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Proof of Lemma 2.1. By the Cauchy-Schwarz Inequality,

∥V V T ∥1,1 =
∑

ijk

|Vik||Vjk| ≤
∑

ij

[
∑

k

|Vik|2
]1/2[∑

k

|Vjk|2
]1/2

= ∥V ∥22,1 .

Since the norms of the row of V/∥V ∥2,2 are ≤ 1,

∥V ∥2,1 =
∥∥V/∥V ∥2,2

∥∥
2,1
∥V ∥2,2 ≤ ∥V ∥2,0∥V ∥2,2 .

Using the identity ∥V ∥22,2 = tr(V V T ) and the preceding inequalities,

∥V V T ∥1,1 ≤ ∥V ∥
2
2,1 ≤ ∥V ∥

2
2,0∥V ∥

2
2,2 = ∥V ∥22,0 tr(V V T ) .

Proof of Lemma 3.1. We first assume that A ≽ 0. Using the spectral decomposition of A and the
assumptions that 0 ≼ F ≼ I and tr(F ) ≤ d, it is straightforward to show that

⟨A,E − F ⟩ = ⟨EA, I − F ⟩ − ⟨(I − E)A,F ⟩
≥ λd⟨E, I − F ⟩ − λd+1⟨I − E,F ⟩
= δ(d− ⟨E,F ⟩) .

Now 0 ≼ E ≼ I and 0 ≼ F ≼ I. So

2(d− ⟨E,F ⟩) = tr(E) + tr(F )− 2⟨E,F ⟩
≥ |||E|||22 + |||F |||22 − 2⟨E,F ⟩
= |||E − F |||22 .

If A is not positive semidefinite, then we may choose c > 0 sufficiently large so that A + cI ≽ 0.
Note that A + cI has the same spectral gap as A and ⟨A + cI, E − F ⟩ = ⟨A,E − F ⟩. So the
indefinite case follows from the positive semidefinite case.

Proof of Corollary 3.2. The definition of the Fantope ensures that rank(X̂) ≥ d, so X̂ does have a
principal d-dimensional subspace (though not necessarily unique). Since Π is a rank-d projection
matrix, λd(Π)− λd+1(Π) = 1. Now apply Corollary 3.1.

Proof of Theorem 3.1. Since X̂ is optimal and Π is feasible for (1),

0 ≤ ⟨S,∆⟩ − λ(∥Π+∆∥1,1 − ∥Π∥1,1) .

On the otherhand, Lemma 3.1 implies
δ

2
|||∆|||22 ≤ −⟨Σ,∆⟩ .

Thus,
δ

2
|||∆|||22 ≤ ⟨W,∆⟩ − λ(∥Π+∆∥1,1 − ∥Π∥1,1)

≤ ∥W∥∞,∞∥∆∥1,1 − λ(∥Π+∆∥1,1 − ∥Π∥1,1)
≤ λ(∥∆∥1,1 − ∥Π+∆∥1,1 + ∥Π∥1,1) .

Let J be the subset of indices of the nonzero entries of Π. For a symmetric matrix B, we write BJ

for the matrix equal to B on J and zero off of J . Then ∥B∥1,1 = ∥BJ∥1,1 + ∥B − BJ∥1,1 and
Π = ΠJ . So

∥∆∥1,1 − ∥Π+∆∥1,1 + ∥Π∥1,1 = ∥∆J∥1,1 − ∥ΠJ +∆J∥1,1 + ∥ΠJ∥1,1
≤ 2∥∆J∥1,1 ,

where the second line is the triangle inequality. Since ∆J has at most s2 nonzero entries,

∥∆J∥1,1 ≤ s|||∆J |||2 ≤ s|||∆|||2 .
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Proof of Theorem 3.2. Clearly,

D0 := {j : Πjj = 0, X̂jj ≥ t} ⊆ {j : |∆jj | ≥ t} ,
D1 := {j : Πjj ≥ 2t, X̂jj < t} ⊆ {j : |∆jj | ≥ t} ,

and D0 ∩D1 = ∅. Then by Markov’s Inequality,

|D0|+ |D1| ≤
∣∣{j : |∆jj | ≥ t}

∣∣ ≤ 1

t2

∑

j

|∆jj |2 ≤
|||∆|||22
t2

.

Proof of Theorem 3.3. We have by (3) and the union bound that

P
(
∥W∥∞,∞ ≥ λ

)
≤ 2 exp

(
− 4 log p+ 2 log p

)
= 2/p2 ,

and Theorem 3.1 yields the desired result.

Proof of Corollary 3.3. Note that ∥Σ1/2u∥22 ≤ λ1∥u∥22. Under assumption (5), it can be shown by
Bernstein’s Inequality [see 1, Lemma 2.2.11] that S −Σ satisfies (3) with σ = cλ1 where c > 0 is a
constant depending only on L. The assumption that log p ≤ n in (4) ensures that only the moderate
sub-Gaussian deviation in Bernstein’s Inequality is active.

Proof of Corollary 3.4. Liu et al. [2, Theorem 4.2] use Hoeffding’s Inequality for U-statistics to
show that

max
ij

P
(
|Sij − Σij | > t

)
≤ 2 exp

(
− 4nt2/σ2) .

Proof of Lemma 4.1. Let V denote the matrix whose columns are the eigenvectors of X . Since the
Frobenius norm and Fantope are orthogonally invariant,

PFd(X) = argmin
Y ∈Fd

1

2
|||X − Y |||22 = V

[
argmin

0≼y≼1,⟨y,1⟩=d

1

2
|||γ − y|||22

]
V T .

The Lagrangian associated with the problem above is

1

2
|||γ − y|||22 + ⟨y − 1, τ1⟩ − ⟨y, τ0⟩+ θ

(
⟨y,1⟩ − d

)
,

which upon differentiation with respect to y and comparing to 0 yields the optimality condition

y − γ + τ1 − τ0 + θ1 = 0 .

By complementary slackness, if 0 < yi < 1 then τ0i = τ1i = 0 and yi = γi − θ. Thus, the optimal
value of y must satisfy ∑

i

min(max(yi − θ, 0), 1) = d .
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