
Appendix of Polar Operators for Structured Sparse Estimation

A Vertices of Q must be scalar multiples of those of P

First note that if 0 6∈ P , we have nothing to prove since P = Q. Thus we assume 0 ∈ P below.

Consider an arbitrary vertex q ∈ Q. Clearly q 6= 0 and q ∈ P , hence q =
∑n
i=1 αi · p(i), where

n ≥ 1, αi > 0, 〈1,α〉 ≤ 1, and p(i) are nonzero vertices of P . Clearly p(i) ∈ Q as p(i) ∈ P and
li :=

〈
1,p(i)

〉
≥ 1. It suffices to show n = 1. To prove by contradiction, suppose n ≥ 2.

(i) If 〈1,α〉 = 1, then q is a convex combination of at least two points in Q, hence it cannot be a
vertex.

(ii) If 〈1,q〉 =
∑
i αili = 1, then q =

∑n
i=1(αili)

p(i)

li
. But p(i)

li
∈ Q as p(i)

li
= 1

li
p(i)+(1− 1

li
)0 ∈

P and
〈
1,p(i)

〉
= li ≥ 1. Again contradiction.

(iii) If 〈1,q〉 > 1 and 〈1,α〉 < 1, then β := 1
〈1,q〉 < 1 < 1

〈1,α〉 =: γ. Clearly βq ∈ Q

because βq = βq + (1 − β)0 ∈ P and 〈1, βq〉 = 1. Also γq ∈ Q as γq =
∑n
i=1 αip

(i)∑n
i=1 αi

∈ P

and 〈1, γq〉 =
∑n
i=1 αi〈1,p(i)〉
〈1,α〉 ≥

∑n
i=1 αi
〈1,α〉 = 1. So q lies between two points in Q: βq and γq.

Contradiction.

Therefore n = 1, which completes the proof.

To summarize, we have proved that if q, a vertex of Q, is not a vertex of P , then it must sum to 1
and be a scalar multiple of some vertex of P .

B Polar Oracle via Secant Method and Submodular Minimization

By (5), the key optimization problem in computing the polar operator is

λ∗ = max
∅6=A⊆[n]

〈g̃,1A〉
F (A)

, where g̃i = |gi|p . (26)

Let A∗ ∈ 2[n]\∅ be a maximizer. The following solution is a slight simplification of [21, §8.4]. Let

h(λ) := max
A⊆[n]

〈g̃,1A〉 − λF (A). (27)

NoteA = ∅ is allowed here. Clearly h(λ) is convex and non-increasing. h(λ) ≥ 〈g̃,1∅〉−λF (∅) =

0. By the definition of λ∗, for all A ∈ 2[n]\∅ we have λ∗ ≥ 〈g̃,1A〉F (A) , i.e. 〈g̃,1A〉 − λ∗F (A) ≤ 0. So

h(λ∗) = max

{
〈g̃,1∅〉 − λ∗F (∅), max

∅6=A⊆[n]
〈g̃,1A〉 − λ∗F (A)

}
= 0. (28)

As a result, h(λ) = 0 for all λ > λ∗. For any λ < λ∗, 〈g̃,1A∗ 〉F (A∗) = λ∗ > λ, and therefore

h(λ) ≥ 〈g̃,1A∗〉 − λF (A∗) > 0. (29)

In summary,

λ∗ = sup {λ : h(λ) > 0} = min {λ : h(λ) = 0} , (30)

i.e. λ∗ is the smallest root of h, which can be easily found by a secant method thanks to the convexity
of h. The details are given in Algorithm 2.

Note if h(λt) > 0 upon termination, then the At returned must be non-empty. But if h(λt) = 0,
then At = ∅ is possible, depending on the solver for the maximization problem in (27). Fortunately,
since λt = λ∗, it can be easily verified that

〈
g̃,1At−1

〉
− λ∗F (At−1) = 0. So we can simply return

At−1 without having to customize the solver.

In terms of computational cost, the bottleneck is clearly Step 2 which solves (27) given λ = λt. This
is deemed as tractable if F is submodular.

10

Algorithm 2 Polar oracle via secant method

1: Pick arbitrary A0 ∈ [n]\∅, and set λ1 =
〈g̃,1A0〉
F (A0) . Clearly λ1 ≤ λ∗ and so h(λ1) ≥ 0.

2: for t = 1, 2, . . . do
3: Compute h(λt) by finding an optimal A in the definition of h(λt) in (27). Call this A as At.
4: if h(λt) ∈ (0, ε) then

5: return At. λ∗ε =
〈g̃,1At〉
F (At)

can be at most ε smaller than the true λ∗.
6: end if
7: if h(λt) = 0 then

8: return At−1. It follows that λ∗ =
〈g̃,1At−1〉
F (At−1) .

9: end if
10: Linearize h(λ) at λt as h̃t(λ) = h(λt)− (λ− λt)F (At).

11: Set λt+1 as the root of h̃t: λt+1 = λt+
h(λt)
F (At)

= λt+
〈g̃,1At〉−λtF (At)

F (At)
=
〈g̃,1At〉
F (At)

. Since h is

convex and hence h̃t must be upper bounded by h, it follows λt+1 ≤ λ∗. Thus h(λt+1) ≥ 0.
12: end for

B.1 Network Min-cut Algorithm for Submodular Minimization with Overlapping Group

Next we show the network max-flow/min-cut algorithm for solving (27) in overlapping group lasso.
Using the notation and setup in Section 3.1, the problem (27) can be written as

min
w∈{0,1}n+l

λ
∑
G∈G

cGwG −
∑
i∈[n]

g̃iwi, s.t. wG ≥ wi, ∀i ∈ G ∈ G. (31)

This is obviously equivalent to

min
w∈{0,1}n+l

∑
G∈G

(λcG)wG +
∑
i∈[n]

g̃i(1− wi), s.t. wG ≥ wi, ∀i ∈ G ∈ G. (32)

Now we show this is exactly a min-cut problem on a directed graph. Let us construct a directed
graph with source node s, sink node t, and all nodes wG and wi. There is a directed edge from s
to each node wG (G ∈ G), and the weight is ηG := λcG. In addition, there is a directed edge from
each node wi (i ∈ [n]) to the sink t, with weight ηi := g̃i. Finally, for each i ∈ G ∈ G, there is a
edge from node wG to wi, and the weight is ηG,i :=∞.

The min-cut problem essentially divides all nodes in a graph into two groups S and T with s ∈ S
and t ∈ T , and minimizes the sum of the weight of all edges from u to v where u ∈ S and v ∈ T .
Note edges with u ∈ T and v ∈ S are not counted into the cut-edge by the definition of min-cut. Let
us fix ps = 0, pt = 1, and use pi, pG = 0 (or 1) if the node belongs to S (or T). Then the min-cut
objective for this directed graph can be written as

min
pi,pG∈{0,1}

∑
i∈G∈G:pG=0,pi=1

ηG,i +
∑

i∈[n]:pi=0

ηi +
∑

G∈G:pG=1

ηG. (33)

Since ηG,i =∞, we have to exclude the solutions where pG = 0 and pi = 1. This can be compactly
enforced by adding constraints pG ≥ pi. Moreover, it is obvious from pi, pG ∈ {0, 1} that∑

i∈[n]:pi=0

ηi =
∑
i∈[n]

ηi(1− pi), and
∑

G∈G:pG=1

ηG =
∑
G∈G

ηGpG. (34)

Substituting them back into (33) and noting the definition of ηi and ηG, it is straightforward to
observe the equivalence between (32) and (33), with pG and pi corresponding to wG and wi respec-
tively.

Finally, by using the well-known equivalence between max-flow and min-cut (problem (33)), it is
trivial to write out the max-flow formulation for the graph defined above, which exactly recovers
the solution proposed by [11, Algorithm 2]. In comparison, our min-cut formulation is clearly
more straightforward because it completely eliminates the dualization step and directly provides the
solution to (27).

11

C Proof of Proposition 1

The proof is based on the well-known duality between strong convexity and smoothness (Lipschitz
continuous gradient) [17]. Note that we assume that r, the upper bound on the number of groups
each variable can belong to, is greater than 1 since otherwise the problem is trivial.

Proof: Note that there are n variables which we index by i and there are ` groups (subsets of
variables) which we index by G. The input vector w̃ ∈ Rn × R`.

Let li be the number of groups that contain variable i, and Si := {s ∈ Rli+ : 〈1, s〉 = 1} be the
(li − 1)-dimensional simplex. Using the well-known variational representation of max function, we
rewrite the (negated) objective h in (15) as

h(w̃) =
∑
i∈[n]

g̃i max
α(i)∈Si

{
−
∑
G:i∈G

α
(i)
G w̃G

}
= max

α(i)∈Si

∑
i∈[n]

∑
G:i∈G

−g̃iw̃Gα(i)
G , (35)

which is to be minimized. Here the second equality follows from the separability of the variables
α(i). Fix ε > 0 and denote c := ε

n log r . Consider

hε(w̃) = max
α(i)∈Si

∑
i∈[n]

∑
G:i∈G

(
−g̃iw̃Gα(i)

G − c · α
(i)
G logα

(i)
G

)
,

i.e., we add to h the scaled entropy function −c
∑
i∈[n],G:i∈G α

(i)
G logα

(i)
G whose negation is known

to be strongly convex on the simplex (w.r.t. the `1-norm) [17]. Since the entropy is nonnegative, we
have for any w̃, h(w̃) ≤ hε(w̃) and moreover

hε(w̃)− h(w̃) ≤ c max
α(i)∈Si

∑
i∈[n]

∑
G:i∈G

−α(i)
G logα

(i)
G ≤ c · n log r = ε,

where the last inequality is due to the well-known upper bound of the entropy over the probability
simplex, i.e. entropy attains its maximum when all odds are equally likely. Therefore h(w̃) −
hε(w̃) ∈ (−ε, 0], and we have proved part (ii) of Proposition 1.

By straightforward calculation

hε(w̃) =
∑
i∈[n]

max
α(i)∈Si

∑
G:i∈G

(
−g̃iw̃Gα(i)

G − c · α
(i)
G logα

(i)
G

)
= c

∑
i∈[n]

log
∑
G:i∈G

exp

(
− g̃iw̃G

c

)
, (36)

∂

∂w̃G
hε(w̃) = −

∑
i:i∈G

g̃ipi(G), where pi(G) :=
exp

(
− g̃iw̃Gc

)
∑
G̃:i∈G̃ exp

(
− g̃iw̃G̃c

) . (37)

Hence hε(w̃) can be computed in O(nr) time (since the second summation in (36) contains at most
r terms). Similarly all {pi(G) : i ∈ [n], i ∈ G} can be computed in O(nr) time. Therefore part (iii)
of Proposition 1 is established.

Finally, to bound the Lipschitz constant of the gradient of hε, we observe that hε(w̃) = η∗(Aw̃),
where η∗ is the Fenchel conjugate of the scaled negative entropy

η(α) = c
∑
i∈[n]

∑
G:i∈G

α
(i)
G logα

(i)
G ,

and A is defined as the matrix satisfying

〈α, Aw̃〉 =
∑
i∈[n]

∑
G:i∈G

−α(i)
G g̃iw̃G.

It is known that the scaled negative entropy η is strongly convex with modulus c (w.r.t. the `1-norm).
Furthermore, employing `1 norm on α and `2 norm on w̃, the operator norm of the matrix A can be

12

bounded as

‖A‖2,1 := max
α:‖α‖1=1

max
w̃:‖w̃‖2=1

〈α, Aw̃〉 = max
w̃:‖w̃‖2=1

max
α:‖α‖1=1

∑
i∈[n]

∑
G:i∈G

−α(i)
G g̃iw̃G (38)

≤
(

max
i∈[n]

g̃i

)
· max
w̃≥0:‖w̃‖2=1

max
α≥0:‖α‖1=1

∑
i∈[n]

∑
G:i∈G

α
(i)
G w̃G (39)

≤
(

max
i∈[n]

g̃i

)
· max
α≥0:‖α‖1=1

∑
i∈[n]

∑
G:i∈G

α
(i)
G = max

i∈[n]
g̃i = ‖g̃‖∞ . (40)

The equality is obviously attainable. Therefore by Theorem 1 of [17], hε(w̃) = η∗(Aw̃) has Lips-
chitz continuous gradient w.r.t. `2 norm, and the Lipschitz constant is

1

c
‖A‖22,1 =

1

ε
‖g̃‖2∞ n log r.

This completes our proof of part (i) of Proposition 1.

D DAG Groups

We discuss here another interesting special case of the group sparse model formulated in Section 3.1.

Suppose the variables {1, 2, . . . , n} form the nodes of a directed acyclic graph (DAG), and each
node i corresponds to a group consisting of all nodes j that are reachable from i by transversing
the DAG. For simplicity we assign unit cost to each group. Since a node in this model may belong
to n groups, i.e. r = Θ(n) (recall that r is the upper bound on the number of groups that any
variable may belong to), hence a naive application of Proposition 1 results in the overall complexity
for computing the polar as O(1

ε

√
n5 log n). Fortunately this can be reduced to O(1

εm
√
n), where

m is the number of edges (in the worst case on the order of n2).

We recall from the main paper the polar of the general group sparse regularizer

min
w̃≥0

∑
i∈[n]

g̃i · max
G:i∈G∈G

(−w̃G), s.t.
∑
G∈G

bG · w̃G = 1.

In the DAG case, each variable i corresponds to a group that consists of all descendants of i. Let us
denote the group as Gi. For simplicity, assume the costs bG = 1 for all groups G. By symmetry,
if there is an edge from i to j then at optimum w̃Gi ≥ w̃Gj , because otherwise we can swap their
values without increasing the objective or violating the constraint. To lighten notation, we just write
w̃Gi as w̃i. Thus we simplify the above problem into

min
w̃≥0
−
∑
i∈[n]

g̃iw̃i, s.t.
∑
i∈[n]

w̃i = 1, and w̃i ≥ w̃j ∀ (i, j) ∈ E. (41)

Here we use the pair (i, j) to denote an edge from i to j, andE is the set of all edges. Next introduce
the dual variables αij ≥ 0 for the constraint w̃i ≥ w̃j and ξ for the constraint

∑
i∈[n] w̃i = 1.

Consider the Lagrangian dual

min
ξ,α≥0

ξ +
∑
i∈[n]

max
w̃i≥0

w̃i

g̃i − ξ +
∑

j:(i,j)∈E

αij −
∑

k:(k,i)∈E

αki

 ,

which, after taking into account w̃i ≤ 1, simplifies to

min
ξ,α≥0

ξ +
∑
i∈[n]

g̃i − ξ +
∑

j:(i,j)∈E

αij −
∑

k:(k,i)∈E

αki


+

, (42)

where (x)+ := max{x, 0}. As in Appendix C we can easily smooth the function (·)+ and therefore
solve (42) using APG. To summarize, a 2ε accurate solution can be found in O(1

ε

√
n) iterations

13

with O(m) cost per iteration. Overall this is faster than the complexity O(mn2 log 1
ε) of [6] (which

involves a binary search). See Appendix E for details.

Moreover, if the DAG is a rooted tree, i.e., each node can only be pointed to by at most one edge, we
can further reduce the overall cost to O(n log 1

ε). Indeed, let the root be node 1, and denote as pa(i)
and ch(i) the parent and children nodes of i, respectively. Note that by the definition of rooted tree,
|pa(i)| = 1 for any node i that is not the root. Again, for any non-root node i > 1, we introduce a
dual variable αi for the constraint xpa(i) ≥ xi. For convenience let α1 = 0. Then the Lagrangian
dual of (41) in the rooted tree case is

min
ξ,α≥0

ξ +
∑
i∈[n]

g̃i − ξ +
∑

j∈ch(i)

αj − αi


+

. (43)

At the optimum, there cannot be two summands that are positive, because then the subgradient of ξ
would be negative. If only one summand is positive, we can increase ξ to make it 0 without changing
the objective value. Thus we can assume all summands are 0, and solve

min
ξ,α≥0

ξ, s.t. ∀ i, αi ≥ g̃i − ξ +
∑

j∈ch(i)

αj . (44)

In effect, we search for the smallest ξ that makes the feasible region nonempty. For any ξ > 0, its
feasibility can be checked by propagating towards the root via

αi = max

0, g̃i − ξ +
∑

j∈ch(i)

αj

 . (45)

Note that for all leaf nodes, that is {j : ch(j) = ∅}, their dual variables αj = 0. At the root if
α1 = 0 ≥ g̃1 − ξ +

∑
j∈ch(1) αj is met, then we claim that ξ is feasible. Clearly ξ ∈ [g̃1,maxi g̃i],

hence using binary search an ε accurate solution can be found in O(n log 1
ε). Finally, given ξ, the

optimal primal variable w̃ can be easily recovered using KKT conditions. Overall our approach is
faster than the O(nd) complexity in [5], where d is the depth of the tree and in the worst case can be
Θ(n).

E Comparisons for Group Sparse Models

In this section we compare the complexity of our approach (under the group sparse model developed
in Section 3.1) with two related methods in literature, namely, [11] and [6].

Consider first [11]. The Algorithm 2 there proceeds in loops, with each iteration involving a max-
flow problem on the canonical graph. The loop can take at most n iterations, while each max-flow
problem can be solved with O(|V | |E|) cost where |V | and |E| are the number of nodes and edges
in the canonical graph, respectively. By construction, |V | = n+ l, and |E| ≤ nr since each pair of
(G, i) with the node i belong to the group G contributes an edge. Therefore the total cost is upper
bounded by O(n2(n + l)r). Note that in the worst case ` = Θ(nr). In contrast, the approach we
developed in Section 3.1 for bounded degree groups costs O(nrε

√
n log r), significantly cheaper in

the regime where n is big and ε is moderate.

For the DAG groups considered in Appendix D, again Algorithm 2 in [11] can take Θ(n) iterations,
while |V | = 2n and |E| ≤ mn (since in the worst case each node can belong to Θ(n) groups). Thus
overall [11, Algorithm 2] costs O(n3m) for DAG groups, worse than the complexity O(1

εm
√
n) we

obtained in Appendix D.

Next consider [6] which developed a line search scheme to compute the polar. The major computa-
tional step there is to solve

w̃σ = arg max
w̃∈Q

〈g̃, w̃〉 − σ 〈b, w̃〉 , (46)

recursively, each time with a updated σ > 0. In the case of bounded degree groups, this is again a
max-flow problem which costsO(n(n+ l)r), and therefore the overall cost isO(n(n+ l)r log 1

ε). In
the case of DAG groups (Appendix D), the max-flow problem costs O(n2m), and hence the overall
cost is O(n2m log 1

ε). In both cases, [6] improves over [11] but is still worse than our approach.

14

F Path Coding: Efficient Linear Programming

We show in this section how to efficiently solve the LP for the path coding regularizer discussed in
Section 3.2. First recall that we have arrived at the following LP in Section 3.2:

max
w̃

∑
i

g̃i

 ∑
j:(i,j)∈E

w̃ij +
∑

k:(k,i)∈E

w̃ki

 , (47)

s.t. w̃ ≥ 0,
∑

(i,j)∈E

bijw̃ij = 1,
∑

j:(i,j)∈E

w̃ij =
∑

k:(k,i)∈E

w̃ki, ∀i. (48)

This LP appears to be more complicated than the one in Section 3.1, due to the two extra constraints
in the end. We start with removing these constraints by introducing dual variables.

Denote zi =
∑
j:(i,j)∈E w̃ij . Since w̃ij ≥ 0, we can parameterize w̃ij as w̃ij = ziτ

(i)
j , where

zi ≥ 0 and τ (i) belongs to the simplex Si := {τ (i) ≥ 0 :
〈
1, τ (i)

〉
= 1}. Introduce Lagrange

multipliers ϑ = (λ, αi) for the three constraints in (47), respectively. For convenience also let
αs = αt = g̃s = g̃t = 0. Denote

dij(ϑ) = g̃i + g̃j − αi + αj − λbij .
After some tedious algebra we obtain the Lagrangian

min
α,λ

λ+
∑

(i,j)∈E

max
w̃ij≥0

w̃ijdij(ϑ)

 = min
α,λ

λ+
∑

i∈[n]∪{s}

max
zi≥0

zi max
τ (i)∈Si

∑
j:(i,j)∈E

τ
(i)
j dij(ϑ)

 (49)

= min
α,λ

λ+
∑

i∈[n]∪{s}

max
zi≥0

zi

(
max

j:(i,j)∈E
dij(ϑ)

) . (50)

Our key observation is that zi can be upper bounded. Note the constraints
∑

(i,j)∈E bijw̃ij = 1 and
w̃ ≥ 0 in (48). Let C be the lowest cost of all (s, t)-paths, and naturally C > 0 by assumption.
Then trivially any path will satisfy zi ≤ ρ := 1

C . A more conservative upper bound on zi is

zi ≤ ρ :=

(
min

(i,j)∈E
bij

)−1

, (51)

assuming all bij > 0. Taking into account these upper bounds, we arrive at our final objective

min
λ
{λ+ ρf(λ)} , where f(λ) := min

α

∑
i∈[n]∪{s}

(
max

j:(i,j)∈E
dij(ϑ)

)
+

. (52)

As before (x)+ = max{x, 0}. Note given λ, the inner optimization overα has a closed form thanks
to the absence of cycles. Specifically, let αt(λ) = 0 and define for any i ∈ [n] ∪ {s}

αi(λ) = max
j:(i,j)∈E

{αj(λ) + g̃i + g̃j − bijλ} . (53)

Since the graph is a DAG, we can always find a topological ordering of the indices i, such that before
computing αi(λ) for node i, all its descendants αj(λ) have been computed. It is not hard to see

f(λ) = max{αs(λ), 0}, (54)

and the optimal α in the definition of f in (52) is attained at {αi = αi(λ) : i ∈ [n]}, because, as can
be easily verified, 0 is a subgradient. This relationship allows us to compute a subgradient of f at λ
via recursion

∂αi(λ)=

∑
j∈J

γj (vj − bij) : J = (set of) arg max in (53), vj ∈∂αj(λ), γj ≥ 0, 〈1,γ〉=1

. (55)

Obviously, the recursion in both (53) and (55) can be accomplished in O(m) time. Indeed a trivial
subgradient of αs(λ) is the negative cost of the path that is induced by the arg max in (53) (breaking

15

tie arbitrarily). Finally we solve (52) over λ by cutting plane method, which can find an ε accurate
solution in O(nε2) iterations, i.e. with O(mnε2) total computation.

Further reducing the computational cost to O(m
√
n

ε) is possible by smoothing the max function in

min
α,λ

λ+ ρ
∑

i∈[n]∪{s}

(
max

j:(i,j)∈E
dij(ϑ)

)
+

 . (56)

This cost is potentially better than the O(mn) worst case complexity in [12, Algorithm 1]. Algo-
rithmically, this can be done in exactly the same way as in Appendix C. After that we run APG
on the smoothed problem. To summarize, following exactly the same argument as in the proof of
Proposition 1 we have

Proposition 4 Denote the objective in (56) as h(ϑ), For any ε > 0, there exists a convex function
hε such that (i) ∀ ϑ, h(ϑ) − hε(ϑ) ∈ (−ε, 0], (ii) hε has L = O(nε) Lipschitz continuous gradient,
and (iii) the gradient of hε can be computed in O(m) time.

G Recovery of Integral Solutions to Polar Oracle

Recall our ultimate goal in polar oracle is to find integral solutions to (8) which we copy here for
convenience

λ∗ := max
0 6=w∈P

〈g̃,w〉
〈b,w〉

. (57)

As we showed in Section 3, the optimal objective value is exactly equal to that of (10), which we
also copy here

max
w̃,σ>0

〈g̃, w̃〉 , subject to w̃ ∈ σQ, 〈b, w̃〉 = 1. (58)

We have shown how to smooth this objective and find an ε accurate solution for it. That means we
have obtained a λε (smooth objective function value) with the guarantee that λε ∈ [λ∗− ε, λ∗]. With
this λε in hand, we now show how to find an ε accurate solution for (8), i.e. a wε ∈ P\{0} such that

〈g̃,wε〉
〈b,wε〉

≥ λ∗ − ε. (59)

Indeed, this is simple according to Proposition 5.

Proposition 5 Given λε ∈ [λ∗ − ε, λ∗], find

wε := arg max
w∈P\{0}

{〈g̃,w〉 − λε 〈b,w〉} . (60)

Then wε must satisfy (59).

Proof: By the definition of λ∗, maxw∈P\{0}{〈g̃,w〉 − λ∗ 〈b,w〉} = 0. As λε ≤ λ∗, so
maxw∈P\{0}{〈g̃,w〉 − λε 〈b,w〉} ≥ 0. This implies 〈g̃,wε〉〈b,wε〉 ≥ λε ≥ λ

∗ − ε.

Note (60) is exactly the submodular minimization problem that the secant method is based on (step
3 of Algorithm 2). This step is computationally expensive and has to be solved for multiple values
of λt in that method. In contrast, our our strategy needs to solve this problem only once.

In group sparsity, it leads to a max-flow problem as in Appendix B.1 which is again expensive.
Fortunately, by exploiting the structure of the problem it is possible to design a heuristic solution.
For convenience let us copy (15) to here, the linear programming for group sparsity.

max
w̃

∑
i∈[n]

g̃i min
G:i∈G∈G

w̃G, subject to w̃ ≥ 0,
∑
G∈G

bGw̃G = 1. (61)

16

A solution w̃ corresponds to an integral solution to the polar oracle if and only if w̃G ∈ {0, c}
where c ensures

∑
G∈G bGw̃G = 1. By solving the smoothed objective, we obtain a solution w̃∗

which does not necessarily satisfy this condition. However, a smaller value of the component w̃∗G
does suggest a higher likelihood for w̃G to be 0. Therefore, we sorted {w∗G} and set the wG of the
smallest k groups to 0 (k ranging from 0 to |G| − 1), and the wG for the remaining groups were set
to a common value that satisfies the constraint. Given k, this leads to an objective value, and the k
that maximizes this value can be selected by enumerating k ∈ {0, 1, . . . , |G|− 1}. By exploiting the
structure of the objective, it is easy to design an algorithm which accomplishes the enumeration in
O(nr) time.

The optimal objective value over all k also allows us to compute its distance to the optimal objective
value of the smoothed objective. If the gap (used as a certificate) is below ε, this integral solution is
exactly ε sub-optimal. Otherwise we fall back on (60), and this case rarely happens in practice.

In path coding, the path can be simply recovered by following the arg max in (53), with λ set to an
optimal solution to (52).

H Polar of Ωs(w) =
∑

i ‖w‖(i)

The polar of Ωs(w) =
∑
i ‖w‖(i) follows from the following proposition by taking φ(α) =

∑
i αi.

We note that Proposition 6 itself is a slight generalization of [19, Theorem 15.3].

Proposition 6 Let κi : Rd → R̄+, 1 ≤ i ≤ n be closed gauges, φ : R̄n+ → R̄+ be closed,
convex, non-constant in each coordinate1 with φ(0) = 0, and ∃x ∈ ∩i ri domκi such that
(κ1(x), . . . , κn(x)) ∈ ri domφ, then the Fenchel conjugate of h := φ(κ1, . . . , κn) is

h∗(x) = min∑
i x

i=x
φ+(κ◦1(x1), . . . , κ◦n(xn)), (62)

where κ◦i is the polar of κi and φ+(y) := maxx≥0 〈x,y〉 − φ(x) is the monotone conjugate of φ.
Moreover, if φ is a gauge so is h whose polar

h◦(x) = min∑
i x

i=x
φ◦(κ◦1(x1), . . . , κ◦n(xn)), (63)

where φ◦ is the polar of φ.

Proof: Let us define the diagonal operator A : R̄d → (R̄d)n,x 7→ (x, . . . ,x). Then h(x) =
H(A(x)), where

H(x1, . . . ,xn) := φ(κ1(x1), . . . , κn(xn)).

The Fenchel conjugate of G is

H∗(y1, . . . ,yn) = sup
xi

∑
i

〈
xi,yi

〉
−H(x1, . . . ,xn)

= sup
xi

∑
i

〈
xi,yi

〉
− φ(κ1(x1), . . . , κn(xn))

= sup
κi(xi)≤λi

∑
i

〈
xi,yi

〉
− φ(λ1, . . . , λn)

= sup
λi≥0

∑
i

〈
κ◦i (y

i), λi
〉
− φ(λ1, . . . , λn)

= φ+(κ◦1(y1), . . . , κ◦n(yn)),

where the third equality is due to the monotonicity of φ (since φ ≥ 0 and φ(0) = 0). Since both
φ and κi are closed, H is closed. Also by assumption ∃x such that Ax ∈ ri domH . Therefore we
can apply [19, Theorem 16.3] to conclude that h∗ = (HA)∗ = A∗H∗, where A∗ is the adjoint of
A. Expanding the last expression we get (62).

1This assumption allows us to interpret φ(∞, . . .) as ∞.

17

The second claim follows from the relations

κ∗ = δ(κ◦ ≤ 1) (64)
κ◦ = δ∗(κ ≤ 1), (65)

where κ is any gauge and δ(·) = 0 if · is true otherwise δ(·) =∞. Indeed, when φ is a gauge, so is
h, and

h∗(x) = min∑
i x

i=x
φ+(κ◦1(x1), . . . , κ◦n(xn))

= min∑
i x

i=x
δ(φ◦(κ◦1(x1), . . . , κ◦n(xn) ≤ 1)

= δ

([
min∑
i x

i=x
φ◦(κ◦1(x1), . . . , κ◦n(xn)

]
≤ 1

)
= δ(h◦(x) ≤ 1),

due to (64). Since both functions (inside δ) are positively homogeneous, we must have (63).

I Proof of Proposition 2

Since the polar Ω◦ is closed, we have

0 = min
θ:Ω◦(θ)≤ζ

1
2‖θ − g‖22

if and only if Ω◦(g) ≤ ζ, therefore

Ω◦(g) = inf

{
ζ ≥ 0 : 0 = min

θ:Ω◦(θ)≤ζ
1
2‖θ − g‖22

}
. (66)

Recall Moreau’s identity [19, Theorem 31.5], that is,

Proxf (g) + Proxf∗(g) = 1
2‖g‖

2
2, (67)

where f∗ denotes the Fenchel conjugate of f . Setting f(g) = δ(Ω◦(g) ≤ ζ) we obtain f∗(g) =
ζΩ(g), hence

min
θ:Ω◦(θ)≤ζ

1
2‖θ − g‖22 = Proxf (g) = 1

2‖g‖
2
2 − Proxf∗(g),

which plugged into (66) completes the proof of Proposition 2.

J Proof of Proposition 3

The proof is quite straightforward. Let

u := arg minθ
1
2‖w − θ‖

2
2 + ‖θ‖TV (68)

v := arg minθ
1
2‖u− θ‖

2
2 + ‖θ‖p (69)

z := arg minθ
1
2‖w − θ‖

2
2 + ‖θ‖TV + ‖θ‖p, (70)

then Proposition 3 amounts to claiming that z = v.

Indeed, by the first order optimality conditions for convex programming [19], we must have

0 ∈ u−w + ∂‖u‖TV (71)
0 ∈ v − u + ∂‖v‖p, (72)

where ∂‖x‖ denotes the subdifferential of the norm ‖ · ‖ at point x. It is easy to argue from (72) that
ui ≥ uj =⇒ vi ≥ vj , therefore exploiting the special structure of ‖ · ‖TV we can conclude that
∂‖u‖TV ⊆ ∂‖v‖TV. Adding (71) and (72) we obtain

0 ∈ v −w + ∂‖v‖p + ∂‖v‖TV, (73)

which implies that v minimizes (70). Thus v = z, since both are optimal while the minimizer is
unique.

18

Algorithm 3 Exact algorithm for the proximal map (74).
1: h1(−1) = w1 − 1, h1(1) = w1 + 1. K1 ← {(−1, h1(−1)); (1, h1(1))}.
2: for j = 2, . . . ,m− 1 do
3: hj(z) = z + wj −Median(−1, 1, (hj−1 + I)−1(wj + z)) for z ∈ {−1, 1}.
4: Kj ← {(−1, hj(−1)), (1, hj(1))}.
5: for all (αi, βi) ∈ Kj−1 do
6: if −1 < α′i := αi + βi − wj < 1 then
7: Kj ← Kj ∪ {(α′i, βi)}
8: end if
9: end for

10: end for

K Fused Lasso: An Efficient Exact Algorithm for Computing Prox‖·‖TV

Given a vector w, the problem of computing Prox‖·‖TV(w) amounts to solving

minθ
1
2‖w − θ‖

2
2 + ‖θ‖TV. (74)

Applying Moreau’s identity [19, Theorem 31.5] we see that θ minimizes (74) iff for some z ∈ Rm−1

that solves

min
z∈[−1,1]m−1

(z1+w1)2+(zm−1−wm)2+
∑

j
(zj−zj−1 + wj)

2, (75)

we have θ1 = w1 + z1, θm = wm − zm−1, and θj = wj + zj − zj−1 for all 2 ≤ j ≤ m− 1.

For z ∈ [−1, 1], define H1(z) = 1
2 (z + w1)2 and recursively for 2 ≤ j ≤ m− 1 define

Hj(z)= min
|zj−1|≤1

Hj−1(zj−1) + 1
2 (z − zj−1 + wj)

2. (76)

It is readily verified that solving (75) amounts to minimizing Hm−1(z) + 1
2 (z −wm)2. Inductively,

we infer that Hj is a convex piecewise quadratic univariate function. Therefore its derivative, de-
noted as hj , is increasing and piecewise linear. Denote subdifferential ∂hj(1) = [limz↑1 hj(z),∞)
and ∂hj(−1) = (−∞, limz↓−1 hj(z)]. Moreover, for all 2 ≤ j ≤ m− 1

hj(zj) = zj + wj − zj−1, (77)

where zj−1 = arg min
−1≤z≤1

Hj−1(z) + 1
2 (zj − z + wj)

2 (78)

= Median(−1, 1, (hj−1 + I)−1(zj + wj)). (79)

Therefore if hj−1 has k (linear) pieces, hj has at most k + 1 (linear) pieces (taking into account the
end points z = ±1). Using dynamic programming we can recursively identify all the “kink points”
of hj (denoted as Kj) for j = 1, . . . ,m − 1, and hence easily find the minimizer of Hm−1(z) +
1
2 (z − wm)2, that is, (74).

Thus we can summarize the procedure in Algorithm 3.

Note the space cost is O(m) and upon completion of Algorithm 3, we only have Km−1, based
on which the optimal z∗m−1 can be found. To recover the optimal z∗1 , . . . , z

∗
m−2, we backtrack the

values of z∗j and hj(z∗j). By (77), it is obvious that for 2 ≤ j ≤ m− 1

z∗j−1 = z∗j + wj − hj(z∗j). (80)

Then by (79), we have three cases:

• z∗j−1 = −1⇒ hj−1(z∗j−1) = hj−1(−1) which we have recorded in Algorithm 3.

• z∗j−1 = 1⇒ hj−1(z∗j−1) = hj−1(1) which we have also recorded in Algorithm 3.

• z∗j−1 = (hj−1 + I)−1(z∗j + wj)⇒ hj−1(z∗j−1) = z∗j + wj − z∗j−1 = hj(z
∗
j).

19

K.1 More Experiments on Fused Lasso with Comparison to Liu et. al. [26]

We compared two algorithms that solve the proximal operator Prox‖·‖TV in fused lasso. One is our
dynamic programming (DP) Algorithm 3, and one is from Liu et. al. [26] whose implementation
was extracted from the SLEP package2. In particular, we randomly generated an m-dimensional
vector w and used the two methods to solve

minθ
1
2‖w − θ‖

2
2 + λ‖θ‖TV. (81)

The components of w were drawn independently from unit Gaussians, and the dimension m ranged
from 104 to 106. We varied λ ∈ {0.01, 0.1, 1, 10, 100} and the resulting run time is shown in Figure
4 to 8 respectively. For each combination of m and λ, 50 random samples of w were drawn which
allowed us to plot the error bar.

It is clear that the run time of both algorithms is linear in m. However, our DP algorithm is 2 to 6
times faster than [26], and the margin grows wider as the values of λ increase.

Figure 9 shows the total number of kinks generated along the execution of our DP algorithm. It is
also linear in m and the slope is 2 to 12 depending on λ.

0 10000 200000 400000 600000 80000010000000.1

0

0.1

0.2

0.3

0.4

0.5

0.6
DP vs. Liu et. al on the prox, lambda=0.01

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 4: Running time (in seconds) of our DP
algorithm vs [26] for λ = 0.01.

0 10000 200000 400000 600000 80000010000000.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
DP vs. Liu et. al on the prox, lambda=0.1

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 5: Running time (in seconds) of our DP
algorithm vs [26] for λ = 0.1.

0 10000 200000 400000 600000 80000010000000.2

0

0.2

0.4

0.6

0.8

1

1.2
DP vs. Liu et. al on the prox, lambda=1

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 6: Running time (in seconds) of our DP
algorithm vs [26] for λ = 1.

0 10000 200000 400000 600000 80000010000000.5

0

0.5

1

1.5

2
DP vs. Liu et. al on the prox, lambda=10

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 7: Running time (in seconds) of our DP
algorithm vs [26] for λ = 10.

2http://www.public.asu.edu/˜jye02/Software/SLEP/index.htm

20

http://www.public.asu.edu/~jye02/Software/SLEP/index.htm

0 10000 200000 400000 600000 80000010000000.5

0

0.5

1

1.5

2

2.5

3
DP vs. Liu et. al on the prox, lambda=100

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 8: Running time (in seconds) of our DP
algorithm vs [26] for λ = 100.

0 10000 200000 400000 600000 8000001000000
0

2

4

6

8

10

12
x 10

6 DP for the prox of fused lasso

problem size m

nu
m

be
r

of
 p

ie
ce

s

lambda = 0.01
lambda = 0.1
lambda = 1
lambda = 10
lambda = 100

Figure 9: Number of pieces in our DP

21

