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Abstract

We develop a probabilistic approach for accurate network modeling using node
popularities within the framework of the mixed-membership stochastic block-
model (MMSB). Our model integrates two basic properties of nodes in social
networks: homophily and preferential connection to popular nodes. We develop a
scalable algorithm for posterior inference, based on a novel nonconjugate variant
of stochastic variational inference. We evaluate the link prediction accuracy of our
algorithm on nine real-world networks with up to 60,000 nodes, and on simulated
networks with degree distributions that follow a power law. We demonstrate that
the AMP predicts significantly better than the MMSB.

1 Introduction

Social network analysis is vital to understanding and predicting interactions between network enti-
ties [6, 19, 21]. Examples of such networks include online social networks, collaboration networks
and hyperlinked blogs. A central problem in social network analysis is to identify hidden community
structures and node properties that can best explain the network data and predict connections [19].

Two node properties underlie the most successful models that explain how network connections
are generated. The first property is popularity. This is the basis for preferential attachment [12],
according to which nodes preferentially connect to popular nodes. The resulting degree distributions
from this process are known to satisfy empirically observed properties such as power laws [24]. The
second property that underlies many network models is homophily or similarity, according to which
nodes with similar observed or unobserved attributes are more likely to connect to each other. To best
explain social network data, a probabilistic model must capture these competing node properties.

Recent theoretical work [24] has argued that optimizing the trade-offs between popularity and simi-
larity best explains the evolution of many real networks. It is intuitive that combining both notions
of attractiveness, i.e., popularity and similarity, is essential to explain how networks are generated.
For example, on the Internet a user’s web page may link to another user due to a common interest in
skydiving. The same user’s page may also link to popular web pages such as Google.com.

In this paper, we develop a probabilistic model of networks that captures both popularity and ho-
mophily. To capture homophily, our model is built on the mixed-membership stochastic blockmodel
(MMSB) [2], a community detection model that allows nodes to belong to multiple communities.
(For example, a member of a large social network might belong to overlapping communities of
neighbors, co-workers, and school friends.) The MMSB provides better fits to real network data
than single community models [23, 27], but cannot account for node popularities.

Specifically, we extend the assortative MMSB [9] to incorporate per-community node popularity.
We develop a scalable algorithm for posterior inference, based on a novel nonconjugate variant of
stochastic variational inference [11]. We demonstrate that our model predicts significantly better
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Figure 1: We visualize the discovered community structure and node popularities in a giant component of the
netscience collaboration network [22] (Left). Each link denotes a collaboration between two authors, colored
by the posterior estimate of its community assignment. Each author node is sized by its estimated posterior
popularity and colored by its dominant research community. The network is visualized using the Fructerman-
Reingold algorithm [7]. Following [14], we show an example where incorporating node popularities helps in
accurately identifying communities (Right). The division of the political blog network [1] discovered by the
AMP corresponds closely to the liberal and conservative blogs identified in [1]; the MMSB has difficulty in
delineating these groups.

than the stochastic variational inference algorithm for the MMSB [9] on nine large real-world net-
works. Further, using simulated networks, we show that node popularities are essential for predictive
accuracy in the presence of power-law distributed node degrees.

Related work. There have been several research efforts to incorporate popularity into network mod-
els. Karrer et al. [14] proposed the degree-corrected blockmodel that extends the classic stochastic
blockmodels [23] to incorporate node popularities. Krivitsky et al. [16] proposed the latent cluster
random effects model that extends the latent space model [10] to include node popularities. Both
models capture node similarity and popularity, but assume that unobserved similarity arises from
each node participating in a single community. Finally, the Poisson community model [4] is a
probabilistic model of overlapping communities that implicitly captures degree-corrected mixed-
memberships. However, the standard EM inference under this model drives many of the per-node
community parameters to zero, which makes it ineffective for prediction or model metrics based on
prediction (e.g., to select the number of communities).

2 Modeling node popularity and similarity

The assortative mixed-membership stochastic blockmodel (MMSB) [9] treats the links or non-links
yab of a network as arising from interactions between nodes a and b. Each node a is associated
with community memberships πa, a distribution over communities. The probability that two nodes
are linked is governed by the similarity of their community memberships and the strength of their
shared communities.

Given the communities of a pair of nodes, the link indicators yab are independent. We draw yab re-
peatedly by choosing a community assignment (za→b, za←b) for a pair of nodes (a, b), and drawing
a binary value from a community distribution. Specifically, the conditional probability of a link in
MMSB is

p(yab = 1|za→b,i, za←b,j ,β) =
∑K
i=1

∑K
j=1 za→b,iza←b,jβij ,

where β is the blockmodel matrix of community strength parameters to be estimated. In the as-
sortative MMSB [9], the non-diagonal entries of the blockmodel matrix are set close to 0. This
captures node similarity in community memberships—if two nodes are linked, it is likely that the
latent community indicators were the same.
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In the proposed model, assortative MMSB with node popularities, or AMP, we introduce latent
variables θa to capture the popularity of each node a, i.e., its propensity to attract links independent
of its community memberships. We capture the effect of node popularity and community similarity
on link generation using a logit model

logit (p(yab = 1|za→b, za←b,θ,β)) ≡ θa + θb +
∑K
k=1 δ

k
abβk, (1)

where we define indicators δkab = za→b,kza←b,k. The indicator δkab is one if both nodes assume the
same community k.

Eq. 1 is a log-linear model [20]. In log-linear models, the random component, i.e., the expected
probability of a link, has a multiplicative dependency on the systematic components, i.e., the covari-
ates. This model is also similar in the spirit of the random effects model [10]—the node-specific
effect θa captures the popularity of individual nodes while the

∑K
k=1 δ

k
abβk term captures the in-

teractions through latent communities. Notice that we can easily extend the predictor in Eq. 1 to
include observed node covariates, if any.

We now define a hierarchical generative process for the observed link or non-link under the AMP:

1. Draw K community strengths βk ∼ N (µ0, σ
2
0).

2. For each node a,
(a) Draw community memberships πa ∼ Dirichlet(α).
(b) Draw popularity θa ∼ N (0, σ2

1).
3. For each pair of nodes a and b,

(a) Draw interaction indicator za→b ∼ πa.
(b) Draw interaction indicator za←b ∼ πb.
(c) Draw the probability of a link yab|za→b, za←b, θ, β ∼ logit−1(za→b, za←b, θ, β).

Under the AMP, the similarities between the nodes’ community memberships and their respective
popularities compete to explain the observations.

We can make AMP simpler by replacing the vector of K latent community strengths β with a
single community strength β. In §4, we demonstrate that this simpler model gives good predictive
performance on small networks.

We analyze data with the AMP via the posterior distribution over the latent variables
p(π1:N , θ1:N , z, β1:K |y, α, µ0, σ

2
0 , σ

2
1), where θ1:N represents the node popularities, and the pos-

terior over π1:N represents the community memberships of the nodes. With an estimate of this
latent structure, we can characterize the network in many useful ways. Figure 1 gives an example.

This is a subgraph of the netscience collaboration network [22] with N = 1460 nodes. We analyzed
this network with K = 100 communities, using the algorithm from §3. This results in posterior
estimates of the community memberships and popularities for each node and posterior estimates
of the community assignments for each link. With these estimates, we visualized the discovered
community structure and the popular authors.

In general, with an estimate of this latent structure, we can study individual links, characterizing
the extent to which they occur due to similarity between nodes and the extent to which they are an
artifact of the popularity of the nodes.

3 A stochastic gradient algorithm for nonconjugate variational inference

Our goal is to compute the posterior distribution p(π1:N , θ1:N , z, β1:K |y, α, µ0σ
2
0 , σ

2
1). Exact infer-

ence is intractable; we use variational inference [13].

Traditionally, variational inference is a coordinate ascent algorithm. However, the AMP presents
two challenges. First, in variational inference the coordinate updates are available in closed form
only when all the nodes in the graphical model satisfy conditional conjugacy. The AMP is not condi-
tionally conjugate. To see this, note that the Gaussian priors on the popularity θ and the community
strengths β are not conjugate to the conditional likelihood of the data. Second, coordinate ascent
algorithms iterate over all the O(N2) node pairs making inference intractable for large networks.
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We address these challenges by deriving a stochastic gradient algorithm that optimizes a tractable
lower bound of the variational objective [11]. Our algorithm avoids the O(N2) computational cost
per iteration by subsampling a “mini-batch” of random nodes and a subset of their interactions in
each iteration [9].

3.1 The variational objective

In variational inference, we define a family of distributions over the hidden variables q(β,θ,π, z)
and find the member of that family that is closest to the true posterior. We use the mean-field family,
with the following variational distributions:

q(za→b = i, za←b = j) = φijab; q(πn) = Dirichlet(πn; γn);

q(βk) = N (βk;µk, σ
2
β); q(θn) = N (θn;λn, σ

2
θ). (2)

The posterior over the joint distribution of link community assignments per node pair (a, b) is pa-
rameterized by the per-interaction memberships φab 1, the community memberships by γ, the com-
munity strength distributions by µ and the popularity distributions by λ.

Minimizing the KL divergence between q and the true posterior is equivalent to optimizing an ev-
idence lower bound (ELBO) L, a bound on the log likelihood of the observations. We obtain this
bound by applying Jensen’s inequality [13] to the data likelihood. The ELBO is

L =
∑
n Eq[log p(πn|α)]−

∑
n Eq[log q(πn|γn)]

+
∑
n Eq[log p(θn|σ2

1)]−
∑
n Eq[log q(θn|λn, σ2

θ)]

+
∑
k Eq[log p(βk|µ0, σ

2
0)]−

∑
k Eq[log q(βk|µk, σ2

β)]

+
∑
a,b Eq[log p(za→b|πa)] + Eq[log p(za←b|πb)]− Eq[log q(za→b, za←b|φab)]

+
∑
a,b Eq[log p(yab|za→b, za←b,θ,β)]. (3)

Notice that the first three lines in Eq. 3 contains summations over communities and nodes; we call
these global terms. They relate to the global parameters which are (γ,λ,µ). The remaining lines
contain summations over all node pairs; we call these local terms. They relate to the local parame-
ters which are the φab. The distinction between the global and local parameters is important—the
updates to global parameters depends on all (or many) local parameters, while the updates to lo-
cal parameters for a pair of nodes only depends on the relevant global and local parameters in that
context.

Estimating the global variational parameters is a challenging computational problem. Coordinate
ascent inference must consider each pair of nodes at each iteration, but even a single pass through
the O(N2) node pairs can be prohibitive. Previous work [9] has taken advantage of conditional con-
jugacy of the MMSB to develop fast stochastic variational inference algorithms. Unlike the MMSB,
the AMP is not conditionally conjugate. Nevertheless, by carefully manipulating the variational
objective, we can develop a scalable stochastic variational inference algorithm for the AMP.

3.2 Lower bounding the variational objective

To optimize the ELBO with respect to the local and global parameters we need its derivatives. The
data likelihood terms in the ELBO can be written as

Eq[log p(yab|za→b, za←b,θ,β)] = yabEq[xab]− Eq[log(1 + exp(xab))], (4)

where we define xab ≡ θa+ θb+
∑K
k=1 βkδ

k
ab. The terms in Eq. 4 cannot be expanded analytically.

To address this issue, we further lower bound−Eq[log(1+exp(xab))] using Jensen’s inequality [13],

−Eq[log(1 + exp(xab))] ≥− log[Eq(1 + exp(xab))]

=− log[1 + Eq[exp(θa + θb +
∑K
k=1 βkδ

k
ab)]]

=− log[1 + exp(λa + σ2
θ/2) exp(λb + σ2

θ/2)sab], (5)

1Following [15], we use a structured mean-field assumption.
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Algorithm 1 The stochastic AMP algorithm
1: Initialize variational parameters. See §3.5.
2: while convergence criteria is not met do
3: Sample a mini-batch S of nodes. Let P be the set of node pairs in S.
4: local step
5: Optimize φab ∀(a, b) ∈ P using Eq. 11 and Eq. 12.
6: global step
7: Update memberships γa, for each node a ∈ S, using stochastic natural gradients in Eq. 6.
8: Update popularities λa, for each node a ∈ S using stochastic gradients in Eq. 7.
9: Update community strengths µ using stochastic gradients in Eq. 9.

10: Set ρa(t) = (τ0 + ta)
−κ; ta ← ta + 1, for each node a ∈ S.

11: Set ρ′(t) = (τ0 + t)−κ; t← t+ 1.
12: end while

where we define sab ≡
∑K
k=1 φ

kk
ab exp{µk + σ2

β/2} + (1 −
∑K
k=1 φ

kk
ab ). In simplifying Eq. 5,

we have used that q(θn) is a Gaussian. Using the mean of a log-normal distribution, we have
Eq[exp(θn)] = exp(λn + σ2

θ/2). A similar substitution applies for the terms involving βk in Eq. 5.

We substitute Eq. 5 in Eq. 3 to obtain a tractable lower boundL′ of the ELBOL in Eq. 3. This allows
us to develop a coordinate ascent algorithm that iteratively updates the local and global parameters
to optimize this lower bound on the ELBO.

3.3 The global step

We optimize the ELBO with respect to the global variational parameters using stochastic gradient
ascent. Stochastic gradient algorithms follow noisy estimates of the gradient with a decreasing step-
size. If the expectation of the noisy gradient equals to the gradient and if the step-size decreases
according to a certain schedule, then the algorithm converges to a local optimum [26]. Subsampling
the data to form noisy gradients scales inference as we avoid the expensive all-pairs sums in Eq. 3.

The global step updates the global community memberships γ, the global popularity parameters λ
and the global community strength parameters µ with a stochastic gradient of the lower bound on
the ELBO L′. In [9], the authors update community memberships of all nodes after each iteration
by obtaining the natural gradients of the ELBO 2 with respect to the vector γ of dimension N ×K.
We use natural gradients for the memberships too, but use distinct stochastic optimizations for the
memberships and popularity parameters of each node and maintain a separate learning rate for each
node. This restricts the per-iteration updates to nodes in the current mini-batch.

Since the variational objective is a sum of terms, we can cheaply compute a stochastic gradient by
first subsampling a subset of terms and then forming an appropriately scaled gradient. We use a
variant of the random node sampling method proposed in [9]. At each iteration we sample a node
uniformly at random from the N nodes in the network. (In practice we sample a “mini-batch” S of
nodes per update to reduce noise [11, 9].) While a naive method will include all interactions of a
sampled node as the observed pairs, we can leverage network sparsity for efficiency; in many real
networks, only a small fraction of the node pairs are linked. Therefore, for each sampled node, we
include as observations all of its links and a small uniform sample of m0 non-links.

Let ∂γta be the natural gradient of L′ with respect to γa, and ∂λta and ∂µtk be the gradients of L′
with respect to λa and µk, respectively. Following [2, 9], we have

∂γta,k = −γt−1a,k + αk +
∑

(a,b)∈links(a) φ
kk
ab (t) +

∑
(a,b)∈nonlinks(a) φ

kk
ab (t), (6)

where links(a) and nonlinks(a) correspond to the set of links and non-links of a in the training set.
Notice that an unbiased estimate of the summation term over non-links in Eq. 6 can be obtained from
a subsample of the node’s non-links. Therefore, the gradient of L′ with respect to the membership
parameter γa, computed using all of the nodes’ links and a subsample of its non-links, is a noisy but
unbiased estimate of the natural gradient in Eq. 6.

2The natural gradient [3] points in the direction of steepest ascent in the Riemannian space. The local
distance in the Riemannian space is defined by KL divergence, a better measure of dissimilarity between prob-
ability distributions than Euclidean distance [11].
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The gradient of the approximate ELBO with respect to the popularity parameter λa is

∂λta =− λt−1
a

σ2
1

+
∑

(a,b)∈links(a) ∪ nonlinks(a)(yab − rabsab), (7)

where we define rab as

rab ≡ exp{λa+σ2
θ/2} exp{λb+σ

2
θ/2}

1+exp{λa+σ2
θ/2} exp{λb+σ

2
θ/2}sab

. (8)

Finally, the stochastic gradient of L′ with respect to the global community strength parameter µk is

∂µtk =
µ0−µt−1

k

σ2
0

+ N
2|S|

∑
(a,b)∈links(S) ∪ nonlinks(S) φ

kk
ab (yab − rab exp{µk + σ2

β/2}). (9)

As with the community membership gradients, notice that an unbiased estimate of the summation
term over non-links in Eq. 7 and Eq. 9 can be obtained from a subsample of the node’s non-links. To
obtain an unbiased estimate of the true gradient with respect to µk, the summation over a node’s links
and non-links must be scaled by the inverse probability of subsampling that node in Eq. 9. Since
each pair is shared between two nodes, and we use a mini-batch with S nodes, the summations over
the node pairs are scaled by N

2|S| in Eq. 9.

We can interpret the gradients in Eq. 7 and Eq. 9 by studying the terms involving rab in Eq. 7 and
Eq. 9. In Eq. 7, (yab− rabsab) is the residual for the pair (a, b), while in Eq. 9, (yab− rab exp{µk+
σ2
β/2}) is the residual for the pair (a, b) conditional on the latent community assignment for both

nodes a and b being set to k. Further, notice that the updates for the global parameters of node a and
b, and the updates for µ depend only on the diagonal entries of the indicator variational matrix φab.

We can similarly obtain stochastic gradients for the variational variances σβ and σθ; however, in our
experiments we found that fixing them already gives good results. (See §4.)

The global step for the global parameters follows the noisy gradient with an appropriate step-size:

γa ← γa + ρa(t)∂γ
t
a; λa ← λa + ρa(t)∂λ

t
a; µ← µ+ ρ′(t)∂µt. (10)

We maintain separate learning rates ρa for each node a, and only update the γ and λ for the nodes
in the mini-batch in each iteration. There is a global learning rate ρ′ for the community strength
parameters µ, which are updated in every iteration. For each of these learning rates ρ, we require
that

∑
t ρ(t)

2 < ∞ and
∑
t ρ(t) = ∞ for convergence to a local optimum [26]. We set ρ(t) ,

(τ0 + t)−κ, where κ ∈ (0.5, 1] is the learning rate and τ0 ≥ 0 downweights early iterations.

3.4 The local step

We now derive the updates for the local parameters. The local step optimizes the per-interaction
memberships φ with respect to a subsample of the network. There is a per-interaction variational
parameter of dimension K ×K for each node pair—φab—representing the posterior approximation
of which pair of communities are active in determining the link or non-link. The coordinate ascent
update for φab is

φkkab ∝ exp
{
Eq[log πa,k] + Eq[log πb,k] + yabµk − rab(exp{µk + σ2

β/2} − 1)
}

(11)

φijab ∝ exp
{
Eq[log πa,i] + Eq[log πb,j ]

}
, i 6= j, (12)

where rab is defined in Eq. 8. We present the full stochastic variational inference in Algorithm 1.

3.5 Initialization and convergence

We initialize the community memberships γ using approximate posterior memberships from the
variational inference algorithm for the MMSB [9]. We initialized popularities λ to the logarithm of
the normalized node degrees added to a small random offset, and initialized the strengths µ to zero.
We measure convergence by computing the link prediction accuracy on a validation set with 1% of
the networks links, and an equal number of non-links. The algorithm stops either when the change
in log-likelihood on this validation set is less than 0.0001%, or if the log-likelihood decreases for
consecutive iterations.
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Figure 2: Network data sets. N is the number of nodes, d is the percent of node pairs that are links and P is
the mean perplexity over the links and nonlinks in the held-out test set.

DATA SET N d(%) PAMP PMMSB TYPE SOURCE

US AIR 712 1.7% 2.75± 0.04 3.41± 0.15 TRANSPORT [25]
POLITICAL BLOGS 1224 1.9% 2.97± 0.03 3.12± 0.01 HYPERLINK [1]
NETSCIENCE 1450 0.2% 2.73± 0.11 3.02± 0.19 COLLAB. [22]
RELATIVITY 4158 0.1% 3.69± 0.18 6.53± 0.37 COLLAB. [18]
HEP-TH 8638 0.05% 12.35± 0.17 23.06± 0.87 COLLAB. [18]
HEP-PH 11204 0.16% 2.75± 0.06 3.310± 0.15 COLLAB. [18]
ASTRO-PH 17903 0.11% 5.04± 0.02 5.28± 0.07 COLLAB. [18]
COND-MAT 36458 0.02% 10.82± 0.09 13.52± 0.21 COLLAB. [22]
BRIGHTKITE 56739 0.01% 10.98± 0.39 41.11± 0.89 SOCIAL [18]
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Figure 3: The AMP model outperforms the MMSB model of [9] in predictive accuracy on real networks. Both
models were fit using stochastic variational inference [11]. For the data sets shown, the number of communities
K was set to 100 and hyperparameters were set to the same values across data sets. The perplexity results are
based on five replications. A single replication is shown for the mean precision and mean recall.

4 Empirical study

We use the predictive approach to evaluating model fitness [8], comparing the predictive accuracy
of AMP (Algorithm 1) to the stochastic variational inference algorithm for the MMSB with link
sampling [9]. In all data sets, we found that AMP gave better fits to real-world networks. Our
networks range in size from 712 nodes to 56,739 nodes. Some networks are sparse, having as
little as 0.01% of all pairs as links, while others have up to 2% of all pairs as links. Our data sets
contain four types of networks: hyperlink, transportation, collaboration and social networks. We
implemented Algorithm 1 in 4,800 lines of C++ code. 3

Metrics. We used perplexity, mean precision and mean recall in our experiments to evaluate the
predictive accuracy of the algorithms. We computed the link prediction accuracy using a test set of
node pairs that are not observed during training. The test set consists of 10% of randomly selected
links and non-links from each data set. During training, these test set observations are treated as
zeros. We approximate the predictive distribution of a held-out node pair yab under the AMP using
posterior estimates θ̂, β̂ and π̂ as

p(yab|y) ≈
∑
za→b

∑
za←b

p(yab|za→b, za←b, θ̂, β̂)p(za→b|π̂a)p(za←b|π̂b). (13)

3Our software is available at https://github.com/premgopalan/sviamp.
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Figure 4: The AMP predicts significantly better than the MMSB [9] on 12 LFR benchmark networks [17].
Each plot shows 4 networks with increasing right-skewness in degree distribution. µ is the fraction of noisy
links between dissimilar nodes—nodes that share no communities. The precision is computed at 50 recommen-
dations for each node, and is averaged over all nodes in the network.

Perplexity is the exponential of the average predictive log likelihood of the held-out node pairs. For
mean precision and recall, we generate the top n pairs for each node ranked by the probability of
a link between them. The ranked list of pairs for each node includes nodes in the test set, as well
as nodes in the training set that were non-links. We compute precision-at-m, which measures the
fraction of the top m recommendations present in the test set; and we compute recall-at-m, which
captures the fraction of nodes in the test set present in the top m recommendations. We vary m from
10 to 100. We then obtain the mean precision and recall across all nodes. 4

Hyperparameters and constants. For the stochastic AMP algorithm, we set the “mini-batch” size
S = N/100, where N is the number of nodes in the network and we set the non-link sample size
m0 = 100. We set the number of communities K = 2 for the political blog network and K = 20
for the US air; for all other networks, K was set to 100. We set the hyperparameters σ2

0 = 1.0,
σ2
1 = 10.0 and µ0 = 0, fixed the variational variances at σθ = 0.1 and σβ = 0.5 and set the learning

parameters τ0 = 65536 and κ = 0.5. We set the Dirichlet hyperparameter α = 1
K for the AMP and

the MMSB.

Results on real networks. Figure 2 compares the AMP and the MMSB stochastic algorithms on a
number of real data sets. The AMP definitively outperforms the MMSB in predictive performance.
All hyperparameter settings were held fixed across data sets. The first four networks are small in
size, and were fit using the AMP model with a single community strength parameter. All other
networks were fit with the AMP model with K community strength parameters. As N increases,
the gap between the mean precision and mean recall performance of these algorithms appears to
increase. Without node popularities, MMSB is dependent entirely on node memberships and com-
munity strengths to predict links. Since K is held fixed, communities are likely to have more nodes
as N increases, making it increasingly difficult for the MMSB to predict links. For the small US air,
political blogs and netscience data sets, we obtained similar performance for the replication shown
in Figure 2. For the AMP the mean precision at 10 for US Air, political blogs and netscience were
0.087, 0.07, 0.092, respectively; for the MMSB the corresponding values were 0.007, 0.0, 0.063,
respectively.

Results on synthetic networks. We generated 12 LFR benchmark networks [17], each with 1000
nodes. Roughly 50% of the nodes were assigned to 4 overlapping communities, and the other 50%
were assigned to single communities. We set a community size range of [200, 500] and a mean node
degree of 10 with power-law exponent set to 2.0. Figure 4 shows that the MMSB performs poorly as
the skewness is increased, while the AMP performs significantly better in the presence of both noisy
links and right-skewness, both characteristics of real networks. The skewness in degree distributions
causes the community strength parameters of MMSB to overestimate or underestimate the linking
patterns within communities. The per-node popularities in the AMP can capture the heterogeneity
in node degrees, while learning the corrected community strengths.
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