Methods — Support Vector Learning, pages 89–116. MIT Press, 1999.
[26] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2001.
[27] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based

Learning Methods. Cambridge University Press, Cambridge, UK, 2000.
[28] I. Steinwart and A. Christmann. Support Vector Machines. Information Science and Statistics. Springer,

2008.
[29] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley, 1989.
[30] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In

ICML, 2007.
[31] C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk mini-

mization. Journal of Machine Learning Research, 11:311–365, January 2010.
[32] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

Journal on Optimization, 22(2):341–362, 2012.
[33] O. Chapelle. Training a support vector machine in the primal. Neural Comput., 19(5):1155–1178, 2007.
[34] http://www.cs.ubc.ca/∼pcarbo/lbfgsb-for-matlab.html.
[35] K. Bache and M. Lichman. UCI machine learning repository, 2013. University of California, Irvine.
[36] http://www.dii.unisi.it/∼melacci/lapsvmp.
[37] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-supervised

learning. In ICML, 2005.
[38] http://www.cs.nyu.edu/∼roweis/data.html.

9

