
A Proof of Theorem 4.1

The proof of the theorem relies on results from Hazan et al. [2012] about learning β-decomposable
matrices. LetW be an n×mmatrix. We define the symmetrization ofW to be the (n+m)×(n+m)
matrix

sym(W ) =

[
0 W
WT 0

]
We say that W is β-decomposable if there exist positive semi-definite matrices P,N for which

sym(W ) = P −N
∀i, Pii, Nii ≤ β

Each matrix in {±1}n×m can be naturally interpreted as a hypothesis on [n]× [m].

We say that a learning algorithm L learns a class Hn ⊂ {±1}Xn using m(n, ε, δ) examples if, for
every distribution D on Xn × {±1} and a sample S of more than m(n, ε, δ) i.i.d. examples drawn
from D,

Pr
S

(ErrD(L(S)) > ErrD(Hn) + ε) < δ

Hazan et al. [2012] have proved3 that

Theorem A.1. Hazan et al. [2012] The hypothesis class of β-decomposable n ×m matrices with
±1 entries ban be efficiently learnt using a sample of O

(
β2(n+m) log(n+m)+log(1/δ)

ε2

)
examples.

We start with a generic reduction from a problem of learning a class Gn over an instance space
Xn ⊂ {−1, 1, 0}n to the problem of learning β(n)-decomposable matrices. We say that Gn is
realized by mn ×mn matrices that are β(n)-decomposable if there exists a mapping ψn : Xn →
[mn]× [mn] such that for every h ∈ Gn there exists a β(n)-decomposable mn ×mn matrix W for
which ∀x ∈ Xn, h(x) = Wψn(x). The mapping ψn is called a realization of Gn. In the case that
the mapping ψn can be computed in time polynomial in n, we say that Gn is efficiently realized and
ψn is an efficient realization. It follows from Theorem A.1 that:

Corollary A.2. If Gn is efficiently realized by mn ×mn matrices that are β(n)-decomposable then

Gn can be efficiently learnt using a sample of O
(
β(n)2mn log(mn)+log(1/δ)

ε2

)
examples.

We now turn to the proof of Theorem 4.1. We start with the first assertion, about learning Hn,2.
The idea will be to partition the instance space into a disjoint union of subsets and show that the
restriction of the hypothesis class to each subset can be efficiently realized by β(n)-decomposable.
Concretely, we decompose Cn,2 into a disjoint union of five sets

Cn,2 = ∪2
r=−2A

r
n

where

Arn =

{
x ∈ Cn,2 |

n∑
i=1

xi = r

}
.

In section A.1 we will prove that

Lemma A.3. For every −2 ≤ r ≤ 2,Hn,2|Arn can be efficiently realized by n×n matrices that are
O(log(n))-decomposable.

To glue together the five restrictions, we will rely on the following Lemma, whose proof is given in
section A.1.

Lemma A.4. Let X1, ..., Xk be partition of a domain X and let H be a hypothesis class over X .
Define Hi = H|Xi . Suppose the for every Hi there exist a learning algorithm that learns Hi using
≤ C(d + log(1/δ))/ε2 examples, for some constant C ≥ 8. Consider the algorithm A which

3The result of Hazan et al. [2012] is more general than what is stated here. Also, Hazan et al. [2012]
considered the online scenario. The result for the statistical scenario, as stated here, can be derived by applying
standard online-to-batch conversions (see for example Cesa-Bianchi et al. [2001]).
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receives an i.i.d. training set S of m examples from X × {0, 1} and applies the learning algorithm
for each Hi on the examples in S that belongs to Xi. Then, A learns H using at most

2Ck(d+ log(2k/δ))

ε2

examples.

The first part of Theorem 4.1 is therefore follows from Lemma A.3, Lemma A.4 and Corollary A.2.

Having the first part of Theorem 4.1 and Lemma A.4 at hand, it is not hard to prove the second part
of Theorem 4.1:

For 1 ≤ i ≤ n− 2 and b ∈ {±1} define

Dn,i,b = {x ∈ Cn,3 | xi = b and ∀j < i, xj = 0}

Let ψn : Cn,3 → Cn,2 be the mapping that zeros the first non zero coordinate. It is not hard to see
that Hn,3|Dn,i,b =

{
h ◦ ψn|Dn,i,b | h ∈ Hn,2

}
. Therefore Hn,3|Dn,i,b can be identified with Hn,2

using the mapping ψn, and therefore can efficiently learnt using O
(
n log3(n)+log(1/δ)

ε2

)
examples

(the dependency on δ does not appear in the statement, but can be easily inferred from the proof).
The second part of Theorem 4.1 is therefore follows from the first part of the Theorem and Lemma
A.4.

A.1 Proofs of Lemma A.3 and Lemma A.4

In the proof, we will rely on the following facts. The tensor product of two matrices A ∈ Mn×m
and B ∈Mk×l is defined as the (n · k)× (m · l) matrix

A⊗B =

A1,1 ·B · · · A1,m ·B
...

. . .
...

An,1 ·B · · · Am,m ·B


Proposition A.5. Let W be a β-decomposable matrix and let A be a PSD matrix whose diagonal
entries are upper bounded by α. Then W ⊗A is (α · β)-decomposable.

Proof. It is not hard to see that for every matrix W and a symmetric matrix A,

sym(W )⊗A = sym(W ⊗A)

Moreover, since the tensor product of two PSD matrices is PSD, if sym(W ) = P − N is a β-
decomposition of W , then

sym(W ⊗A) = P ⊗A−N ⊗A
is a (α · β)-decomposition of W ⊗A.

Proposition A.6. If W is a β-decomposable matrix, then so is every matrix obtained from W by
iteratively deleting rows and columns.

Proof. It is enough to show that deleting one row or column leaves W β-decomposable. Suppose
that W ′ is obtained from W ∈ Mn×m by deleting the i’th row (the proof for deleting columns is
similar). It is not hard to see that sym(W ′) is the i’th principal minor of sym(W ). Therefore, since
principal minors of PSD matrices are PSD matrices as well, if sym(W ) = P−N is β-decomposition
of W then sym(W ′) = [P ]i,i − [N ]i,i is a β-decomposition of W ′.

Proposition A.7. Hazan et al. [2012] Let Tn be the upper triangular matrix whose all entries in
the diagonal and above are 1, and whose all entries beneath the diagonal are −1. Then Tn is
O(log(n))-decomposable.

Lastly, we will also need the following generalization of proposition A.7
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Proposition A.8. Let W be an n × n ±1 matrix. Assume that there exists a sequence 0 ≤
j(1), . . . , j(n) ≤ n such that

Wij =

{
−1 j ≤ j(i)
1 j > j(i)

Then, W is O(log(n))-decomposable.

Proof. Since switching rows of a β-decomposable matrix leaves a β-decomposable matrix, we can
assume without loss of generality that j(1) ≤ j(2) ≤ . . . ≤ j(n). Let J be the n×n all ones matrix.
It is not hard to see that W can be obtained from Tn ⊗ J by iteratively deleting rows and columns.
Combining propositions A.5, A.6 and A.7, we conclude that W is O(log(n))-decomposable, as
required.

We are now ready to prove Lemma A.3

Proof. (of Lemma A.3) Denote Arn = Hn,2|Arn . We split into cases.

Case 1, r=0: Note that A0
n = {ei − ej | i, j ∈ [n]}. Define ψn : A0

n → [n]× [n] by ψn(ei − ej) =
(i, j). We claim that ψn is an efficient realization of A0

n by n × n matrices that are O(log(n))
decomposable. Indeed, let h = hw,b ∈ A0

n, and let W be the n × n matrix Wij = Wψn(ei−ej) =
h(ei − ej). It is enough to show that W is O(log(n))-decomposable.

We can rename the coordinates so that

w1 ≥ w2 ≥ . . . ≥ wn (1)

From equation (1), it is not hard to see that there exist numbers

0 ≤ j(1) ≤ j(2) ≤ . . . ≤ j(n) ≤ n

for which

Wij =

{
−1 j ≤ j(i)
1 j > j(i)

The conclusion follows from Proposition A.8

Case 2, r=2 and r=-2: We confine ourselves to the case r = 2. The case r = −2 is similar. Note
that A2

n = {ei + ej | i 6= j ∈ [n]}. Define ψn : A2
n → [n] × [n] by ψn(ei + ej) = (i, j). We

claim that ψn is an efficient realization of A2
n by n× n matrices that are O(log(n)) decomposable.

Indeed, let h = hw,b ∈ A2
n, and let W be the n × n matrix Wij = Wψn(ei+ej) = h(ei + ej). It is

enough to show that W is O(log(n))-decomposable.

We can rename the coordinates so that

w1 ≤ w2 ≤ . . . ≤ wn (2)

From equation (2), it is not hard to see that there exist numbers

n ≥ j(1) ≥ j(2) ≥ . . . ≥ j(n) ≥ 0

for which

Wij =

{
−1 j ≤ j(i)
1 j > j(i)

The conclusion follows from Proposition A.8

Case 3, r=1 and r=-1: We confine ourselves to the case r = 1. The case r = −1 is similar. Note that
A1
n = {ei | i ∈ [n]}. Define ψn : A0

n → [n]×[n] by ψn(ei) = (i, i). We claim that ψn is an efficient
realization of A1

n by n × n matrices that are 3-decomposable (let alone, log(n)-decomposable).
Indeed, let h = hw,b ∈ A1

n, and let W be the n × n matrix with Wii = Wψn(ei) = h(ei) and −1
outside the diagonal. It is enough to show that W is 3-decomposable. Since J is 1-decomposable, it
is enough to show that W + J is 2-decomposable. However, it is not hard to see that every diagonal
matrix D is (maxi |Dii|)-decomposable.
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Proof. (of Lemma A.4) Let S = (x1, y1), . . . , (xm, ym) be a training set and let m̂i be the number
of examples in S that belong to Xi. Given that the values of the random variables m̂1, . . . , m̂i is
determined, we have that w.p. of at least 1− δ,

∀i, ErrDi(hi)− ErrDi(h
∗) ≤

√
C(d+ log(k/δ))

m̂i
,

where Di is the induced distribution over Xi, hi is the output of the i’th algorithm, and h∗ is the
optimal hypothesis w.r.t. the original distribution D. Define,

mi = max{C(d+ log(k/δ)), m̂i} .

It follows from the above that we also have, w.p. at least 1− δ, for every i,

ErrDi(hi)− ErrDi(h
∗) ≤

√
C(d+ log(k/δ))

mi
=: εi.

Let αi = D{(x, y) : x ∈ Xi}, and note that
∑
i αi = 1. Therefore,

ErrD(hS)− ErrD(h∗) ≤
∑
i

αiεi =
∑
i

√
αi

√
αiε2i

≤
√∑

i

αi

√∑
i

αiε2i =

√∑
i

αiε2i

=

√
C(d+ log(k/δ))

m

√∑
i

αim

mi
.

Next note that if αim < C(d+ log(k/δ)) then αim/mi ≤ 1. Otherwise, using Chernoff’s inequal-
ity, for every i we have

Pr[mi < 0.5αim] ≤ e−αim/8 ≤ e−(d+log(k/δ)) = e−d
δ

k
≤ δ

k
.

Therefore, by the union bound,

Pr[∃i : mi < 0.5αim] ≤ δ.

It follows that with probability of at least 1− δ,√∑
i

αim

mi
≤
√

2k .

All in all, we have shown that with probability of at least 1− 2δ it holds that

ErrD(hS)− ErrD(h∗) ≤
√

2Ck(d+ log(k/δ))

m
.

Therefore, the the algorithm learnsH using

≤ 2Ck(d+ log(2k/δ))

ε2

examples.
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