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Abstract

We consider energy minimization for undirected graphical models, also known as
the MAP-inference problem for Markov random fields. Although combinatorial
methods, which return a provably optimal integral solution of the problem, made a
significant progress in the past decade, they are still typically unable to cope with
large-scale datasets. On the other hand, large scale datasets are often defined on
sparse graphs and convex relaxation methods, such as linear programming relax-
ations then provide good approximations to integral solutions.
We propose a novel method of combining combinatorial and convex program-
ming techniques to obtain a global solution of the initial combinatorial problem.
Based on the information obtained from the solution of the convex relaxation, our
method confines application of the combinatorial solver to a small fraction of the
initial graphical model, which allows to optimally solve much larger problems.
We demonstrate the efficacy of our approach on a computer vision energy mini-
mization benchmark.

1 Introduction

The focus of this paper is energy minimization for Markov random fields. In the most common
pairwise case this problem reads

min
x∈XG

EG,θ(x) := min
x∈XG

∑
v∈VG

θv(xv) +
∑
uv∈EG

θuv(xu, xv) , (1)

where G = (VG , EG) denotes an undirected graph with the set of nodes VG 3 v and the set of
edges EG 3 uv; variables xv belong to the finite label sets Xv, v ∈ VG ; potentials θv : Xv → R,
θuv : Xu×Xv → R, v ∈ VG , uv ∈ EG , are associated with the nodes and the edges of G respectively.
We denote by XG the Cartesian product ⊗v∈VGXv .

Problem (1) is known to be NP-hard in general, hence existing methods either consider its convex
relaxations or/and apply combinatorial techniques such as branch-and-bound, combinatorial search,
cutting plane etc. on top of convex relaxations. The main contribution of this paper is a novel
method to combine convex and combinatorial approaches to compute a provably optimal solution.
The method is very general in the sense that it is not restricted to a specific convex programming
or combinatorial algorithm, although some algorithms are more preferable than others. The main
restriction of the method is the neighborhood structure of the graph G: it has to be sparse. Basic grid
graphs of image data provide examples satisfying this requirement. The method is applicable also to
higher-order problems, defined on so called factor graphs [1], however we will concentrate mainly
on the pairwise case to keep our exposition simple.

Underlying idea. Fig. 1 demonstrates the main idea of our method. Let A and B be two subgraphs
covering G. Select them so that the only common nodes of these subgraphs lie on their mutual border
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Figure 1: Underlying idea of the proposed method: the initial graph is split into two subgraphs A
(blue+yellow) and B (red+yellow), assigned to a convex and a combinatorial solver respectively. If
the integral solutions provided by both solvers do not coincide on the common border ∂A (yellow)
of the two subgraphs, the subgraph B is increased by appending mismatching nodes (green) and the
border is adjusted respectively.

∂A(≡ ∂B) defined in terms of the master-graph G. Let x∗A and x∗B be optimal labelings computed
independently onA and B. If these labelings coincide on the border ∂A, then under some additional
conditions the concatenation of x∗A and x∗B is an optimal labeling for the initial problem (1), as we
show in Section 3 (see Theorem 1).

We select the subgraph A such that it contains a ”simple“ part of the problem, for which the convex
relaxation is tight. This part is assigned to the respective convex program solver. The subgraph
B contains in contrast the difficult, combinatorial subproblem and is assigned to a combinatorial
solver. If the labelings x∗A and x∗B do not coincide on some border node v ∈ ∂A, we (i) increase the
subgraph B by appending the node v and edges from v to B, (ii) correspondingly decrease A and
(iii) recompute x∗A and x∗B. This process is repeated until either labelings x∗A and x∗B coincide on
the border or B equals G. The sparsity of G is required to avoid fast growth of the subgraph B.

We refer to Section 3 for a detailed description of the algorithm, where we in particular specify the
initial selection of the subgraphs A and B and the methods for (i) encouraging consistency of x∗A
and x∗B on the boundary ∂A and (ii) providing equivalent results with just a single run of the convex
relaxation solver. These techniques will be described for the local polytope relaxation, known also
as a linear programming relaxation of (1) [2, 3].

Related work. The literature on problem (1) is very broad, both regarding convex programming and
combinatorial methods. Here we will concentrate on the local polytope relaxation, that is essential
to our approach.

The local polytope relaxation (LP) of (1) was proposed and analyzed in [4] (see also the recent
review [2]). An alternative view on the same relaxation was proposed in [5]. This view appeared to
be very close to the idea of the Lagrangian or dual decomposition technique (see [6] for applications
to (1)). This idea stimulated development of efficient solvers for convex relaxations of (1). Scalable
solvers for the LP relaxation became a hot topic in recent years [7–14]. The algorithms however,
which guarantee attainment of the optimum of the convex relaxation at least theoretically, are quite
slow in practice, see e.g. comparisons in [11, 15]. Remarkably, the fastest scalable algorithms
for convex relaxations are based on coordinate descent: the diffusion algorithm [2] known from
the seventies and especially its dual decomposition based variant TRW-S [16]. There are other
closely related methods [17, 18] based on the same principle. Although these algorithms do not
guarantee attainment of the optimum, they converge [19] to points fulfilling a condition known as
arc consistency [2] or weak tree agreement [16]. We show in Section 3 that this condition plays a
significant role for our approach. It is a common observation that in the case of sparse graphs and/or
strong evidence of the unary terms θv, v ∈ VG , the approximate solutions delivered by such solvers
are quite good from the practical viewpoint. The belief, that these solutions are close to optimal
ones is evidenced by numerical bounds, which these solvers provide as a byproduct.

The techniques used in combinatorial solvers specialized to problem (1) include most of the clas-
sical tools: cutting plane, combinatorial search and branch-and-bound methods were adapted to the
problem (1). The ideas of the cutting plane method form the basis for tightening the LP relaxation
within the dual decomposition framework (see the recent review [20] and references therein) and
for finding an exact solution for Potts models [21], which is a special class of problem (1). Com-
binatorial search methods with dynamic programming based heuristics were successfully applied
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to problems defined on dense and fully connected but small graphs [22]. The specialized branch-
and-bound solvers [23, 24] also use convex (mostly LP) relaxations and/or a dynamic programming
technique to produce bounds in the course of the combinatorial search [25]. However the reported
applicability of most combinatorial solvers nowadays is limited to small graphs. Specialized solvers
like [21] scale much better, but are focused on a certain narrow class of problems.

The goal of this work is to employ the fact, that local polytope solvers provide good approximate
solutions and to restrict computational efforts of combinatorial solvers to a relatively small, and
hence tractable part of the initial problem.

Contribution. We propose a novel method for obtaining a globally optimal solution of the energy
minimization problem (1) for sparse graphs and demonstrate its performance on a series of large-
scale benchmark datasets. We were able to

• solve previously unsolved large-scale problems of several different types, and
• attain optimal solutions of hard instances of Potts models an order of magnitude faster than

specialized state of the art algorithms [21].

For an evaluation of our method we use datasets from the very recent benchmark [15].

Paper structure. In Section 2 we provide the definitions for the local polytope relaxation and arc
consistency. Section 3 is devoted to the specification of our algorithm. In Sections 4 and 5 we
provide results of the experimental evaluation and conclusions.

2 Preliminaries

Notation. A vector x with coordinates xv, v ∈ VG , will be called labeling and its coordinates
xv ∈ Xv – labels. The notation x|W ,W ⊂ VG stands for the restriction of x to the subsetW , i.e.
for the subvector (xv, v ∈ W). To shorten notation we will sometimes write xuv ∈ Xuv in place
of (xv, xu) ∈ Xu × Xv for (v, u) ∈ EG . Let also nb(v), v ∈ VG , denote the set of neighbors of
node v, that is the set {u ∈ VG : uv ∈ EG}.
LP relaxation. The local polytope relaxation of (1) reads (see e.g. [2])

min
µ≥0

∑
v∈VG

∑
xv∈Xv

θv(xv)µv(xv) +
∑
uv∈EG

∑
(xu,xv)∈Xuv

θuv(xu, xv)µuv(xu, xv)

s.t.

∑
xv∈VG µv(xv) = 1, v ∈ VG∑
xv∈VG µuv(xu, xv) = µu(xu), xu ∈ Xu, uv ∈ EG∑
xu∈VG µuv(xu, xv) = µv(xv), xv ∈ Xv, uv ∈ EG .

(2)

This formulation is based on the overcomplete representation of indicator vectors µ constrained
to the local polytope commonly used for discrete graphical models [3]. It is well-known that the
local polytope constitutes an outer bound (relaxation) of the convex hull of all indicator vectors of
labelings (marginal polytope; cf. [3]).

The Lagrange dual of (2) reads

max
φ,γ

∑
v∈VG

γv +
∑
uv∈EG

γuv (3)

s.t.
γv ≤ θ̃φv (xv) := θv(xv)−

∑
u∈nb(v) φv,u(xv), v ∈ VG , xv ∈ Xv ,

γuv ≤ θ̃φuv(xu, xv) := θuv(xu, xv) + φv,u(xv) + φu,v(xu), uv ∈ EG , (xu, xv) ∈ Xuv .

In the constraints of (3) we introduced the reparametrized potentials θ̃φ. One can see, that for any
values of the dual variables φ the reparametrized energy Eθ̃φ,G(x) is equal to the non-parametrized
one Eθ,G(x) for any labeling x ∈ XG . The objective function of the dual problem is equal
to D(φ) :=

∑
v∈VG θ̃

φ
v (x
′
v) +

∑
uv∈EG θ̃

φ
uv(x

′
uv), where x′w ∈ argminxw∈Xv∪Xuv θ̃

φ
w(xw). A

reparametrization, that is reparametrized potentials θ̃φ, will be called optimal, if the corresponding
φ is the solution of the dual problem (3). In general neither the optimal φ is unique nor the optimal
reparametrization.
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Definition 1 (Strict arc consistency). We will call the node v ∈ VG strictly arc consistent w.r.t.
potentials θ if there exist labels x′v ∈ Xv and x′u ∈ Xu for all u ∈ nb(v), such that θv(x′v) < θv(xv)
for all xv ∈ Xv\{x′v} and θvu(x′v, x

′
u) < θvu(xv, xu) for all (xv, xu) ∈ Xvu\{(x′v, x′u)}. The label

x′v will be called locally optimal.

If all nodes v ∈ VG are strictly arc consistent w.r.t. the potentials θ̃φ, the dual objective value D(φ)
becomes equal to the energy

D(φ) = EG,θ̃φ(x
′) = EG,θ(x

′) (4)

of the labeling x′ constructed by the corresponding locally optimal labels. From duality it follows,
that D(φ) is a lower bound for energies of all labelings EG,θ(x), x ∈ XG . Hence attainment of
equality (4) shows that (i) φ is the solution of the dual problem (3) and (ii) x′ is the solution of both
the energy minimization problem (1) and its relaxation (2).

Strict arc consistency of all nodes is sufficient, but not necessary for attaining the optimum of the
dual objective (3). Its fulfillment means that our LP relaxation is tight, which is not always the
case. However, in many practical cases the optimal reparametrization φ corresponds to strict arc
consistency of a significant portion of, but not all graph nodes. The remaining non-consistent part is
often much smaller and consists of many separate ”islands“. The strict arc consistency of a certain
node v, even for the optimally reparametrized potentials θ̃φ, does not guarantee global optimality
of the corresponding locally optimal label xv (unless it holds for all nodes), though it is a good and
widely used heuristic to obtain an approximate solution of the non-relaxed problem (1). In this work
we provide an algorithm, which is able to prove this optimality or discard it. The algorithm applies
combinatorial optimization techniques only to the arc inconsistent part of the model, which is often
much smaller than the whole model in applications.

Remark 1. Efficient dual decomposition based algorithms optimize dual functions, which differ
from (4) (see e.g. [6, 13, 16]), but are equivalent to it in the sense of equal optimal values. Getting
reparametrizations θ̃φ is less straightforward in these cases, but can be efficiently computed (see
e.g. [16, Sec. 2.2]).

3 Algorithm description

The graph A = (VA, EA) will be called an (induced) subgraph of the graph G = (VG , EG), if
VA ⊂ VG and EA = {uv ∈ EG : u, v ∈ VA}. The graph G will be called supergraph of A. The
subgraph ∂A induced by a set of nodes V∂A of the graph A, which are connected to VG\VA, is
called its boundary w.r.t. G, i.e. V∂A = {v ∈ VA : ∃uv ∈ EG : u ∈ VG\VA}. The complement B
to A\∂A, given by VB = {v ∈ VG : v ∈ ∂A ∪ (VG\VA)}, EB = {uv ∈ EG : u, v ∈ VB}, is called
boundary complement to A w.r.t. the graph G. Let A be a subgraph of G and potentials θv, v ∈ VG ,
and θuv ∈ EG be associated with nodes and edges of G respectively. We assume, that θv, v ∈ VA,
and θuv ∈ EA are associated with the subgraph A. Hence we consider the energy function EA,θ to
be defined on A together with an optimal labeling on A, which is the one that minimizes EA,θ.

The following theorem formulates conditions necessary to produce an optimal labeling x∗ on the
subgraph G from the optimal labelings on its mutually boundary complement subgraphs A and B.

Theorem 1. Let A be a subgraph of G and B be its boundary complement w.r.t. A. Let x∗A and
x∗B be labelings minimizing EA,θ and EB,θ respectively and let all nodes v ∈ VA be strictly arc
consistent w.r.t. potentials θ. Then from

x∗A,v = x∗B,v for all v ∈ V∂A (5)

follows that the labeling x∗ with coordinates x∗v =
{
x∗A,v, v ∈ A
x∗B,v, v ∈ B\A , v ∈ VG , is optimal on G.

Proof. Let θ denote potentials of the problem. Let us define other potentials θ′ as

θ′w(xw) :=

{
0, w ∈ V∂A ∪ E∂A
θw(xw), w /∈ V∂A ∪ E∂A . Then EG,θ(x) = EA,θ′(x|A)+EB,θ(x|B). From strict
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Algorithm 1

(1) Solve LP and reparametrize (G, θ)→ (G, θ̃φ).
(2) Initialize: (A, θ̃φ) and x∗A,v from arc consistent nodes.

(3) repeat
Set B as a boundary complement to A.
Compute an optimal labeling x∗B on B.
If x∗A|∂A = x∗B|∂A return.
Else set C := {v ∈ V∂A : x∗A,v 6= x∗B,v}, A := A\C
until C = ∅

arc consistency of θ overA directly follows thatEA,θ′(x∗A) = minxA EA,θ′(xA). From this follows

min
x
EG,θ(x) = { min

xA,xB
EA,θ′(xA) + EB,θ(xB) s.t. xA|∂A = xB|∂A}

= min
x′
∂A

min
xA : xA|∂A=x′

∂A

EA,θ′(xA) + min
xB : xB|∂A=x′

∂A

EB,θ(xB) ≥ min
xA

EA,θ′(xA) + min
xB

EB,θ(xB)

= EA,θ′(x
∗
A) + EB,θ(x

∗
B) = EG,θ(x

∗)

Now we are ready to transform the idea described in the introduction into Algorithm 1.
Step (1). As a first step of the algorithm we run an LP solver for the dual problem (3) on the
whole graph G. The output of the algorithm is the reparametrization θ̃φ of the initial problem.
Since well-scalable algorithms for the dual problem (3) attain the optimum only in the limit after a
potentially infinite number of iterations, we cannot afford to solve it exactly. Fortunately, it is not
needed to do so and it is enough to get only a sufficiently good approximation. We will return to
this point at the end of this section.
Step (2). We assign to the set VA the nodes of the graph G, which satisfy the strict arc consistency
condition. The optimal labeling on A can be trivially computed from the reparametrized unary
potentials θ̃φv by x∗A,v := argminxv θ̃

φ
v (xv), v ∈ A.

Step (3). We define B as the boundary complement to A w.r.t. the master graph G and find an
optimal labeling x∗B on the subgraph B with a combinatorial solver. If the boundary condition (5)
holds we have found the optimal labeling according to Theorem 1. Otherwise we remove the nodes
where this condition fails from A and repeat the whole step until either (5) holds or B = G.

3.1 Remarks on Algorithm 1

Encouraging boundary consistency condition. It is quite unlikely, that the optimal boundary
labeling x∗A|∂A obtained based only on the subgraphA coincides with the boundary labeling x∗B|∂A
obtained for the subgraph B. To satisfy this condition the unary potentials should be quite strong on
the border. In other words, they should be at least strictly arc consistent. Indeed they are so, since
we consider the reparametrized potentials θ̃φ, obtained at the LP presolve step of the algorithm.
Single run of LP solver. Reparametrization allows also to perform only a single run of the LP
solver, keeping the results as if the subproblem over A has been solved at each iteration. The
following theorem states this property formally.

Theorem 2. Let all nodes of a graph A be strictly arc consistent w.r.t. potentials θ̃φ, x be the
optimum of EA,θ̃φ and A′ be a subgraph of A. Then x|A′ optimizes EA′,θ̃φ .

Proof. The proof follows directly from Definition 1. Equation (4) holds for the labeling x|A′

plugged in place of x′ and graph A′ in place of G. Hence x|A′ provides a minimum of EA′,θ̃φ .

Presolving B for combinatorial solver. Many combinatorial solvers use linear programming re-
laxations as a presolving step. Reparametrization of the subproblem over the subgraph B plays the
role of such a presolver, since the optimal reparametrization corresponds to the solution of the dual
problem and makes solving the primal one easier.
Connected components analysis. It is often the case that the subgraph B consists of several con-
nected components. We apply the combinatorial solver to each of them independently.
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Dataset Step (1) LP (TRWS) Step (3) ILP (CPLEX) |B|
name |VG | |Xv| # it time, s E # it time, s E min max

tsukuba 110592 16 250 186 369537 24 36 369218 130 656
venus 166222 20 2000 3083 3048296 10 69 3048043 66 233
teddy 168750 60 10000 14763 1345214 1 − − 2062 −
family 425632 5 10000 20156 184825 18 2 184813 11 109
pano 514080 7 10000 34092 169224 1 − − 24474 −

Table 1: Results on Middlebury datasets. The column Dataset contains the dataset name, numbers
|VG | of nodes and |Xv| of labels. Columns Step (1) and Step (3) contain number of iterations, time
and attained energy at steps (1) and (3) of Algorithm 1, corresponding to solving the LP relaxation
and use of a combinatorial solver respectively. The column |B| presents starting and final sizes
of the ”combinatorial“ subgraph B. Dash ”-” stands for failure of CPLEX, due to the size of the
combinatorial subproblem.

Subgraph B growing strategy. One can consider different strategies for increasing the subgraph B,
if the boundary condition (5) does not hold. Our greedy strategy is just one possible option.
Optimality of reparametrization. As one can see, the reparametrization plays a significant role
for our algorithm: it (i) is required for Theorem 1 to hold; (ii) serves as a criterion for the initial
splitting of G into A and B; (iii) makes the local potentials on the border ∂A stronger; (iv) allows
to avoid multiple runs of the LP solver, when the subgraph A shrinks; (v) can speed-up some com-
binatorial solvers by serving as a presolve result. However, there is no real reason to search for an
optimal reparametrization: all its mentioned functionality remains valid also if it is non-optimal. Of
course, one pays a certain price for the non-optimality: (i) the initial subgraph B becomes larger;
(ii) the local potentials – weaker; (iii) the presolve results for the combinatorial solver become less
precise. Note that even for non-optimal reparametrizations Theorem 2 holds and we need to run the
LP solver only once.

4 Experimental evaluation

We tested our approach on problems from the Middlebury energy minimization benchmark [26] and
the recently published discrete energy minimization benchmark [15], which includes the datasets
from the first one. We have selected computer vision benchmarks intentionally, because many prob-
lems in this area fulfill our requirements: the underlying graph is sparse (typically it has a grid
structure) and the LP relaxation delivers good practical results.

Since our experiments serve mainly as proof of concept we used general, though not always the
most efficient solvers: TRW-S [16] as the LP-solver and CPLEX [27] as the combinatorial one
within the OpenGM framework [28]. Unfortunately the original version of TRW-S does not provide
information about strict arc consistency and does not output a reparametrization. Therefore we used
our own implementation in the experiments. Depending on the type of the pairwise factors (Potts,
truncated `2 or `1-norm) we found our implementation up to an order of magnitude slower than the
freely available code of V. Kolmogorov. This fact suggests that the provided processing time can be
significantly improved in more efficient future implementations.

In the first round of our experiments we considered problems (i.e. graphical models with the spec-
ified unary and pairwise factors) of the Middlebury MRF benchmark, most of which remained un-
solved, to the best of our knowledge.

MRF stereo dataset consists of 3 models: tsukuba, venus and teddy. Since the optimal inte-
gral solution of tsukubawas recently obtained by LP-solvers [11,13], we used this dataset to show
how our approach performs for clearly non-optimal reparametrizations. For this we run TRW-S for
250 iterations only. The size of the subgraph B grew from 130 to 656 nodes out of more than 100000
nodes of the original problem (see Table 1). On venus we obtained an optimal labeling after 10
iterations of our algorithm. During these iterations the size of the set B grew from 66 to 233 nodes,
which is only 0.14% of the original problem size. The dataset teddy remains unsolved: though
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Dataset EG,θ(x
∗) Step (1) LP Step (3) ILP MCA MPLP

# it time, s # it time, s time, s # LP it LP time, s ILP time, s

pfau 24010.44 1000 276 14 14 > 55496 10000 > 15000
palm 12253.75 200 65 17 93 561 700 1579 3701
clownfish 14794.18 100 32 8 10 328 350 790 181
crops 11853.12 100 32 6 6 355 350 797 1601
strawberry 11766.34 100 29 8 31 483 350 697 1114

Table 2: Exemplary Potts model comparison. Datasets taken from the Color segmentation (N8)
set. Column EG,θ(x∗) shows the optimal energy value, columns Step (1) LP and Step (3) ILP
contain number of iterations and time spent at the steps (1) and (3) of Algorithm 1, corresponding to
solving the LP relaxation and use of a combinatorial solver respectively. The column MCA stands
for the time of the multiway-cut solver reported in [21]. The MPLP [17] column provides number
of iterations and time of the LP presolve and the time of the tightening cutting plane phase (ILP).

the size of the problem was reduced from the original 168750 to 2062 nodes, they constituted a
non-manageable task for CPLEX, presumably because of the big number of labels, 60 in each node.

MRF photomontage models are difficult for dual solvers like TRW-S because their range of values
in pairwise factors is quite large and varies from 0 to more than 500000 in a factor. Hence we used
10000 iterations of TRW-S at the first step of Algorithm 1. For the family dataset the algorithm
decreased the size of the problem for CPLEX from originally over 400000 nodes to slightly more
than 100 and found a solution of the whole problem. In contrast to family the initial subgraph B
for the panorama dataset is much larger (about 25000 nodes) and CPLEX gave up.

MRF inpainting. Though applying TRW-S to both datasets penguin and house allows to de-
crease the problem to about 0.5% of its original size, the resulting subgraphs B of respectively 141
and 856 nodes were too large for CPLEX, presumably because of the big number (256) of labels.

(a) Original image (b) Kovtun’s method (c) Our approach (d) Optimal Labeling

Figure 2: Results for the pfau-instance from [15]. Gray pixels in (b) and (c) mark nodes that
need to be labeled by the combinatorial solver. Our approach (c) leads to much smaller combina-
torial problem instances than Kovtun’s method [29] (b) used in [30]. While Kovtun’s method gets
partial optimality for 5% of the nodes only, our approach requires to solve only tiny problems by a
combinatorial solver.

Potts models. Our approach appeared to be especially efficient for Potts models. We tested it on
the following datasets from the benchmark [15]: Color segmentation (N4), Color segmentation
(N8), Color segmentation, Brain and managed to solve all 26 problem instances to optimality.
Solving Potts models to optimality is not a big issue anymore due to the recent work [21], which
related this problems to the multiway-cut problem [31] and adopted a quite efficient solver based on
the cutting plane technique. However, we were able to outperform even this specialized solver on
hard instances, which we collected in Table 2. There is indeed a simple explanation for this phe-
nomenon: the difficult instances are those, for which the optimal labeling contains many small areas
corresponding to different labels, see e.g. Fig. 2. This is not very typical for Potts models, where an
optimal labeling typically consists of a small number of large segments. Since the number of cutting
planes, which have to be processed by the multiway-cut solver, grows with the total length of the
segment borders, the overall performance significantly drops on such instances. Our approach is
able to correctly label most of the borders when solving the LP relaxation. Since the resulting sub-
graph B, passed to the combinatorial solver, is quite small, the corresponding subproblems appear
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easy to solve even for a general-purpose solver like CPLEX. Indeed, we expect an increase in the
overall performance of our method if the multiway-cut solver would be used in place of CPLEX.

For Potts models there exist methods [29,32] providing part of an optimal solution, known as partial
optimality. Often they allow to drastically simplify the problem so that it can be solved to global
optimality on the remaining variables very fast, see [30]. However for hard instances like pfau these
methods can label only a small fraction of graph nodes persistently, hence combinatorial solvers
cannot solve the rest, or require a lot of time. Our method does not provide partially optimal vari-
ables: if it cannot solve the whole problem no node can be labelled as optimal at all. On the upside
the subgraph B which is given to a combinatorial solver is typically much smaller, see Fig. 2.

For comparison we tested the MPLP solver [17], which is based on coordinate de-
scent LP iterations and tightens the LP relaxation with the cutting plane approach de-
scribed in [33]. We used its publicly available code [34]. However this solver did
not managed to solve any of the considered difficult problems (marked as unsolved in
the OpenGM Benchmark [15]), such as color-seg-n8/pfau, mrf stereo/{venus,
teddy}, mrf photomontage/{family, pano}. For easier instances of the Potts model,
we found our solver an order of magnitude faster than MPLP (see Table 2 for the exemplary com-
parison), though we tried different numbers of LP presolve iterations to speed up the MPLP.

Summary. Our experiments show that our method used even with quite general and not always the
most efficient solvers like TRW-S and CPLEX allows to (i) find globally optimal solutions of large
scale problem instances, which were previously unsolvable; (ii) solve hard instances of Potts models
an order of magnitude faster than with a modern specialized combinatorial multiway-cut method;
(iii) overcome the cutting-plane based MPLP method on the tested datasets.

5 Conclusions and future work

The method proposed in this paper provides a novel way of combining convex and combinatorial
algorithms to solve large scale optimization problems to a global optimum. It does an efficient
extraction of the subgraph, where the LP relaxation is not tight and combinatorial algorithms have
to be applied. Since this subgraph often corresponds to only a tiny fraction of the initial problem, the
combinatorial search becomes feasible. The method is very generic: any linear programming and
combinatorial solvers can be used to carry out the respective steps of Algorithm 1. It is particularly
efficient for sparse graphs and when the LP relaxation is almost tight.

In the future we plan to generalize the method to higher order models, tighter convex relaxations for
the convex part of our solver and apply alternative and specialized solvers both for the convex and
the combinatorial parts of our approach.
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rithm for MRF energy minimization. In EMMCVPR, pages 89–103, 2011.

[9] O. Meshi and A. Globerson. An alternating direction method for dual MAP LP relaxation. In
ECML/PKDD (2), pages 470–483, 2011.

[10] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. An augmented
Lagrangian approach to constrained MAP inference. In ICML, 2011.

[11] B. Savchynskyy, S. Schmidt, J. H. Kappes, and C. Schnörr. Efficient MRF energy minimization via
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