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Abstract

We address the problem of estimating the ratio q
p where p is a density function

and q is another density, or, more generally an arbitrary function. Knowing or ap-
proximating this ratio is needed in various problems of inference and integration,
in particular, when one needs to average a function with respect to one probability
distribution, given a sample from another. It is often referred as importance sam-
pling in statistical inference and is also closely related to the problem of covariate
shift in transfer learning as well as to various MCMC methods. Our approach is
based on reformulating the problem of estimating the ratio as an inverse problem
in terms of an integral operator corresponding to a kernel, and thus reducing it
to an integral equation, known as the Fredholm problem of the first kind. This
formulation, combined with the techniques of regularization and kernel methods,
leads to a principled kernel-based framework for constructing algorithms and for
analyzing them theoretically. The resulting family of algorithms (FIRE, for Fred-
holm Inverse Regularized Estimator) is flexible, simple and easy to implement.
We provide detailed theoretical analysis including concentration bounds and con-
vergence rates for the Gaussian kernel for densities defined on Rd and smooth
d-dimensional sub-manifolds of the Euclidean space.
Model selection for unsupervised or semi-supervised inference is generally a dif-
ficult problem. Interestingly, it turns out that in the density ratio estimation set-
ting, when samples from both distributions are available, there are simple com-
pletely unsupervised methods for choosing parameters. We call this model se-
lection mechanism CD-CV for Cross-Density Cross-Validation. Finally, we show
encouraging experimental results including applications to classification within
the covariate shift framework.

1 Introduction

Density estimation is one of the best-studied and most useful problems in statistical inference. The
question is to estimate the probability density function p(x) from a sample x1, . . . , xn. There is a
rich literature on the subject (e.g., see the review [12]), particularly, dealing with a class of non-
parametric kernel estimators going back to the work of Parzen [22].

In this paper we address the related problem of estimating the ratio of two functions, q(x)
p(x) where

p is given by a sample and q(x) is either a known function or another probability density function
given by a sample. We note that estimating such ratio is necessary when one attempts to integrate a
function with respect to one density, given its values on a sample obtained from another distribution.
This is typical when the process generating the data is different from the averaging problem we wish
to address. To give a very simple practical example of such a situation, consider a cleaning robot
equipped with a dirt sensor. We would like to know how well the robot performs cleaning, however,
the probability density of the robot location p(x) depends on the program and is clearly not uniform.

1



To obtain the cleaning quality, we need to average the sensor readings with respect to the uniform
density over the floor rather than the location distribution, which requires estimating the inverse 1

p

(here q(x) it the constant function 1).

An important class of applications for density ratios relates to various Markov Chain Monte
Carlo (MCMC) integration techniques used in various applications, in particular, in many tasks
of Bayesian inference. It is often hard to sample directly from the desirable probability distribution
but it may be possible to construct an approximation which is easier to sample from. The class of
techniques related to the importance sampling (see, e.g., [17]) deals with this problem by using a
ratio of two densities (which is typically assumed to be known in that literature).

Recently there have been a significant amount of work on estimating the density ratio (also known as
te importance function) from sampled data, e.g., [9, 14, 11, 30, 4]. Many of these papers consider this
problem in the context of covariate shift assumption [26] or the so-called selection bias [38]. Our
Fredholm Inverse Regularized Estimator (FIRE) framework introduces a very general and flexible
approach to this problem which leads to more efficient algorithms design, provides very competitive
experimental results and makes possible theoretical analysis in terms of the sample complexity and
convergence rates.

We will provide a more detailed discussion of these and other related papers and connections to our
work in Section 2, where we also discuss how the Kernel Mean Matching algorithm [9, 11] can be
viewed within our framework.

The approach taken in our paper is based on reformulating the density ratio estimation as an inte-
gral equation, known as the Fredholm equation of the first kind (in the classical one-dimensional
case), and solving it using the tools of regularization and Reproducing Kernel Hilbert Spaces. That
allows us to develop simple and flexible algorithms for density ratio estimation within the popular
kernel learning framework. In addition the integral operator approach separates estimation and reg-
ularization problems, thus allowing us to address certain settings where the existing methods are
not applicable. The connection to the classical operator theory setting makes it easier to apply the
standard tools of spectral analysis to obtain theoretical results.

We will now briefly outline the main idea of this paper. We start with the following simple equality
underlying the importance sampling method:

Eq(h(x)) =
∫

h(x)q(x)dx =
∫

h(x)
q(x)
p(x)

p(x)dx = Ep

(
h(x)

q(x)
p(x)

)
(1)

By replacing the function h(x) with a kernel k(x, y), we obtain

Kp
q

p
(x) :=

∫
k(x, y)

q(y)
p(y)

p(y)dy =
∫

k(x, y)q(y)dy := Kq1(x). (2)

Thinking of the function q(x)
p(x) as an unknown quantity and assuming that the right hand side is known

this becomes a Fredholm integral equation. Note that the right-hand side can be estimated given a
sample from q while the operator on the left can be estimated using a sample from p.

To push this idea further, suppose kt(x, y) is a “local” kernel, (e.g., the Gaussian, kt(x, y) =
1

(2πt)d/2 e−
‖x−y‖2

2t ) such that
∫

Rd kt(x, y)dx = 1. When we use δ-kernels, like Gaussian, and f

satisfies some smoothness conditions, we have
∫

Rd kt(x, y)f(x)dx = f(y) + O(t) (see [33], Ch.
1). Thus we get another (approximate) integral equality:

Kt,p
q

p
(y) :=

∫
Rd

kt(x, y)
q(x)
p(x)

p(x)dx ≈ q(y). (3)

It becomes an integral equation for q(x)
p(x) , assuming that q is known or can be approximated.

We address these inverse problems by formulating them within the classical framework1 of
Tiknonov-Philips regularization with the penalty term corresponding to the norm of the function

1In fact our formulation is quite close to the original formulation of Tikhonov.
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in the Reproducing Kernel Hilbert Space H with kernel kH used in many machine learning algo-
rithms.

[Type I]:
q

p
≈ arg min

f∈H
‖Kpf−Kq1‖2L2,p

+λ‖f‖2H [Type II]:
q

p
≈ arg min

f∈H
‖Kt,pf−q‖2L2,p

+λ‖f‖2H

Importantly, given a sample x1, . . . , xn from p, the integral operator Kpf applied to a function f
can be approximated by the corresponding discrete sum Kpf(x) ≈ 1

n

∑
i f(xi)k(xi, x), while L2,p

norm is approximated by an average: ‖f‖2L2,p
≈ 1

n

∑
i f(xi)2. Of course, the same holds for a

sample from q.

Thus, we see that the Type I formulation is useful when q is a density and samples from both p and
q are available, while the Type II is useful, when the values of q (which does not have to be a density
function at all2) are known at the data points sampled from p.

Since all of these involve only function evaluations at the sample points, by an application of the
usual representer theorem for Reproducing Kernel Hilbert Spaces, both Type I and II formulations
lead to simple, explicit and easily implementable algorithms, representing the solution of the opti-
mization problem as linear combinations of the kernels over the points of the sample

∑
i αikH(xi, x)

(see Section 3). We call the resulting algorithms FIRE for Fredholm Inverse Regularized Estimator.

Some remarks would be useful at this point.
Remark 1: Other norms and loss functions. Norms and loss functions other that L2,p can also be
used in our setting as long as they can be approximated from a sample using function evaluations.

• Perhaps, the most interesting is the norm L2,q norm available in the Type I setting, when a
sample from the probability distribution q is available. In fact, given a sample from both p
and q we can use the combined empirical norm γ‖ · ‖L2,p

+ (1− γ)‖ · ‖L2,q
. Optimization

using those norms leads to some interesting looking kernel algorithms described in Sec-
tion 3. We note that the solution is still a linear combination of kernel functions centered
on the sample from p and can still be written explicitly.

• In the Type I formulation, if the kernels k(x, y) and kH(x, y) coincide, it is possible to
use the RKHS norm ‖ · ‖H instead of ‖ · ‖L2,p . This formulation (see Section 3) also
yields an explicit formula and is related to the Kernel Mean Matching algorithm [11] (see
the discussion in Section 2), although with a different optimization procedure. We note
that the solution in our framework has a natural out-of-sample extension, which becomes
important for proper parameter selection.

• Other norms/loss functions, e.g., L1,p, L1,q , ε-insensitive loss from the SVM regression,
etc., can also be used in our framework as long as they can be approximated from a sample
using function evaluations. We note that some of these may have advantages in terms of
the sparsity of the resulting solution. On the other hand, a standard advantage of using the
square norm is the ease of cross-validation with respect to the parameter λ.

Remark 2: Other regularization methods. Several regularization methods other than Tikhonov-
Philips regularization are available. We will briefly discuss the spectral cut-off regularization and its
potential advantages in Section 3. We note that other methods, such as early stopping (e.g., [36, 1])
can be used and may have computational advantages.

Remark 3. We note that an intermediate “Type 1.5” formulation is also available. Specifically, for
two ”δ-kernels” K and K ′, we have Kp

q
p ≈ K′q1, thus using two different kernels in the Type I

formulation
q

p
≈ arg min

f∈H
‖Kpf −K′q1‖2L2,p

+ λ‖f‖2H (4)

The ability to use kernels with different bandwidth for p and q may be potentially important in
practice, especially when the samples from p and q have very different cardinality. The resulting

2This could be important in various sampling procedures, for example, when the normalizing coefficients
are hard to estimate.
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algorithms for this setting are described in in Section 3. Of course, the previous two remarks apply
to this setting as well.

Since we are dealing with a classical inverse problem for integral operators, our formulation allows
for theoretical analysis using the methods of spectral theory. In Section 4 we prove concentration
and error bounds as well as convergence rates for our algorithms when data are sampled from a
distribution defined in Rd, a domain in Rd with boundary or a compact d-dimensional sub-manifold
of a Euclidean space RN for the case of the Gaussian kernel.

It is interesting to note that unlike the usual density estimation problem the width of the kernel
does not need to go to zero for convergence. However, it is necessary if we want a polynomial
convergence rate. This is related to the exponential decay of eigenvalues for the Gaussian kernel.

Finally, in Section 6, we introduce a unsupervised method, referred as CD-CV (for Cross-density
cross-validation), for model selection, and discuss the experimental results on several data sets com-
paring our method FIRE with the available alternatives, Kernel Mean Matching (KMM) [11] and
LSIF [14] as well as the base-line thresholded inverse kernel density estimator3 (TIKDE) and im-
portance sampling (when available).

We summarize the contributions of the paper as follows:

1. We provide a formulation of estimating the density ratio (importance function) as a clas-
sical inverse problem, known as the Fredholm equation, establishing a connections to the
methods of classical analysis. The underlying idea is to “linearize” the properties of the
density by studying an associated integral operator.

2. To solve the resulting inverse problems we apply regularization with an RKHS norm
penalty. This provides a flexible and principled framework, with a variety of different
norms and regularization techniques available. It separates the underlying inverse problem
from the necessary regularization and leads to a family of very simple and direct algorithms
within the kernel learning framework in machine learning. We call the resulting algorithms
FIRE for Fredholm Inverse Regularized Estimator.

3. Using the techniques of spectral analysis and concentration, we provide a detailed theoret-
ical analysis for the case of the Gaussian kernel, for Euclidean case as well as distributions
supported on a sub-manifold. We prove error bounds and as well as the convergence rates
(as far as we know, it is the first convergence rate analysis for density ratio estimation). We
also comment on other kernels and potential extensions of our analysis.

4. We also propose a completely unsupervised technique, CD-CV, for cross-validating the
parameters of our algorithm and demonstrate its usefulness, thus addressing in our setting
one of the most thorny issues in unsupervised/semi-supervised learning. We evaluate and
compare our methods on several different data sets and in various settings and demonstrate
strong performance and better computational efficiency compared to the alternatives.

5. Finally, our framework allows us to address several different settings related to a number
of problems in areas from covariate shift classification in transfer learning to importance
sampling in MCMC to geometry estimation and numerical integration. Some of these
connections are explored in this paper and some we hope to address in the future work.

2 Related work

The problem of density estimation has a long history in classical statistical literature and a rich
variety of methods are available [12]. However, as far as we know the problem of estimating the
inverse density or density ratio from a sample has not been studied extensively until quite recently.
Some of the related older work includes density estimation for inverse problems [8] and the literature
on deconvolution, e.g., [5].

In the last few years the problem of density ratio estimation has received significant attention due
in part to the increased interest in transfer learning [21] and, in particular to the form of transfer

3Obtained by dividing the standard kernel density estimator for q by a thresholded kernel density estimator
for p Interestingly, despite its simplicity it performs quite well in many settings.
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learning known as covariate shift [26]. To give a brief summary, given the feature space X and the
label space Y , two probability distributions p and q on X×Y satisfy the covariate assumption if for
all x, y, p(y|x) = q(y|x). It is easy to see that training a classifier to minimize the error for q, given
a sample from p requires estimating the ratio of the marginal distributions qX(x)

pX(x) . Some of the work
on covariate shift, ratio density estimation and other closely related settings includes [38, 4, 9, 14,
30, 11, 31, 13, 20]

The algorithm most closely related to our approach is Kernel Mean Matching (KMM) [11]. KMM
is based on the observation that Eq(Φ(x)) = Ep( q

pΦ(x)), where Φ is the feature map corresponding
to an RKHS H. It is rewritten as an optimization problem

q(x)
p(x)

= arg min
β∈L2,β(x)>0,Ep(β)=1

‖Eq(Φ(x))− Ep(β(x)Φ(x))‖H (5)

The quantity on the right can be estimated given a sample from p and a sample from q and the
minimization becomes a quadratic optimization problem over the values of β at the points sampled
from p. Writing down the feature map explicitly, i.e., recalling that Φ(x) = KH(x, ·), we see that
the equality Eq(Φ(x)) = Ep( q

pΦ(x)) is equivalent to the integral equation Eq. 2 considered as an
identity in the Hilbert space H. Thus the problem of KMM can be viewed within our setting Type I
(see the Remark 2 in the introduction), with a RKHS norm but a different optimization algorithm.

However, while the KMM optimization problem in Eq. 5 uses the RKHS norm, the weight function β
itself is not in the RKHS. Thus, unlike most other algorithms in the RKHS framework (in particular,
FIRE), the empirical optimization problem resulting from Eq. 5 does not have a natural out-of-
sample extension4.

Also, since there is no regularizing term, the problem is less stable (see Section 6 for some experi-
mental comparisons) and the theoretical analysis is harder (however, see [9] and the recent paper [37]
for some nice theoretical analysis of KMM in certain settings).

Another related recent algorithm is Least Squares Importance Sampling (LSIF) [14], which attempts
to estimate the density ratio by choosing a parametric linear family of functions and choosing a
function from this family to minimize the L2,p distance to the density ratio. A similar setting with
the Kullback-Leibler distance (KLIEP) was proposed in [31]. This has an advantage of a natural
out-of-sample extension property. We note that our method for unsupervised parameter selection in
Section 6 is related to their ideas. However, in our case the set of test functions does not need to
form a good basis since no approximation is required.

We note that our methods are closely related to a large body of work on kernel methods in machine
learning and statistical estimation (e.g., [28, 24, 23]). Many of these algorithms can be interpreted
as inverse problems, e.g., [6, 27] in the Tikhonov regularization or other regularization frameworks.
In particular, we note interesting methods for density estimation proposed in [18] and estimating the
support of density through spectral regularization in [7], as well as robust density estimation using
RKHS formulations [15] and conditional density [10].

We also note the connections of the methods in this paper to properties of density-dependent oper-
ators in classification and clustering [35, 25]. There are also connections to geometry and density-
dependent norms for semi-supervised learning, e.g., [3].

Finally, the setting in this paper is connected to the large literature on integral equations [16]. In
particular, we note [34], which analyzes the classical Fredholm problem using regularization for
noisy data.

4In particular, this becomes an issue for model selection, see Section 6.
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3 Settings and Algorithms

3.1 Some preliminaries

We start by introducing some objects and function spaces important for our development. As usual,
the space of square-integrable functions with respect to a measure ρ, is defined as follows:

L2,ρ =
{

f :
∫

Ω

|f(x)|2dρ < ∞
}

.

This is a Hilbert space with the inner product defined in the usual way by 〈f, g〉2,ρ =
∫
Ω

f(x)g(x)dρ.

Given a function of two variables k(x, y) (a kernel), we define the operator Kρ:

Kρf(y) :=
∫

Ω

k(x, y)f(x)dρ(x).

We will use the notation Kt,ρ to explicitly refer to the parameter of the kernel function kt(x, y),
when it is a δ-family.

If the function k(x, y) is symmetric and positive definite, then there is a corresponding Reproducing
Kernel Hilbert space (RKHS) H. We recall the key property of the kernel kH: for any f ∈ H,
〈f, kH(x, ·)〉H = f(x). The direct consequence of this is the Representer Theorem, which allows
us to write solutions to various optimization problems over H in terms of linear combinations of
kernels supported on sample points (see [28] for an in-depth discussion or the RKHS theory and the
issues related to learning).

It is important to note that in some of our algorithms the RKHS kernel kH will be different from the
kernel of the integral operator k.

Given a sample x1, . . . , xn from p, one can approximate the L2,p norm of a function5 f by ‖f‖22,p ≈
1
n

∑
i |f(xi)|2. Similarly, the integral operator Kpf(x) ≈ 1

n

∑
i k(xi, x)f(xi). These approximate

equalities can be made precise by using appropriate concentration inequalities.

3.2 The FIRE Algorithms

As discussed in the introduction, the starting point for our development is the integral equality

[Type I]: Kp
q

p
(x) =

∫
Ω

k(x, y)
q(y)
p(y)

p(y)dy = Kq1(x). (6)

Notice that in Type I, the kernel is not necessary to be in δ-family. For example, it could be linear
kernel. Thus, we omit the t in the kernel for the Type I case.

Moreover, if the kernel kt(x, y) is a Gaussian, which we will analyze in detail, or another δ-family
and for f sufficiently smooth Kt,qf(x) ≈ f(x)p(x) + o(1) and hence

[Type II]: Kt,p
q

p
(x) =

∫
Ω

kt(x, y)
q(y)
p(y)

p(y)dy = q(x) + o(1). (7)

In fact, for the Gaussian kernel, the o(1) term is of the order t. Since it is important that the kernel
kt is in the δ-family with bandwidth t, so we keep t in the notation in this case.

Assuming that either Kq1 or q are known (for simplicity we will refer to these settings as Type I
and Type II, respectively) these Eqs. 6,7 become integral equations for p

q , known as the Fredholm
equations of the first kind.

To address the problem of estimating p
q we need to obtain an approximation to the solution which (a)

can be obtained computationally from sampled data, (b) is stable with respect to sampling and other
perturbation of the input function6 and, preferably, (c) can be analyzed using the standard machinery
of functional analysis.

5f needs to be in a function class where point evaluations are defined.
6Especially in Eq. 7, where the identity has an error term depending on t.
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To provide a framework for solving these inverse problems we apply the classical techniques of
regularization combined with the RKHS norm popular in machine learning. In particular a simple
formulation of Eq.6 in terms of Tikhonov regularization with the L2,p norm is as follows:

[Type I]: f I
λ = arg min

f∈H
‖Kpf −Kq1‖22,p + λ‖f‖2H (8)

Here H is an appropriate Reproducing Kernel Hilbert Space. Similarly Eq. 7 can be written as

[Type II]: f II
λ = arg min

f∈H
‖Kt,pf − q‖22,p + λ‖f‖2H (9)

We will now discuss the empirical versions of these equations and the resulting algorithms in differ-
ent settings and for different norms.

3.3 Algorithms for the Type I setting.

Given an iid sample from p, zp = {x1, x2, . . . , xn} and an iid sample from q, zq =
{x′1, x′2, . . . , x′m} (we will denote the combined sample by z) we can approximate the integral op-
erators Kp and Kq by

Kzpf(x) =
1
n

∑
xi∈zp

k(xi, x)f(xi) and Kzqf(x) =
1
m

∑
x′i∈zq

k(x′i, x)f(x′i). (10)

Thus the empirical version of Eq. 8 becomes

f I
λ,z = arg min

f∈H

1
n

∑
xi∈zp

((Kzp
f)(xi)− (Kzq

1)(xi))2 + λ‖f‖2H (11)

We observe that the first term of the optimization problem involves only evaluations of the function
f at the points of the sample zp.

Thus, using the Representer Theorem and the standard matrix algebra manipulation we obtain the
following solution:

f I
λ,z(x) =

∑
xi∈zp

kH(xi, x)vi and v =
(
K2

p,pKH + nλI
)−1

Kp,pKp,q1zq
. (12)

where the kernel matrices are defined as follows: (Kp,p)ij = 1
nk(xi, xj), (KH)ij = kH(xi, xj) for

xi, xj ∈ zp and Kp,q is defined as (Kp,q)ij = 1
mk(xi, x

′
j) for xi ∈ zp and x′j ∈ zq.

To compute the whole regularization path for all λ’s, or computing the inverse for every λ, we can
use the following formula for v:

v = Q(Λ + nλI)−1Q−1Kp,pKp,q1zq
,

where K2
p,pKH = QΛQ−1 is a diagonalization7 of K2

p,pKH (i.e., Λ is diagonal).

When KH and Kp,p are obtained using the same kernel function k, i.e. 1
nKH = Kp,p, the expression

simplifies:

v =
1
n

(
K3

p,p + λI
)−1

Kp,pKp,q1zq .

In that case (or, more, generally, if they commute) the diagonalization is obtained by computing the
eigen-decomposition of Kp,p = QΛQT , where Q is an orthogonal matrix. Then the solution could
be computed using the following formula:

f I
λ,z(x) =

1
n

∑
xi∈zp

k(xi, x)vi and v = Q
(
Λ3 + λI

)−1
ΛQT Kp,q1zq

.

Similarly to many other algorithms based on the square loss function, this formulation allows us to
efficiently compute the solution for many values of the parameter λ simultaneously, which is very
useful for cross-validation.

7Strictly speaking, an arbitrary matrix can only be reduced to the Jordan canonical form, but an arbitrarily
small perturbation of any matrix can be diagonalized over the complex numbers.
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3.3.1 Algorithms for γL2,p + (1− γ)L2,q norm.

Depending on the setting, we may want to minimize the error of the estimate over the probability
distribution p, q or over some linear combination of these. A significant potential benefit of using a
linear combination is that both samples can be used at the same time in the loss function. First we
state the continuous version of the problem:

f *
λ = arg min

f∈H
γ‖Kpf −Kq1‖22,p + (1− γ)‖Kpf −Kq1‖22,q + λ‖f‖2H (13)

Given a sample from p, zp = {x1, x2, . . . , xn} and a sample from q, zq = {x′1, x′2, . . . , x′m} we
obtain an empirical version of the Eq. 13:

f∗λ,z(x) = arg min
f∈H

γ

n

∑
xi∈zp

(
(Kzp

f)(xi)− (Kzq
1)(xi)

)2+1− γ

m

∑
x′i∈zq

(
(Kzp

f)(x′i)− (Kzq
1)(x′i)

)2+λ‖f‖2H

Using the Representer Theorem we can derive:

f∗λ,z(x) =
∑

xi∈zp

vikH(xi, x) v = (K + nλI)−1
K11zq

where

K =
(

γ

n
(Kp,p)2 +

1− γ

m
KT

q,pKq,p

)
KH and K1 =

(
γ

n
Kp,pKp,q +

1− γ

m
KT

q,pKq,q

)
Here (Kp,p)ij = 1

nk(xi, xj), (KH)ij = kH(xi, xj) for xi, xj ∈ zp. Kp,q and Kq,p are defined as
(Kp,q)ij = 1

mk(xi, x
′
j) and (Kq,p)ji = 1

nk(x′j , xi) for xi ∈ zp,x′j ∈ zq.

We see that despite the loss function combining both samples, the solution is still a summation of
kernels over the points in the sample from p.

3.3.2 Algorithms for the RKHS norm.

In addition to using the RKHS norm for regularization norm, we can also use it as a loss function:

f *
λ = arg min

f∈H
‖Kpf −Kq1‖2H′ + λ‖f‖2H (14)

Here the Hilbert space H′ must correspond to the convolution kernel k and can potentially be dif-
ferent from the space H used for regularization. Note that this formulation is only applicable in the
Type I setting since it requires the function q to belong to the RKHS H′.
Given two samples zp,zq, it is straightforward to write down the empirical version of this problem,
leading to the following formula:

f∗λ,z(x) =
∑

xi∈zp

vikH(xi, x) v = (Kp,pKH + nλI)−1
Kp,q1zq

. (15)

The result is somewhat similar to our Type I formulation with the L2,p norm. We note the connection
between this formulation of using the RKHS norm as a loss function and the KMM algorithm [11].
The Eq. 15 can be viewed as a regularized version of KMM (with a different optimization proce-
dure), when the kernels K and KH are the same.

Interestingly a somewhat similar formula arises in [14] as unconstrained LSIF, with a different func-
tional basis (kernels centered at the points of the sample zq) and in a setting not directly related to
RKHS inference.

3.4 Algorithms for the Type II and 1.5 settings.

In the Type II setting we assume that we have a sample z = {x1, x2, . . . , xn} drawn from p and that
we know the function values q(xi) at the points of the sample.

Replacing the norm and the integral operator with their empirical versions, we obtain the following
optimization problem:

f II
λ,z = arg min

f∈H

1
n

∑
xi∈z

(Kt,zf(xi)− q(xi))2 + λ‖f‖2H (16)
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Recall that Kt,z is the empirical version of Kt,p defined by

Kt,zf(x) =
1
n

∑
xi∈z

kt(xi, x)f(xi)

As before, using the Representer Theorem we obtain an analytical formula for the solution:

f II
λ,z(x) =

∑
xi∈z

kH(xi, x)vi where v =
(
K2KH + nλI

)−1
Kq. (17)

where the kernel matrix K is defined by Kij = 1
nkt(xi, xj), (KH)ij = kH(xi, xj) and qi = q(xi).

3.4.1 Type 1.5: The setting and the algorithm.

This case (see Eq. 4) is intermediate between Type I and Type II. The setting is the same as in Type
I, in that we are given two samples zp from p and zq from q. But similarly to Type II, we use the
fact that Kp

q
p ≈ K′q1 when Kp and K′q are different δ-function-like kernels (e.g., two Gaussians of

different bandwidth). The algorithm is similar to that for Type I with the difference that the kernel
matrix K ′

q,q is computed using the kernel k′(x, y): (K ′
q,q)ij = 1

mk′(xi, x
′
j).

f 1.5
λ,z(x) =

∑
xi∈zp

kH(xi, x)vi and v =
(
K2

p,pKH + nλI
)−1

Kp,pK
′
q,q1zq

.

3.5 Spectral Cutoff Regularization

In this section we briefly discuss an alternative form of regularization, based on thresholding the
spectrum of the kernel matrix. It also leads to simple algorithms comparable to those for Tikhonov
regularization and may have certain computational advantages.

SinceKp is a compact self-adjoint operator on L2,p, its eigenfunctions {u0, u1, . . . } form a complete
orthogonal basis for L2,p. An alternative method of regularization is the so-called spectral cutoff
where the problem is restricted to the subspace spanned by the top few eigenfunctions of Kp Thus
the regularization problems become

f I,spec
λ = arg min

f∈Hk

‖Kpf −Kq1‖22,p

f II,spec
λ = arg min

f∈Ht,k

‖Kt,pf − q‖22,p

where Hk and Ht,k is the finite dimensional subspace of L2,p spanned by the eigenvectors of Kp

and Kt,p corresponding to the k largest eigenvalues.

Without going into detail, it can be seen that the corresponding empirical optimization problems are

f I,spec
λ,z = arg min

f∈Hk,z

1
n

∑
xi∈zp

(Kzp
f(xi)−Kt,zq

1(xi))2 (18)

f II,spec
λ,z = arg min

f∈Ht,k,z

1
n

∑
xi∈z

(Kt,zp
f(xi)− q(xi))2 (19)

where the span of eigenvectors of the kernel matrix K is taken instead of the eigenfunctions of Kp

or Kt,p.

For this algorithm, we assume KH and K1 use the same kernel. Then the solution to the empirical
regularization problems given in Eqs. 18,19 are respectively

f I,spec
λ,z (x) =

1
n

∑
xi∈zp

k(xi, x)vi

v = QkΛ−2
k QT

k K21zq

(20)
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f II,spec
λ,z (x) =

1
n

∑
xi∈z

kt(xi, x)vi

v = QkΛ−2
k QT

k q

(21)

where K1 = QΛQT is the eigendecomposition of K1 with orthogonal matrix Q and diagonal matrix
Λ, and Qk and Λk is the submatrices of Q and Λ corresponding to the k largest eigenvalues of the
kernel matrix K1 and the remaining objects are defined in the previous subsection.

We note that spectral regularization can be faster computationally as it requires to compute only
the top few eigenvectors of the kernel matrix. There are several efficient algorithms for computing
eigen-decomposition when only the first k eigenvalues are needed. Thus spectral regularization can
be more computationally efficient than the Tikhonov regularization which potentially requires a full
eigen-decomposition or matrix multiplication.

3.6 Comparison of type I and type II settings.

While at first glance the type II, setting may appear to be more restrictive than type I, there are a
number of important differences in their applicability.

1. In Type II setting q does not have to be a density function (i.e., non-negative and integrate
to one).

2. Eq. 11 of the Type I setting cannot be easily solved in the absence of a sample zq from
q, since estimating Kq requires either sampling from q (if it is a density) or estimating the
integral in some other way, which may be difficult in high dimension but perhaps of interest
in certain low-dimensional application domains.

3. There are a number of problems (e.g., many problems involving MCMC) where q(x) is
known explicitly (possibly up to a multiplicative constant), while sampling from q is ex-
pensive or even impossible computationally [19].

4. Unlike Eq. 8, Eq. 9 has an error term depending on the kernel, which is essentially the
difference between the kernel and the δ-function. For example, in the important case of the
Gaussian kernel, the error is of the order O(t), where t is the variance.

5. While a number of different norms are available in the Type I setting, only the L2,p norm
is available for Type II.

4 Theoretical analysis: bounds and convergence rates for Gaussian Kernels

In this section, we state our main results on bounds and convergence rates for our algorithm based
on Tikhonov regularization with a Gaussian kernel. We consider both Type I and Type II settings
for the Euclidean and manifold cases and make a remark on the Euclidean domains with boundary.

To simplify the theoretical development the integral operator and the RKHS H will correspond to
the same Gaussian kernel kt(x, y). Most of the proofs will be given in the next Section 5. We note
that two Gaussian kernels with different bandwidth parameters can be analyzed using only minor
modifications to our arguments.

4.1 Assumptions

Before proceeding to the main results, we will state the assumptions on the density functions p and
q and the basic setting for our theorems:

1. The set Ω where the density function p is defined could be one of the following: (1) the
whole Rd; (2) a compact smooth Riemannian sub-manifold M of d-dimension in Rn. In
both cases, we need p(x) < Γ and q(x) < Γ for any x ∈ Ω. We will also make some
remarks about a compact domain in Rd with boundary.

2. We also require q
p , q

p2 ∈ W 2
2 (Ω), where W 2

2 (Ω) is the Sobolev space of functions on Ω
(e.g., [32]). The properties of W 2

2 (Ω) we need will be discussed later in the proof.
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It will be important for us that H is isometric to L2,p under the map K1/2
p : L2,p → H, that is,

‖f‖H = ‖K−1/2
p f‖L2,p

for any f ∈ H. Here the integral operator Kp uses the RKHS kernel
corresponding to H.

4.2 Main Theorems

4.2.1 Type I setting

We will provide theoretical results for our setting Type I, where both the operator and the regular-

ization kernel are Gaussian kt(x, y) = 1
(2πt)d/2 e−

‖x−y‖2
2t with the same bandwidth parameter t.

Theorem 1. Let p and q be two density functions on Ω and q be another density over Ω satisfying
the assumption in Sec. 4.1. Given n points, zp = {x1, x2, . . . , xn}, i.i.d. sampled from p and m
points, zq = {x′1, x′2, . . . , x′m}, i.i.d. sampled from q, and for small enough t, for the solution to the
optimization problem in (11), with confidence at least 1− 2e−τ , we have

(1) If the domain Ω is Rd,∥∥∥∥f I
λ,z −

q

p

∥∥∥∥
2,p

≤C1t + C2λ
1
2 (Approximating Error)

+ C3

√
τ

λtd/2

(
1√
m

+
1

λ1/6
√

n

)
(Sampling Error),

(22)

where C1, C2, C3 are constants independent of t, λ.

(2) If the domain Ω is a compact manifold without boundary of d dimension, for any 1 < ε < 1,∥∥∥∥f I
λ,z −

q

p

∥∥∥∥
2,p

≤C1t
1−ε + C2λ

1
2 (Approximating Error)

+ C3

√
τ

λtd/2

(
1√
m

+
1

λ1/6
√

n

)
(Sampling Error),

(23)

where C1, C2, C3 are constants independent of t, λ.

Proof. See Section 5.

As a consequence we obtain the following corollary establishing the convergence rates:

Corollary 2. Assuming m > λ1/3n, with confidence at least 1− 2e−τ , we have the following:

(1) If Ω = Rd, ∥∥∥∥f I
λ,z −

q

p

∥∥∥∥2

2,p

= O
(√

τn−
1

3.5s+d/2

)
(2) If Ω is a d-dimensional sub-manifold of a Euclidean space,∥∥∥∥f I

λ,z −
q

p

∥∥∥∥2

2,p

= O
(√

τn−
1

3.5+d/2

)

Proof. For the Euclidean space, set t = n
− 1

10.5
3 s+d , λ = n

− s
10.5
3 s+d and apply Theorem 1 (Eq. 22

for the Euclidean case). For the sub-manifold case set t = n−
1

7+d , λ = n−
2

7+d .

4.2.2 Type II setting

In this section we provide an analysis for the Type II setting and also make a remark about the error
analysis for the compact domains in Rd.

Recall that in Type II setting we have a set of points sampled from p and assume that the values of
q on those points are known. Note, that q does not have to be a density function.
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Theorem 3. Let p be a density function on Ω and q be a function satisfying the assumptions in
Sec. 4.1. Given n points z = {x1, x2, . . . , xn} sampled i.i.d. from p, and for sufficiently small t, for
the solution to the optimization problem in (16), with confidence at least 1− 2e−τ , we have

(1) If the domain Ω is Rd,∥∥∥∥f II
λ,z −

q

p

∥∥∥∥
2,p

≤C1t + C2λ
1
2 + C3λ

− 1
3 ‖Kt,q1− q‖2,p + C4

√
τ

λ3/2td/2
√

n
, (24)

where C1, C2, C3, C4 are constants independent of t, λ. Moreover, ‖Kt,q1− q‖2,p = O(t).

(2) If Ω is a d-dimensional sub-manifold of a Euclidean space, for any 1 < ε < 1,∥∥∥∥f II
λ,z −

q

p

∥∥∥∥
2,p

≤C1t
1−ε + C2λ

1/2 + C3λ
− 1

3 ‖Kt,q1− q‖2,p + C4

√
τ

λ3/2td/2
√

n
, (25)

where C1, C2, C3, C4 are constants independent of t, λ. Moreover, ‖Kt,q1− q‖2,p = O(t1−ε) for
any ε > 0.

Remark. It can be shown that if Ω is a compact subset with sufficiently smooth boundary in Rd, we
have the same bound with (1) except for ‖Kt,q1− q‖2,p = O(t

1
4−ε) for any any ε > 0.

As before, we obtain the rates as a corollary:

Corollary 4. With confidence at least 1− 2e−τ , we have:

(1) If Ω = Rd, ∥∥∥∥f II
λ,z −

q

p

∥∥∥∥2

2,p

= O

(√
τn

− 1
4+ 5

6 d

)

(2) If Ω is a d-dimensional sub-manifold of a Euclidean space, than for any 0 < ε < 1∥∥∥∥f II
λ,z −

q

p

∥∥∥∥2

2,p

= O

(√
τn

− 1−ε

4−4ε+ 5
6 d

)

Proof. For the case of Rd, set t = n−
1

4.8+d , λ = n
− 1

4+ 5
6 d . For case of sub-manifold case, set

t = n−
1−ε

4.8−4.8ε+d , λ = n
− 1−ε

4−4ε+ 5
6 d . Apply Theorem 3.

5 Proofs of Theorems

In this section, we provide a proof for the our main Theorem 1 for setting I. The proof for the
Theorem 3 for the setting type II is along similar lines and can be found in the appendix.

5.1 Basics about RKHS

For any probability measure ρ, Kt,ρ is a self-adjoint operator. Thus its eigenfunctions
{u0,t, u1,t, . . . } form a complete orthogonal basis for L2,ρ. Denote the eigenvalues of Kt,ρ by
{σ0,t, σ1,t, . . . }. The norm of Kt,ρ, ‖Kt,ρ‖L2,ρ→L2,ρ

≤ maxi σi,t < c for a constant c. We know
that Ht is isometric to L2,ρ under the map K1/2

t,ρ : L2,ρ → Ht, i.e. ‖f‖Ht = ‖K−1/2
t,ρ f‖L2,ρ for

any f ∈ Ht, and this is the definition we use for the norm ‖ · ‖Ht
of Ht. This also implies that

‖K−1/2
t,ρ f‖L2,ρ

< ∞ for any f ∈ Ht. And Kt,ρ is defined using the spectrum of Kt,ρ,

Kt,ρf =
∑

i

σi,ρ〈f, ui,t〉ui,t

12



5.2 Proof of Theorem 1

Proof. Recall the definition of f I
λ and f I

λ,z in Eq. 8 and Eq. 11. By the triangle inequality, we have∥∥∥∥q

p
− f I

λ,z

∥∥∥∥
2,p

≤
∥∥∥∥q

p
− f I

λ

∥∥∥∥
2,p

+
∥∥f I

λ − f I
λ,z

∥∥
2,p

.

=(Approximation Error) + (Sampling Error)
(26)

The approximation error
∥∥∥f I

λ −
q
p

∥∥∥
2,p

is a measure of the distance between q
p and the optimal

approximation given by algorithm (8) given infinite number of data. The sampling error term∥∥∥f I
λ − f I

λ,z

∥∥∥
2,p

the difference between f I
λ and f I

λ,z , depending on the data points.

As typical in these types of estimates our proof consists of two parts: bounding the approximating
error,

∥∥∥f I
λ −

q
p

∥∥∥
2,p

in Lemma 8 and providing a concentration bound for
∥∥∥f I

λ,z − f I
λ

∥∥∥
2,p

in Lemma

9. The theorem follows immediately by putting these two results together.

5.2.1 Bound for Approximation Error

First of all, let us present three lemmas that are useful for bounding the approximation error.
Lemma 5. Let λ > 0. If function f ∈ W 2

s (Rd) and p(x) > 0 for any x ∈ Rd, then

arg min
g∈L2,p

(∥∥∥f −K1/2
t,p g

∥∥∥2

2,p
+ λ‖g‖22,p

)
≤ D1‖f‖2W 2

s
ts + λD2 ‖f‖22 . (27)

for constants D1, D2.

Proof. See Appendix A.

Lemma 6. Let λ > 0. If function f ∈ W 2
2 (M) defined on a compact Riemann sub-manifold of

d-dimension in a Euclidean space, then

arg min
g∈L2,p

(∥∥∥f −K1/2
t,p g

∥∥∥2

2,p
+ λ‖g‖22,p

)
≤ D1‖f‖2W 2

2
t2 + λD2 ‖f‖22,p . (28)

for constants D1, D2.

Proof. See Appendix B

Lemma 7. Suppose p are a density function of probability measures of the domain Ω and satisfying
the assumptions we gave in section 4.1. For any f ∈ W 2

2 (Ω), we have the following: (1) When Ω is
Rd and f ∈ W 2

2 (R2), we have
‖Ktf − f‖2,p = O(t)

(2) When Ω is a manifold M without boundary of d dimension and f ∈ W 2
2 (M), we have

‖Ktf − f‖2,p = O(t1−ε)

for any 0 < ε < 1.

Proof. See Appendix C.

Now we can present the lemma that gives the bound of the approximation error in the following
lemma.
Lemma 8. Let p, q be two density functions of probability measure over a domain X satisfying
the assumptions in 4.1. The solution to the optimization problem in (8), f I

λ, satisfies the following
inequality,

(1) when the domain X is Rd, ∥∥∥∥f I
λ −

q

p

∥∥∥∥
2,p

≤ C1t + C2λ
1/2
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for constants C1, C2 which are independent of λ and t.

(2) when the domain X is a compact Riemannian sub-manifold M of d dimension in RN ,∥∥∥∥f I
λ −

q

p

∥∥∥∥
2,p

≤ C1t
1−ε + C2λ

1/2

for any 1 < ε < 1, and constants C1, C2 which are independent of λ and t.

Proof. Recall the equation (8). By functional calculus, we have analytical formula for f I
λ as follows,

f I
λ =

∑
i

σ2
i,t

σ3
i,t + λ

〈Kt,q1, ui,t〉2ui,t =
(
K3

t,p + λI
)−1K2

t,pKt,q1 =
(
K3

t,p + λI
)−1K3

t,p

q

p
.

The last equation is because

Kt,q1 = Kt,p
q

p
.

Thus the approximating error is∥∥∥∥f I
λ −

q

p

∥∥∥∥
2,p

=
∥∥∥∥(K3

t,p + λI
)−1K3

t,p

q

p
− q

p

∥∥∥∥
2,p

(29)

Notice that
(
K3

t,p + λI
)−1K3

t,p
q
p in (29) can also be rewritten as

(
K3

t,p + λI
)−1K3

t,p

q

p
= K3/2

t,p g∗, and g∗ = arg min
g∈L2,p

∥∥∥∥q

p
−K3/2

t,p g

∥∥∥∥2

2,p

+ λ‖g‖22,p

Thus, ∥∥∥∥(K3
t,p + λI

)−1K3
t,p

q

p
− q

p

∥∥∥∥2

2,p

≤ min
g∈L2,p

∥∥∥∥q

p
−K3/2

t,p g

∥∥∥∥2

2,p

+ λ‖g‖22,p (30)

The minimum of the above optimization problem can always be bounded by any specific g ∈ L2,p.
And we will expend the above formula such that we can take advantages of Lemma 5, 6 and 7. To
this end, we define an map

T (f, λ) = arg min
g∈L2,p

∥∥∥f −K1/2
t,p g

∥∥∥2

2,p
+ λ‖g‖22,p := g∗

By functional calculus, it is not hard to see that K1/2
t,p g∗ = (Kt,p + λI)−1Kt,pf . Now let ĝ =

T
(

q
p2 , λ

)
. Now we could expend (30),

min
g∈L2,p

∥∥∥∥q

p
−K3/2

t,p g

∥∥∥∥2

2,p

+ λ‖g‖22,p ≤
∥∥∥∥q

p
−K3/2

t,p ĝ

∥∥∥∥2

2,p

+ λ‖ĝ‖22,p

=
∥∥∥∥q

p
−Kt

q

p
+Kt,p

q

p2
−Kt,p

(
K1/2

t,p ĝ
)∥∥∥∥2

2,p

+ λ‖ĝ‖22,p

By inequality (a + b)2 ≤ 2(a2 + b2), we have

min
g∈L2,p

∥∥∥∥q

p
−K3/2

t,p g

∥∥∥∥2

2,p

+ λ‖g‖22,p

≤2
∥∥∥∥q

p
−Kt

q

p

∥∥∥∥2

2,p

+ 2

(∥∥∥∥Kt,p

(
q

p2
−K1/2

t,p ĝ

)∥∥∥∥2

2,p

+ λ‖ĝ‖22,p

)

≤2
∥∥∥∥q

p
−Kt

q

p

∥∥∥∥2

2,p

+ 2c

(∥∥∥∥ q

p2
−K1/2

t,p ĝ

∥∥∥∥2

2,p

+
λ

c
‖ĝ‖22,p

)
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The last inequality is because ‖Kt,p‖L2,p→L2,p
< c for constant c > 1. Note that we assume q

p and
q
p2 are in W 2

2 (Ω). Thus, the first term could be bounded using Lemma 7. For density over Rd,

2
∥∥∥∥q

p
−Kt

q

p

∥∥∥∥
2,p

≤ Lt,

and for manifold case, we have

2
∥∥∥∥q

p
−Kt

q

p

∥∥∥∥
2,p

≤ Lt1−ε.

for some constant L > 0.

Now we can apply Lemma 5 and 6 to get the bounds for the second term. By Lemma 5, for the
densities p, q over Rd, we have∥∥∥∥ q

p2
−K1/2

t,p ĝ

∥∥∥∥2

2,p

+
λ

c
‖ĝ‖22,p = min

g∈L2,p

∥∥∥∥ q

p2
−K1/2

t,p g

∥∥∥∥2

2,p

+
λ

c
‖g‖22,p ≤ D1

∥∥∥∥ q

p2

∥∥∥∥2

W 2
2

t2+D2
λ

c

∥∥∥∥ q

p2

∥∥∥∥2

2,p

Recall (29), we have∥∥∥∥f I
λ −

q

p

∥∥∥∥
2,p

≤

√√√√L2t2 + 2c

(
D1

∥∥∥∥ q

p2

∥∥∥∥2

W 2
2

t2 + D2
λ

c

∥∥∥∥ q

p2

∥∥∥∥2

2,p

)
≤ C1t + C2λ

1/2 (31)

where C1 =
√

L2 + 2cD1

∥∥∥ q
p2

∥∥∥2

W 2
s

, C2 =
√

2D2

∥∥∥ q
p2

∥∥∥2

2,p
.

Applying Lemma 6, we will have the result for manifold case,∥∥∥∥f I
λ −

q

p

∥∥∥∥
2,p

≤

√√√√L2t2−2ε + 2c

(
D1

∥∥∥∥ q

p2

∥∥∥∥2

W 2
2

t2 + D2
λ

c

∥∥∥∥ q

p2

∥∥∥∥2

2,p

)
≤C1t

1−ε + C2λ
1/2

(32)

where C1 =
√

L2 + 2cD1

∥∥∥ q
p2

∥∥∥2

W 2
2

, C2 =
√

2D2

∥∥∥ q
p2

∥∥∥2

2,p
.

5.2.2 Bound for Sampling Error

In the next lemma, we will give concentration of the sampling error, ‖f I
λ − f I

λ,z‖2,p.

Lemma 9. Let p be a density of a probability measure over a domain X and q another density
function. They satisfy the assumptions in 4.1. Consider f I

λ and f I
λ,z defined in (8) and (11), with

confidence at least 1− 2e−τ , we have∥∥f I
λ − f I

λ,z

∥∥
2,p

≤ C3

(
κt
√

τ

λ
√

m
+

kt
√

τ

λ7/6
√

n

)
where κt = supx∈Ω kt(x, x) = 1

(2πt)d/2

Proof. Recall that,
f I

λ = arg min
f∈Ht

‖Kt,pf −Kt,q1‖22,p + λ‖f‖2Ht

and
f I

λ,z = arg min
f∈Ht,z

1
n

∑
xp

i∈zp

(
(Kzp

f)(xp
i )− (Kzq

1)(xp
i )
)2 + λ‖f‖2Ht

Using functional calculus, we will get the explicit formula for f I
λ and f I

λ,z as follows,

f I
λ =

(
K3

p + λI
)−1K2

pKq1
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and
f I

λ,z =
(
K3

zp
+ λI

)−1

K2
zp
Kzq

1.

Then the bound for sampling error is to bound the above two objects. Let f̃ =(
K3

zp
+ λI

)−1

K2
pKq1. We have f I

λ − f I
λ,z = f I

λ − f̃ + f̃ − f I
λ,z . For f I

λ − f̃ , using the fact

that
(
K3

p + λI
)
f I

λ = K2
pKq1, we have

f I
λ − f̃

=f I
λ −

(
K3

zp
+ λI

)−1 (
K3

p + λI
)
f I

λ

=
(
K3

zp
+ λI

)−1 (
K3

zp
−K3

p

)
f I
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Notice that we have K3
zp
− K3

p and K2
zp
Kzq − K2

pKq in the identity we get. For these two objects,
it is not hard to verify the following identities,
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(
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)
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Thus, in these two identities, the only two random variables areKzp −Kp andKzq −Kq. By results
about concentration of Kzp and Kzq , we have with probability 1− 2e−τ ,

‖Kzp
−Kp‖H→H ≤ κt

√
τ√

n
,
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√
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(33)

And we know that for a large enough constant c which is independent of t and λ,

‖Kp‖H→H < c, ‖Kq‖H→H < c,

∥∥∥∥(K3
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Notice that
∥∥∥(Kzp

−Kp

)2∥∥∥
H
≤
∥∥Kzp

−Kp

∥∥2

H and
∥∥∥(Kzp
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≤
∥∥Kzp

−Kp

∥∥3

H, both

of this could be of smaller order compared with
∥∥Kzp

−Kp

∥∥
H. For simplicity we hide the term

including them in the final bound without changing the dominant order. We could also hide the
terms with the product of any two the random variables in Eq. 38, which is of prior order compared
to the term with only one random variable. Now let us put everything together,
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2,p

, 1
)

.

6 Experiments

In this section we explore the empirical performance of our methods under various settings. We
will primarily concentrate on our setting Type II and use the same Gaussian kernel for the integral
operator and the regularization term to simplify model selection.

We start by proposing an unsupervised technique for parameter selection (CD-CV for Cross-Density
Cross-Validation) based on a natural performance measure unique to our setting and briefly describe
the data sets and the re-sampling procedures we use. We proceed to evaluate our method on several
datasets, including simulated examples and real-world data sets.

6.1 Experimental Setting and Model Selection

The setting. In our experiments, we have a set of a data set Xp = {xp
i , i = 1, 2, . . . , n} and another

set of instances Xq = {xq
j , j = 1, 2, . . . ,m}. The goal is to estimate q

p under the assumption that
Xp is sampled from p and Xq is sampled from q.

We note that our algorithms typically has two parameters, which need to be selected, the kernel width
t and the regularization parameter λ. In general choosing parameters in a unsupervised or semi-
supervised setting is a hard problem as it may be difficult to validate the resulting classifier/estimator.
However, certain features of our setting allow us to construct an adequate unsupervised proxy for
the performance of the algorithm. Now we construct a performance measure for the quality of the
estimator.

Performance Measures and CD-CV Model Selection. We describe a set of performance measures
to use for parameter selection.

For a given function u, we have the following importance sampling equality (Eq. 1):

Eq(u(x)) = Ep

(
u(x)

q(x)
p(x)

)
.

If f(x) is an approximation of the true ratio q
p , using the samples from Xp and Xq respectively, we

will have the following approximation to the above equation:

1
n

n∑
i=1

u(xp
i )f(xp

i ) ≈
1
m

m∑
j=1

u(xq
j).

Therefore, after obtaining an estimate f of the ratio, we can validate it by using a set of test functions
U = {u1, u2, . . . , uF } using the following performance measure:

J(f ;Xp, Xq, U) =
1
F

F∑
l=1

 n∑
i=1

ul(x
p
i )f(xp

i )−
m∑

j=1

ul(x
q
j)

2

(34)

17



where U = {u1, u2, . . . , uF } is a collection of function chosen as criterion. Using this performance
measure allows various cross-validation procedures to be sued for parameter selection.

We note that this way of measuring the error is related to the LSIF [14] and KLIEP [31], algorithms.
However, there a similar measure is used to construct an approximation to the ratio fracqp using
functions u1, . . . , uF as a basis. In our setting, to choose parameters, we can use validations sets
(such as linear functions) which are poorly suited as a basis for approximating the density ratio.

Choice of validation function sets for parameter selection. In principle, any set of (sufficiently
well-behaved) functions can be used as a validation set. From a practical point of view we would
like functions to be simple to compute and readily available for different data sets.

In the our experiments, we will use the following two families of functions for parameter tuning:

(1) Sets of random linear functions u(x) = βT x where β ∼ N(0, Id).
(2) Sets of random half-space indicator functions, u(x) = 1βT x>0 where β ∼ N(0, Id).

Remark 1: We have also tried (a) coordinates functions, (b) random combination of kernel func-
tions, and (c) random combination of kernel functions with thresholding. In our experience the
coordinate functions are not rich enough for adequate parameter tuning. On the other hand, using
the kernel functions significantly increases the complexity of the procedure (due to the necessity of
choosing the kernel width and other parameters) without increasing the performance significantly.

Remark 2: Note that for linear functions, the cardinality of the set should not exceed the dimension
of the space due to linear dependence.

Remark 3: It appears that linear functions work well for regression tasks, while half-spaces are
well-suited for classification.

Procedures for parameter selection.

We optimize the performance using cross-validation by splitting the data set in two parts Xp,train

and Xq,train used for training and Xp,cv and Xq,cv used for validation, and repeating this process
five times to find the optimal values of parameters8.

For the two parameters which need to be tuned, the kernel width t and the regularization parameter
λ, we specify a parameter grid as follows. The range for kernel width t is (t0, 2t0, . . . , 29t0), where
t0 is the average distance of the 10 nearest neighbors, and regularization parameter λ is (1e−5, 1e−
6, . . . , 1e− 10).

6.2 Data sets and Resampling

In our experiments, several data sets are considered: Bank8FM, CPUsmall and Kin8nm for regres-
sion; and USPS and 20 news groups for classification.

For each data set, we assume they are i.i.d. sampled from a distribution denoted by p. We draw
the first 500 or 1000 points from the original data set as Xp. To obtain Xq, we apply a resampling
scheme on the remaining points of the original data set. Two ways of resampling, using the features
of the data and using the label information, are used (along the lines similar to those proposed in [9]).

Specifically, given a set of data points with labels {(x1, y1), (x2, y2), . . . , (xn, yn)} we resample as
follows:

• Resampling using feature information (labels yi are not used). We subsample the data
points so that the probability Pi of selecting the instance i, is defined by the following
(sigmoid) function:

Pi =
e(a〈xi,e1〉−b)/σv

1 + e(a〈xi,e1〉−b)/σv

where a, b are the resampling parameters, e1 is the first principal component, and σv is
the standard deviation of the projection to e1. Note that in this resampling scheme, the

8We note that this procedure cannot be used with KMM as it has no out-of-sample extension. Therefore in
subsection 6.3 we do not compare our method with KMM since there is no obvious way to extend the results
to the validation data set.
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probability of taking one point is only conditioned on the feature information xi. This
resampling method will be denoted by PCA(a, b).

• Resampling using label information. The probability of selecting the i’th instance, de-
noted by Pi, is defined by

Pi =
{

1 y1 ∈ Lq

0 Otherwise.

where yi ∈ L = {1, 2, . . . , k} and Lq is a subset of the complete label set L. We apply this
for binary problems obtained by aggregating different classes in the multi-class setting.

6.3 Testing the FIRE algorithm

In first experiment, we test our method for selecting the parameters, which is described in Sec-
tion 6.1, by focusing on the the error J(f ;Xp, Xq, U) in Eq. 34 for different function classes U .
We use different families of functions for tuning parameters and validation. This measure is impor-
tant because in practice the functions we are interested may not be in the collection we chosen for
validation. To avoid confusion, we denote the function for cross validation by f cv and the function
for measuring error by f err.

We use the CPUsmall and USPS hand-written digits data sets. For each of them, we generate
two data sets Xp and Xq using the resampling method, PCA(a, σv), describe in Section 6.2. We
compare FIRE with several methods including TIKDE, LSIF. Figure 1 gives an illustration of the
procedure and usage of data for the experiments. And the results are shown in Table 1 and 2. The
numbers in the table are the average errors defined in Eq. 34 on held-out set Xerr over 5 trials,
using different criterion functions f cv(Columns) and error-measuring functions f err(Row). N is the
number of random function we are using for the cross-validation.

. . .

Fold
   1

Fold
   2

Fold
   k

x
p,cv

x
p,err

x
q,cv

x
q,err

Figure 1: First of all Xp, Xq are split into Xp,cv and Xp,err, Xq,cv and Xq,err. Then we further split
Xp,cv into k folds. For each fold i, density ratios at the sample points are estimated using only folds
j 6= i and Xq,cv, and compute the error using fold i and Xq,cv. We choose the parameter gives the
best average error over the k folds of Xp,cv. And we measure the final performance using Xp,err and
Xq,err.

For the error-measuring functions, we have several choices as follows:

(1) Linear: Sets of Random linear functions f(x) = βT x where β ∼ N(0, Id).
(2) Half-space: Sets of random half-space indicator functions, f(x) = 1βT x>0 where β ∼

N(0, Id).
(3) Kernel: Sets of random linear combination of kernel functions centered at the training data,

f(x) = γT K where γ ∼ N(0, Id) and Kij = k(xi, xj) where xi are points from the data set.
(4) K-indicator: Sets of random kernel indicator functions centered at the training data, f =

1γT K>0 where γ ∼ N(0, Id) and Kij = k(xi, xj) where xi are points from the data set.
(5) Coord: Sets of coordinate functions.
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Table 1: USPS data set with resampling using PCA(5, σv), where σv is the standard deviation of
projected value on the first principal component. And |Xp| = 500 and |Xq| = 1371. Around 400
in Xp and 700 in Xq are used in 5-folds CV.

Linear Half-spaces
N=50 N=200 N=50 N=200

Linear

TIKDE 10.9 10.9 10.9 10.9
LSIF 14.1 14.1 26.8 28.2

FIRE(L2,p) 3.56 3.75 5.52 6.32
FIRE(L2,p + L2,q) 4.66 4.69 7.35 6.82

FIRE(L2,q) 5.89 6.24 9.28 9.28

Half-spaces

TIKDE 0.0259 0.0259 0.0259 0.0259
LSIF 0.0388 0.0388 0.037 0.039

FIRE(L2,p) 0.00966 0.0091 0.0103 0.0118
FIRE(L2,p + L2,q) 0.0094 0.0102 0.0143 0.0107

FIRE(L2,q) 0.0124 0.0135 0.0159 0.0159

Kernel

TIKDE 4.74 4.74 4.74 4.74
LSIF 16.1 16.1 15.6 13.8

FIRE(L2,p) 1.19 1.05 2.78 3.57
FIRE(L2,p + L2,q) 2.06 1.99 4.2 2.59

FIRE(L2,q) 5.16 4.27 6.11 6.11

K-Indicator

TIKDE 0.0415 0.0415 0.0415 0.0415
LSIF 0.0435 0.0435 0.0531 0.044

FIRE(L2,p) 0.00862 0.00676 0.0115 0.0114
FIRE(L2,p + L2,q) 0.00559 0.00575 0.0191 0.0108

FIRE(L2,q) 0.0117 0.00935 0.0217 0.0217

Coord.

TIKDE 0.0541 0.0541 0.0541 0.0541
LSIF 0.0647 0.0647 0.139 0.162

FIRE(L2,p) 0.0183 0.0165 0.032 0.0334
FIRE(L2,p + L2,q) 0.0211 0.0201 0.0423 0.0355

FIRE(L2,q) 0.0277 0.0233 0.0496 0.0496
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Table 2: CPUsmall data set with resampling using PCA(5, σv), where σv is the standard deviation
of projected value on the first principal component. And |Xp| = 1000 and |Xq| = 2000. Around
800 in Xp and 1000 in Xq are used in 5-folds CV.

Linear Half-spaces
N=50 N=200 N=50 N=200

Linear

TIKDE 0.102 0.0965 0.102 0.0984
LSIF 0.115 0.115 0.115 0.115

FIRE(L2,p) 0.0908 0.0858 0.0891 0.0924
FIRE(L2,p + L2,q) 0.0832 0.0825 0.0825 0.0718

FIRE(L2,q) 0.0889 0.0907 0.0932 0.0899

Half-spaces

TIKDE 0.00469 0.00416 0.00469 0.00462
LSIF 0.00487 0.00487 0.00487 0.00487

FIRE(L2,p) 0.00393 0.00389 0.00435 0.00436
FIRE(L2,p + L2,q) 0.00385 0.00383 0.00383 0.00345

FIRE(L2,q) 0.00421 0.0044 0.00459 0.00427

Kernel

TIKDE 9.82 8.48 9.82 9.3
LSIF 9.6 9.6 9.6 9.6

FIRE(L2,p) 6.96 6.17 8.02 8.19
FIRE(L2,p + L2,q) 6.62 6.62 6.62 6.35

FIRE(L2,q) 7.23 7.17 7.44 7.38

K-Indicator

TIKDE 0.00411 0.00363 0.00411 0.00404
LSIF 0.00478 0.00478 0.00478 0.00478

FIRE(L2,p) 0.0033 0.00313 0.0036 0.00373
FIRE(L2,p + L2,q) 0.00306 0.00306 0.00306 0.00288

FIRE(L2,q) 0.00358 0.00354 0.00365 0.00366

Coord.

TIKDE 0.00784 0.0077 0.00784 0.00758
LSIF 0.00774 0.00774 0.00774 0.00774

FIRE(L2,p) 0.00696 0.00676 0.00681 0.00734
FIRE(L2,p + L2,q) 0.00647 0.00637 0.00637 0.00584

FIRE(L2,q) 0.00693 0.00692 0.00699 0.00689
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6.4 Supervised Learning: Regression and Classification

In our experiments, we compare our method FIRE with several methods under the setting of super-
vised learning, i.e. regression and classification. More specifically, we consider the situation part or
all of the training set Xp are labeled and all of Xq are unlabeled. In the following experiments, we
will estimate the density ratio function using 1000 points in Xp and use the labeled data from Xp

to build a regression function or classifier on Xq.

6.4.1 Regression

Given data sets (Xp, Y p) where Xp is for independent variable, and Y p is for dependent variable,
and a test data set Xq with a different distribution, the regression problem is to obtain a function
a predictor on Xq. To make the comparison between unweighted regression method and different
weighting schemes, we use the simplest regression method, the least square linear regression. With
this method, the regression function is of the form

f(x, β) = βtx,

where β = (XWXT )+XWY and (·)+ denotes the pseudo-inverse of a matrix. Here W is a
diagonal matrix with the estimated density ratio on the diagonal. These are estimated using FIRE
and other density ratio estimation methods for comparison. The results on 3 regression data sets are
shown in Table 5, 3 and 4.

Table 3: CPUsmall resampled using PCA(5, σv), where σv is the standard deviation of projected
value on the first principal component. |Xp| = 1000, |Xq| = 2000.

No. of Labeled 100 200 500 1000
Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces

OLS 0.740 0.497 0.828 0.922
TIKDE 0.379 0.359 0.299 0.291 0.278 0.279 0.263 0.267
KMM 1.857 1.857 1.899 1.899 2.508 2.508 2.739 2.739
LSIF 0.390 0.390 0.309 0.309 0.329 0.329 0.314 0.314

FIRE(L2,p) 0.327 0.327 0.286 0.286 0.272 0.272 0.260 0.260
FIRE(L2,p + L2,q) 0.326 0.330 0.285 0.287 0.272 0.272 0.261 0.259

FIRE(L2,q) 0.324 0.333 0.284 0.288 0.271 0.272 0.261 0.260

Table 4: Kin8nm resampled using PCA(10, σv). |Xp| = 1000, |Xq| = 2000.
No. of Labeled 100 200 500 1000

Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces
OLS 0.588 0.552 0.539 0.535

TIKDE 0.572 0.574 0.545 0.545 0.526 0.529 0.523 0.524
KMM 0.582 0.582 0.547 0.547 0.522 0.522 0.514 0.514
LSIF 0.565 0.563 0.543 0.541 0.520 0.520 0.517 0.516

FIRE(L2,p) 0.567 0.560 0.548 0.540 0.524 0.519 0.522 0.515
FIRE(L2,p + L2,q) 0.563 0.560 0.546 0.540 0.522 0.519 0.520 0.515

FIRE(L2,q) 0.563 0.560 0.546 0.541 0.522 0.519 0.520 0.515

Table 5: Bank8FM resampled using PCA(1, σv). |Xp| = 1000, |Xq| = 2000.
No. of Labeled 100 200 500 1000

Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces
OLS 0.116 0.111 0.105 0.101

TIKDE 0.111 0.111 0.100 0.100 0.096 0.096 0.092 0.092
KMM 0.112 0.161 0.103 0.164 0.099 0.180 0.095 0.178
LSIF 0.113 0.113 0.109 0.109 0.104 0.104 0.099 0.099

FIRE(L2,p) 0.110 0.110 0.101 0.102 0.097 0.097 0.093 0.094
FIRE(L2,p + L2,q) 0.113 0.110 0.103 0.102 0.099 0.097 0.097 0.094

FIRE(L2,q) 0.112 0.118 0.102 0.106 0.099 0.103 0.096 0.102
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6.4.2 Classification

Similarly to the case of regression the density ratio can also be used for building a classifier such
as SVM. Given a set of labeled data, {(x1, y1),(x2, y2), . . . , (xn, yn)} and xi ∼ q, we building a
linear classifier f by the weighted linear SVM algorithm as follows:

f = arg min
β∈Rd

C

n

n∑
i=1

wi(βT xi − yi)+ + ‖β‖22

The weights wi’s are obtained by various density ratios estimation algorithms using two data sets
Xp and Xq. Note that estimating the density ratios using Xp and Xq is completely independent of
the label information. We also explore the performance of these weighted SVM as the number of
labeled points used for training classifier changes. In the experiments, we first estimate the density
ratios on the whole Xp with the parameters selected by cross validation. Then we subsample a
portion of Xp and use their labels to train the classifier. And the performance of the classifier in
terms of prediction error is estimated using all the points in Xq. The results on USPS hand-written
digits and 20 news groups are shown in Table 6, 7, 8 and 9.

Table 6: USPS resampled using Feature information, PCA(5, σv), where σv is the standard devia-
tion of projected value on the first principal component. |Xp| = 1000 and |Xq| = 1371, with 0− 4
as −1 class and 5− 9 as +1 class.

No. of Labeled 100 200 500 1000
Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces

SVM 0.102 0.081 0.057 0.058
TIKDE 0.094 0.094 0.072 0.072 0.049 0.049 0.042 0.042
KMM 0.081 0.081 0.059 0.059 0.047 0.047 0.044 0.044
LSIF 0.095 0.102 0.073 0.081 0.050 0.057 0.044 0.058

FIRE(L2,p) 0.089 0.068 0.053 0.050 0.041 0.041 0.037 0.036
FIRE(L2,p + L2,q) 0.070 0.070 0.051 0.051 0.041 0.041 0.036 0.036

FIRE(L2,q) 0.055 0.073 0.048 0.054 0.041 0.044 0.034 0.039

Table 7: USPS resampled based on Label information, Xq only contains point with labels in L′ =
{0, 1, 5, 6}. The binary classes are with +1 class= {0, 1, 2, 3, 4}, −1 class= {5, 6, 7, 8, 9}. And
|Xp| = 1000 and |Xq| = 2000.

No. of Labeled 100 200 500 1000
Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces

SVM 0.186 0.164 0.129 0.120
TIKDE 0.185 0.185 0.164 0.164 0.124 0.124 0.105 0.105
KMM 0.175 0.175 0.135 0.135 0.103 0.103 0.085 0.085
LSIF 0.185 0.185 0.162 0.163 0.122 0.122 0.108 0.108

FIRE(L2,p) 0.179 0.184 0.161 0.161 0.115 0.120 0.107 0.105
FIRE(L2,p + L2,q) 0.180 0.185 0.161 0.162 0.116 0.120 0.106 0.107

FIRE(L2,q) 0.183 0.184 0.160 0.162 0.118 0.120 0.106 0.103
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Table 8: 20 News groups resampled using Feature information, PCA(5, σv), where σv is the stan-
dard deviation of projected value on the first principal component. |Xp| = 1000 and |Xq| = 1536,
with {2, 4, . . . , 20} as −1 class and {1, 3, . . . , 19} as +1 class.

No. of Labeled 100 200 500 1000
Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces

SVM 0.326 0.286 0.235 0.204
TIKDE 0.326 0.326 0.286 0.285 0.235 0.235 0.204 0.204
KMM 0.338 0.338 0.303 0.303 0.252 0.252 0.242 0.242
LSIF 0.329 0.325 0.297 0.285 0.238 0.235 0.210 0.204

FIRE(L2,p) 0.314 0.324 0.276 0.278 0.231 0.234 0.202 0.210
FIRE(L2,p + L2,q) 0.315 0.323 0.276 0.277 0.232 0.233 0.200 0.208

FIRE(L2,q) 0.317 0.321 0.277 0.275 0.232 0.231 0.197 0.207

Table 9: 20 News groups resampled based on Label information, Xq only contains point with labels
in L′ = {1, 2, . . . , 8}. The binary classes are with +1 class= {1, 2, 3, 4}, −1 class= {5, 6, . . . , 20}.
|Xp| = 1000 and |Xq| = 4148.

No. of Labeled 100 200 500 1000
Weighting method Linear Half-spaces Linear Half-spaces Linear Half-spaces Linear Half-spaces

SVM 0.354 0.333 0.300 0.284
TIKDE 0.354 0.353 0.334 0.335 0.299 0.298 0.281 0.285
KMM 0.368 0.368 0.341 0.341 0.295 0.295 0.270 0.270
LSIF 0.353 0.354 0.336 0.334 0.304 0.305 0.286 0.284

FIRE(L2,p) 0.347 0.348 0.334 0.332 0.303 0.300 0.282 0.277
FIRE(L2,p + L2,q) 0.348 0.348 0.332 0.332 0.301 0.301 0.277 0.277

FIRE(L2,q) 0.347 0.349 0.330 0.330 0.303 0.300 0.284 0.278

6.5 Simulated Examples

6.5.1 Simulated Dataset 1.

We use a simple example, where the two densities are known, to demonstrate the properties of our
methods and how the number of data points influences the performance.

For this experiment, we suppose p = 0.5N(−2, 12) + 0.5N(2, 0.52) and q = N(0, 0.52) and fix
|Xq| = 2000, and vary |Xp| from 50 to 1000. We compare our method with the other two methods
for the same problem: TIKDE and KMM. For all the methods we consider in this experiment, we
will choose the optimal parameter based on the empirical L2 norm of the difference between the
estimated ratio and the true ratio, which is supposed to be known in this toy example. Figure 2 gives
the reader an intuition about how the estimated ratios behave for different methods.
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Figure 2: Plots of estimation of the ratio of densities with |Xp| = 500 of points from p =
0.5N(−2, 12) + 0.5N(2, 0.52) and |Xq| = 2000 points from q = N(0, 0.52). The blues lines
are true ratio, q

p . Left column is the estimations from KDE with proper chosen threshold. Middle
column is the estimations from our method, FIRE. And right one is the estimation from KMM.
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And Figure 3 shows how different methods perform when |Xp| varies from 50 to 1000 and |Xq| is
fixed to be 2000. The boxplot is also a good way to illustrate the stability of the methods over 50
independent repetitions.

n=50 n=100 n=300 n=500 n=1000
0

10

20

30

40

50

60

70

80

Figure 3: Number of points from p, n varies from 50 to 1000 as the horizontal axis indicates, and the
number of points from q is fixed to be 2000. For each n, the three bars, from left to right, belongs to
TIKDE, FIRE(marked as red) and KMM.

6.5.2 Simulated Dataset 2.

In the second simulated example, we will test our method for various kernels and different norms
as the cost function. More specifically, we suppose p = N(0, 0.52) and q = Unif([−1, 1]). We
will use this example to explore the power of our methods with different kernels. Three settings are
considered in this experiments: (1)Different kernels kh for the RKHS. We use polynomial kernels of
degree 1, 5 and 20, exponential kernel and Gaussian kernel; (2) Type-I setting and Type-II setting;
(3) Different norm for the cost function in the algorithm, i.e. ‖ · ‖2,p and ‖ · ‖2,q . In this example,
‖·‖2,p focuses on the region close 0, but still has penalty outside interval [−1, 1]; ‖·‖2,p has uniform
penalty on [−1, 1] and has no penalty at all outside the interval.

In all settings, we fix the convolution kernel to be Gaussian, kt. When the RKHS kernel is exponen-
tial and Gaussian, we also need to decide their width. For simplicity, we just fix their width to be
20t, where t is the width of the convolution kernel kt. For setting Type-I, we will set |Xp| = 500
and |Xq| = 500; for Type-II setting, we only specify |Xp| = 500. The results are shown in Figure
4.
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A Proof for Lemma 5

Proof. RKHS is unique for a given domain and kernel, so is independent of the measure used to
define the L2,ρ. Thus for any g ∈ L2,p, there should be h ∈ L2 such that K1/2

t,p g = K1/2
t h and

‖g‖2,p = ‖K1/2
t,p g‖Ht

= ‖K1/2
t h‖Ht

= ‖h‖2.

Since this is true for arbitrary g ∈ L2,p, we have

min
g∈L2,p

∥∥∥f −K1/2
t,p g

∥∥∥2

2,p
+ λ′‖g‖22,p = min

h∈L2

∥∥∥f −K1/2
t h

∥∥∥2

2,p
+ λ′‖h‖22

Because ‖ · ‖2,p ≤ Γ‖ · ‖2,

min
h∈L2

∥∥∥f −K1/2
t h

∥∥∥2

2,p
+ λ′‖h‖22 ≤ Γ2

(
min
h∈L2

∥∥∥f −K1/2
t h

∥∥∥2

2
+

λ′

Γ2
‖h‖22

)
(35)

To bound

min
h∈L2

∥∥∥f −K1/2
t h

∥∥∥2

2
+

λ′

Γ2
‖h‖22

We need the Fourier transform F : L2(Rd) → L2(Rd), defined as

f̂(ξ) =
∫

Rd

e−iξxf(x)dx.

Kt on Rd is the heat operator, thus K1/2
t = K t

2
. And

Ktf(x) =
∫

Rd

kt(x, y)f(y)dy = (kt ∗ f)(x),

So, F (Ktf) = k̂tf̂ . Note that F is an isometry. Thus it is the same to transform the (35) using
Fourier transform. Then we have

min
ĥ∈L2

∥∥∥f̂ − k̂ t
2
ĥ
∥∥∥2

2
+

λ′

Γ2
‖ĥ‖22

where k̂t(ξ) = e
−‖ξ‖2t

2 . And let

f̃(ξ) =

{
f̂(ξ) if ‖ξ‖2 < 4

t

0 Otherwise.

and h̃ =
(
k̂ t

2

)−1

f̃ . It is obvious that ‖h̃‖22 ≤ e‖f̂‖22 = e‖f‖22. And∥∥∥f̂ − k̂ t
2
h̃
∥∥∥2

2
=
∥∥∥f̂ − f̃

∥∥∥2

2

Now we recall the definition of Sobolev space using Fourier transform, which states that f̂(ξ) =
1

(1+‖ξ‖2)s/2 û(ξ) and ‖û‖2 ≤ ‖f‖W 2
s

. Thus,

∥∥∥f̂ − f̃
∥∥∥2

2
=

(∫
‖ξ‖2≥ 4

t

1
(1 + ‖ξ‖2)s/2

û(ξ)dξ

)2

≤
∫
‖ξ‖2≥ 4

t

(
1

(1 + ‖ξ‖2)s/2
û(ξ)

)2

dξ ≤ ts

4s
‖f‖2W 2

s

Thus, we have

min
ĥ∈L2

∥∥∥f̂ − k̂ t
2
ĥ
∥∥∥2

2
+

λ′

Γ2
‖ĥ‖22 ≤

∥∥∥f̂ − k̂ t
2
h̃
∥∥∥2

2
+

λ′

Γ2
‖h̃‖22 ≤

ts

4s
‖f‖2W 2

s
+

eλ′

Γ2
‖f‖22

Let D1 = Γ2

4s and D2 = e‖f‖22, we have the lemma.
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B Proof for Lemma 6

For the compact manifold case, we also need to have similar lemma as the above one. However, the
definition of Fourier transform is obscure, thus we need to consider alternative way to get the same
bound. We can use the Laplace-Beltrami operator on the compact manifold. It has discrete spectrum
and satisfies the Weyl’s Law, see Chapter 8 in [32], about the spectrum of the Laplace-Beltrami
operator ∆, which is discrete if the manifold is compact. It states the following: the number of
eigenvalues of Laplacian operator over a bounded domain with Neumann Bounday condition that
are less or equal than x, denoted by N(x), satisfies

lim
x→∞

N(x)
xd/2

= C

for a constant C depending on the dimensionality and volume of the domain. This implies there
exists M such that for any i > M ,

c1i
2/d ≤ ηi ≤ c2i

2/d.

Also, we can redefine the Sobolev space on a compact manifold using Laplace-Beltrami operator.

W 2
s = {f ∈ L2 : ‖f‖W 2

s
= sup

v≤s

∥∥∥∆v/2f
∥∥∥

2
< ∞}.

And this definition of W s
2 is equivalent to common definition of Sobolev space using differentiation,

see [29] for the details for this equivalence.

First we need the following lemma.

Lemma 10. Suppose f ∈ W s
2 and Nt =

(
1
t

)α
, then we have∑

i>Nt

〈f, vi〉22 ≤ C‖f‖2W 2
s
t2αs/d

where vi is the eigenfunctions of Laplacian operator ∆ and C is a constant independent of t.

Proof. First let proof that
∞∑

i=0

〈f, vi〉22 i2s/d < ∞.

Using the implication of Weyl’s Law, we have for i > M , i2s/d ≤ ηs
i

c1
. Thus,

∞∑
i=0

〈f, vi〉22 i2s/d =
∞∑

i≤M

〈f, vi〉22 i2s/d +
∞∑

i>M

〈f, vi〉22 i2s/d

≤
∞∑

i≤M

〈f, vi〉22 i2s/d +
∞∑

i>M

〈f, vi〉22
ηs

i

c1

≤
∞∑

i≤M

〈f, vi〉22 i2s/d +
1
c1

∥∥∥∆s/2f
∥∥∥2

2
< C‖f‖2W 2

s

For Nt =
(

1
t

)α
. We have

N
2s/d
t

∑
i>Nt

〈f, vi〉22 <
∑
i>Nt

〈f, vi〉22 i2s/d ≤ C‖f‖2W 2
s
.

Thus, ∑
i>Nt

〈f, vi〉22 <
C‖f‖2W 2

s

N
2s/d
t

= C‖f‖2W 2
s
t2αs/d.
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Now we can give the proof for Lemma 6.

Proof. RKHS is unique for a given domain and kernel, so is independent of the measure used to
define the L2,ρ. Thus for any g ∈ L2,p, there should be h ∈ L2 such that L1/2

t,p g = L1/2
t h and

‖g‖2,p = ‖L1/2
t,p g‖Ht

= ‖L1/2
t h‖Ht

= ‖h‖2.

Since this is true for arbitrary g ∈ L2,p, we have

min
g∈L2,p

∥∥∥f − L1/2
t,p g

∥∥∥2

2,p
+ λ′‖g‖22,p = min

h∈L2

∥∥∥f − L1/2
t h

∥∥∥2

2,p
+ λ′‖h‖22

Because ‖ · ‖2,p ≤ Γ‖ · ‖2,

min
h∈L2

∥∥∥f − L1/2
t h

∥∥∥2

2,p
+ λ′‖h‖22 ≤ Γ2

(
min
h∈L2

∥∥∥f − L1/2
t h

∥∥∥2

2
+

λ′

Γ2
‖h‖22

)
Now, let

h∗λ′ = arg min
h∈L2

∥∥∥f − L1/2
t h

∥∥∥2

2
+ λ′‖h‖22

Expend f using the eigenfunctions v0, v1, . . . of ∆, we have

f =
∞∑

i=0

〈f, vi〉2 vi

Denote the eigenvalues of ∆ as η0, η1, . . . , the heat operator defined as Ht = e−∆t having eigen-
values as e−η0t, e−η1t, . . . . Recall the Weyl’s law, we have there exists M such that for any i > M ,
c1i

2/d ≤ ηi ≤ c2i
2/d. When t is small enough, we will have Nt = 1

td/2 > M . Since we order ηi

in non-decreasing order, for any i < Nt, we have ηi ≤ ηNt ≤ c2N
2/d
t = c2/t, also e−ηit > e−c2 .

Now denote PN be the operator that projects function f ∈ L2 to the subspace spanned by first N
eigenfunctions of ∆. Thus

PNt
f =

∑
i≤Nt

〈f, vi〉2 vi

where vi is the eigenfunction of ∆. And let

ĥ = H
−1/2
t PNt

f =
Nt∑
i=0

e
ηit

2 〈f, vi〉2 vi

Thus, we have

arg min
h∈L2

∥∥∥f − L1/2
t h

∥∥∥2

2
+ λ′‖h‖22 ≤

∥∥∥f − L1/2
t ĥ

∥∥∥2

2
+ λ′‖ĥ‖22

=

∥∥∥∥∥∥
∑
i>Nt

〈f, vi〉2 vi +
∑
i≤Nt

〈f, vi〉2 vi − L1/2
t ĥ

∥∥∥∥∥∥
2

2

+ λ′‖ĥ‖22

≤

∥∥∥∥∥∑
i>Nt

〈f, vi〉2 vi

∥∥∥∥∥
2

+
∥∥∥H1/2H−1/2PNt

f − L1/2
t H−1/2PNt

f
∥∥∥

2

2

+ λ′
Nt∑
i=1

eηit
〈
f, vt

i

〉2
2

(36)

Now let us proceed by bound the above formula. By Lemma 10 with Nt = 1
td/2 and s = 2, we have

∞∑
i=Nt+1

〈f, vi〉22 ≤ C‖f‖2W 2
s
t2
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Also, for i < Nt, eηit ≤ ec2 , thus ‖H−1/2PNt
f‖2 ≤ ec2/2 ‖PNt

f‖2 ≤ ec2/2 ‖f‖2. Recall we have
‖H1/2

t − L1/2
t ‖L2→L2 ≤ C ′tfor a constant C ′. Thus, we have∥∥∥H1/2H−1/2PNtf − L1/2

t H−1/2PNtf
∥∥∥

2
≤ C ′ec2/2 ‖f‖2 t ≤ C ′′ec2/2 ‖f‖W 2

s
t,

since ‖f‖2 can always be bounded by ‖f‖W 2
s

up to a constant.

For the third term in (36), we have

λ′
Nt∑
i=1

eηit 〈f, vi〉22 ≤ λ′ec2

Nt∑
i=1

〈f, vi〉22 ≤ λ′ec2 ‖f‖22

Hence,∥∥∥f − L1/2
t,p g∗λ′

∥∥∥2

2,p
+ λ′‖g∗λ′‖22,p ≤ Γ2

(√
C ‖f‖W 2

s
t + C ′ec2/2 ‖f‖W 2

s
t
)2

+ λ′ec2 ‖f‖22

When t is small enough, t2 ≤ t, letting D1 = 2Γ2(C+C ′2ec2), D2 = ec2 , we prove the lemma.

C Proof for Lemma 7

Proof. By definition of Kt, we have (Ktf − f)(x) = (Kt − I)f . By results in [2], we have
(Kt−I)f = t∆f +o(t) when f is twice differentiable. Due to f ∈ W 2

2 (Rd), we have ‖∆f‖2 < ∞.
Thus, we have

‖Ktf − f‖2,p ≤ Γ‖Ktf − f‖2 = Γ‖t∆f + o(t)‖2 ≤ Γt‖∆f‖2 + o(t) = O(t).

For manifold case, we have (Kt −D)f = t∆f + o(t), where Df =
∫
M kt(x, y)dyf(x). Thus,

(Kt − I)f = (Kt −D)f + (D − I)f.

For the first term, we have the same rate with Rd. Now we proceed by bounding the second term.

‖(D − I)f‖2 =
∥∥∥∥(∫

M
kt(·, y)dy − 1

)
f(·)

∥∥∥∥
2

≤
∥∥∥∥∫
M

kt(·, y)dy − 1
∥∥∥∥

2

‖f‖2

We know that ‖f‖2 < ∞.

Let Bt(x) = {y ∈ M : ‖x − y‖2 < t
1
2−ε} and Rt(x) is the projection of Bt(x) on the TxM. In

the following proof, we need to use change of variables to converting integral over a manifold to the
integral over the tangent space at a specific point. For two points x, y ∈ M, let y′ = πx(y) be the
projection of y in the tangent space Tx of M at x. Let Jπx

|y denote the Jacobian of the map πx at

point y ∈M and Jπ−1
x

∣∣∣
y′

is the inverse. For y sufficiently close to x, we have

‖x− y‖ = ‖x− y′‖+ O(‖x− y′‖3)∣∣∣Jπx
|y − 1

∣∣∣ = O(‖x− y‖2)∣∣∣∣Jπ−1
x

∣∣∣
y′
− 1
∣∣∣∣ = O(‖x− y′‖2).

Thus, it is true that the points in Rt(x) are still no further than 2t
1
2−ε, when t is small enough.

Since kt has exponential decay, the integral
∫

Bt(x)
kt(y, ·)dy is of order O(e−t−ε

), and so is
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∫
Rt(x)

kt(y′, ·)dy′. Thus, for any point x ∈M,∣∣∣∣∫
M

kt(x, ·)dx− 1
∣∣∣∣

=

∣∣∣∣∣
∫

Bt(x)

kt(y, ·)dy − 1 + O(e−t−ε

)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Bt(x)

kt(y, ·)dy −
∫

TxM
kt(y′, ·)dy′ + O(e−t−ε

)

∣∣∣∣∣
=

∣∣∣∣∣
∫

R(x)

kt(y′, ·)Jπ−1 |y′dy′ −
∫

R(x)

kt(x, ·)dx + O(e−t−ε

)

∣∣∣∣∣
=

∣∣∣∣∣
∫

R(x)

kt(x, ·)(Jπ−1 |x − 1)dx + O(e−t−ε

)

∣∣∣∣∣
=O(t1−2ε)

∫
R(x)

kt(x, ·)dx + O(e−t−ε

)

=O(t1−2ε)
(∫

TxM
kt(x, ·)dx + O(e−t−ε

)
)

+ O(e−t−ε

)

=O(t1−2ε)
(
1 + O(e−t−ε

)
)

+ O(e−t−ε

)

=O(t1−2ε)

Abusing the notation of ε, we have ‖
∫
M kt(·, y)dy − 1‖2 ≤ O(t1−ε) where 0 < ε < 1.

D Proof for Theorems in 4.2.2

In the second case, since we do not have samples from q, we replace Kt,q,zq by q. Consider corre-
sponding f II

λ ,

f II
λ =(K3

t,p + λI)−1K2
t,pq = (K3

t,p + λI)−1K2
t,p

(
q −Kt,p

q

p
+Kt,p

q

p

)
=(K3

t,p + λI)−1K2
t,p

(
q −Kt,p

q

p

)
+ (K3

t,p + λI)−1K3
t,p

q

p

Thus, we need to bound the extra term (K3
t,p + λI)−1K2

t,p

(
q −Kt,p

q
p

)
. Let d = q − Kt,p

q
p and

‖d‖2,p = δt, we have

∥∥(L3
t,p + λI)−1L2

t,pd
∥∥

2,p
=

( ∞∑
i=1

(
σ2

i 〈ui, d〉2,p

σ3
i + λ

)2
) 1

2

≤ max
σ>0

(
1

σ + λ
σ2

)
δt ≤

δt(
2

1
3 + 2−

2
3

)
λ

1
3

≤ λ−
1
3 δt

The bound for δt is given in the following lemma.

For the concentration of ‖f II
λ − f II

λ,z‖2,p, we will consider their close formulas

f II
λ =

(
K3

p + λI
)−1K2

pq

f II
λ,z =

(
K3

zp
+ λI

)−1

K2
zp

q
(37)

By the similar argument to that in Lemma 9, we will have the following lemma gives the concentra-
tion bound.
Lemma 11. Let p be a density of a probability measure over a domain X and q another density func-
tion. They satisfy the assumptions in 4.1. Consider f II

λ and f II
λ,z defined in Eq. 37, with confidence
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at least 1− 2e−τ , we have ∥∥f II
λ − f II

λ,z

∥∥
2,p

≤ C4

(
κt
√

τ

λ3/2
√

n
+

κt
√

τ

λ
√

n

)
where κt = supx∈Ω kt(x, x) = 1

(2πt)d/2

Proof. Let f̃ =
(
K3

zp
+ λI

)−1

K2
pq. We have f II

λ − f II
λ,z = f II

λ − f̃ + f̃ − f II
λ,z . For f II

λ − f̃ , using

the fact that
(
K3

p + λI
)
f II

λ = K2
pq, we have

f II
λ − f̃

=f II
λ −

(
K3

zp
+ λI

)−1 (
K3

p + λI
)
f II

λ

=
(
K3

zp
+ λI

)−1 (
K3

zp
−K3

p

)
f II

λ

And

f̃ − f II
λ,z

=
(
K3

zp
+ λI

)−1

K2
pq −

(
K3

zp
+ λI

)−1

K2
zp

q

=
(
K3

zp
+ λI

)−1 (
K2

p −K2
zp

)
q

Notice that we have K3
zp
−K3

p and K2
zp
−K2

p in the identity we get. For these two objects, it is not
hard to verify the following identities,

K3
zp
−K3

p

=
(
Kzp

−Kp

)3 +Kp

(
Kzp

−Kp

)2 +
(
Kzp

−Kp

)
Kp

(
Kzp

−Kp

)
+
(
Kzp

−Kp

)2Kp

+K2
p

(
Kzp

−Kp

)
+Kp

(
Kzp

−Kp

)
Kp +

(
Kzp

−Kp

)
K2

p.

And

K2
zp
−K2

p =
(
Kzp

−Kp

)2 +Kp

(
Kzp

−Kp

)
+
(
Kzp

−Kp

)
Kp

Thus, in these two identities, the only two random variables are Kzp
− Kp. By results about con-

centration of Kzp
and Kzq

, we have with probability 1− 2e−τ ,

‖Kzp −Kp‖H→H ≤ κt
√

τ√
n

,

∥∥Kzpq −Kpq
∥∥
H ≤ κt‖q‖∞

√
2τ√

n

(38)

And we know that for a large enough constant c which is independent of t and λ,

‖Kp‖H→H < c,

∥∥∥∥(K3
zp

+ λI
)−1

∥∥∥∥
H→H

≤ 1
λ

, ‖Kpq‖H < c‖q‖2,p

and

‖f II
λ‖2H =

∑
i

σ3
i

(σ3
i + λ)2

〈q, ui〉2 ≤
(

sup
σ>0

σ3

(σ3 + λ)2

)∑
i

〈q, ui〉2 ≤
c2

λ
‖q‖22,p

thus, ‖f II
λ‖H ≤ c

λ1/2 ‖q‖2,p.

Notice that
∥∥∥(Kzp

−Kp

)2∥∥∥
H
≤
∥∥Kzp

−Kp

∥∥2

H and
∥∥∥(Kzp

−Kp

)3∥∥∥
H
≤
∥∥Kzp

−Kp

∥∥3

H, both

of this could be of smaller order compared with
∥∥Kzp −Kp

∥∥
H. For simplicity we hide the term

including them in the final bound without changing the dominant order. We could also hide the

33



terms with the product of any two the random variables in Eq. 38, which is of prior order compared
to the term with only one random variable. Now let us put everything together,

‖f II
λ − f II

λ,z‖2,p ≤ c1/2‖f II
λ − f II

λ,z‖Ht

≤c1/2

(
c3κt

√
τ

λ3/2
√

n
‖q‖2,p +

c2κt
√

τ

λ
√

n
‖q‖∞

)
≤C4

(
κt
√

τ

λ3/2
√

n
+

κt
√

τ

λ
√

n

)
where C4 = c5/2 max

(
c ‖q‖2,p , ‖q‖∞

)
.

Given the above lemmas, the main theorem for the second case follows.
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