
A Kernel Algorithm

In practice, we are only provided with a finite number of samples
{

(xi1, . . . , x
i
d)
}n
i=1

draw i.i.d. from
p(X1, . . . , Xd), and we want to obtain an empirical low rank decomposition of the kernel embed-
ding. In this case, we will perform a low rank decomposition of the empirical kernel embedding
ĈX1:d

= 1
n

∑n
i=1

(
⊗dj=1φ(xij)

)
. Although the empirical kernel embedding still has infinite dimen-

sions, we will show that we can carry out the decomposition using just the kernel matrices.

Let us denote the kernel matrix for each dimension of the data by Kj where j ∈ {1, . . . , d}. The
(i, i′)-th entry inKj can be computed asKii′

j = k(xij , x
i′

j ). Alternatively, one can think of implicitly
forming the feature matrix Φj =

(
φ(x1

j ), . . . , φ(xnj )
)
, and the corresponding kernel matrix is Kj =

Φ>j Φj . Furthermore, we denote the tensor feature matrix formed from dimension j + 1 to d of the
data as Ψj =

(
⊗dj′=j+1φ(x1

j′), . . . ,⊗dj′=j+1φ(xnj′)
)
. The corresponding kernel matrix Lj = Ψ>j Ψj

with the (i, i′)-th entry in Lj defined as Lii
′

j =
∏d
j′=j+1 k(xij′ , x

i′

j′). The overall kernel algorithm

for low rank decomposition of empirical embeddings for ĈX1:d
in terms of kernels is summarized in

algorithm 3.

For step 1-3 in Algorithm 1: Using the implicitly defined feature matrix, A1 can be expressed
as A1 = 1

nΦ1Ψ>1 . For the low rank approximation, A1 ≈ UrSrV>r , using singular value decom-
position, the leading r singular vector Ur = (u1, . . . , ur) will lie in the span of Φ1, i.e., Ur =
Φ1(β1, . . . ,βr) where β ∈ Rn. Then we can transform the singular value decomposition problem
for an infinite dimensional matrix to a generalized eigenvalue problem involving kernel matrices,
A1A1

>u = λ u ⇔ 1
n2 Φ1Ψ>1 Ψ1Φ>1 Φ1β = λΦ1β ⇔ 1

n2K1L1K1β = λK1β. Let the Cholesky
decomposition of K1 be K1 = R>R, then the generalized eigenvalue decomposition problem can
be solved by redefining β̃ = Rβ, and solving an ordinary eigenvalue problem

1

n2
RL1R

>β̃ = λ β̃, and obtain β = R†β̃. (17)

This procedure (Algorithm 2) satisfies u>l ul′ = β>l Φ>1 Φ1βl′ = β>l Kβl′ = β>l R
>Rβl′ =

β̃>l β̃l′ = δll′ . Then we can obtain SrV>r by projecting the column of A1 using the singular vectors
Ur,

SrV>r = U>r A1 =
1

n
(β1, . . . ,βr)

>Φ>1 Φ1Ψ>1 =
1

n
(β1, . . . ,βr)

>K1Ψ>1 =:
1

n
(γ1, . . . ,γn)Ψ>1

(18)

where γ ∈ Rr can be treated as the reduced r-dimensional feature representation for each fea-
ture mapped data point φ(xi1). Then we have the first intermediate operator G1 = Ur =
Φ1(β1, . . . ,βr) =: Φ1(θ1, . . . ,θn)>, where θ ∈ Rn. Furthermore we have

G1 •1 φ(x1) •2 z1 = φ(x1)>Φ1(θ1, . . . ,θn)>z1 =

n∑
i=1

(z>1 θi)k(xi1, x1).

which is a weighted combination of kernel functions, and the weighting is determined by the kernel
singular value decomposition and the value of the latent variable z1.

For the first iteration in step 4-9: After we obtain G1, we reshape SrV>r to obtain the updated
B2 = 1

n Φ̃2Ψ>2 , where Φ̃2 = (γ1⊗φ(x1
2), . . . ,γn⊗φ(xn2 )). Then we can carry out similar singular

value decomposition as before, and obtain Ur = Φ̃2(β1, . . . ,βr) =: Φ̃2(θ1, . . . ,θn)>. Reshaping
this operator, we have the second operator G2 = reshape(Ur, {Z1} , {X2} , {Z2}), and furthermore,
when we have

G2 •1 z1 •2 φ(x2) •3 z2 = z>1 (γ1, . . . ,γn) diag(Φ>2 φ(x2))(θ1, . . . ,θn)>z2 (19)

=

n∑
i=1

(z>2 γi)k(xi2, x2)(z>3 θi). (20)
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And we can re-define the following as B2 and move on to the next iteration

SrV>r = U>r B2 =
1

n
(β1, . . . ,βr)

>Φ̃>2 Φ̃2Ψ>2 =
1

n
(β1, . . . ,βr)

>(Γ ◦K2)Ψ>2 =:
1

n
(γ1, . . . ,γn)Ψ>2 ,

(21)

B Bounding Model Error

Theorem 1 Suppose each reshaping CI1;I2
of CX1:d

according to an edge in the latent tree struc-
ture a rank r approximation UrSrV>r with error

∥∥CI1;I2
− UrSrV>r

∥∥
• 6 ε. Then the low rank

decomposition C̃X1:d
from Algorithm 1 satisfies∥∥∥CX1:d

− C̃X1:d

∥∥∥
•
6
√
d− 1 ε (22)

Proof In the decomposition, A1 = CX1;X2:d
is approximated by UrSrV>r where B1 = SrV>r are

reshaped and further approximated as T . Suppose that T1 = reshape(T , {Z1} , {X2:d}). Then the
model error is bounded as∥∥CX1;X2:d

− U1
r T1

∥∥2

• (23)

=
∥∥A1 − U1

r (B1 − B1 + T1)
∥∥2

• (24)

=
∥∥A1 − U1

rB1

∥∥2

• + 2
〈
A1 − U1

rB1,U1
r (B1 − T1)

〉2
• +

∥∥U1
r (B1 − T1)

∥∥2

• (25)

6ε+ 0 + ‖B1 − T1‖2• (A1 − U1
rB1 is perpendicular to Ur) (26)

=ε2 +
∥∥A2 − U2

r T2

∥∥2

• (reshaped tensors have the same generalized Frobenius norm) (27)

=ε2 +
∥∥A2 − U2

rB2

∥∥2

• + ‖B2 − T2‖2• (A2 − U2
rB2 is perpendicular to U2

r ) (28)

=ε2 +
∥∥(U1>

r ⊗ I)CX1:2;X3:d
− U2

rB2

∥∥
• + ‖B2 − T2‖2• (rewrite A2) (29)

6ε2 + ε2 + ‖B2 − T2‖2• (projection by U1>
r ⊗ I can only decrease singular value) (30)

62ε2 +
∥∥((U2>

r (U1>
r ⊗ I)⊗ I)CX1:3;X4:d

− U3
rB3

∥∥2

• + ‖B3 − T3‖2• (rewrite A3) (31)

63ε2 + ‖B3 − T3‖2• (projection can only decrease singular value) (32)

6(d− 1)ε2 (by induction on i) (33)

Since C̃X1;X2:d
= U1

r T1, we have that∥∥∥CX1;X2:d
− C̃X1;X2:d

∥∥∥
•
6
√
d− 1 ε or

∥∥∥CX1:d
− C̃X1:d

∥∥∥
•
6
√
d− 1 ε (34)

C Bounding Estimation Error

Theorem 2 Suppose the r-th singular value of each reshaping CI1;I2
of CX1:d

according to an edge
in the latent tree structure is lower bounded by λ, then with probability at least 1− δ,∥∥∥C̃X1:d

− ĈX1:d

∥∥∥
•
≤ (1 + λ)d−2

λd−2

∥∥CX1:d
− C̄X1:d

∥∥
• 6

(1 + λ)d−2c

λd−2
√
n

(35)

with some constant c associated with the kernel and the probability δ.
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Proof ĈX1:d
is the empirical low rank embedding, a finite sample estimate for C̃X1:d

. There differ-
ence can be bounded as∥∥∥C̃X1:d

− ĈX1:d

∥∥∥
•

(36)

=
∥∥∥U1

r T1 − Û1
r T̂1

∥∥∥
•

(37)

6
∥∥∥(U1

r − Û1
r )T1

∥∥∥
•

+
∥∥∥Û1

r (T1 − T̂1)
∥∥∥
•

(triangular inequality) (38)

6
∥∥∥U1

r − Û1
r

∥∥∥
•

+
∥∥∥T1 − T̂1

∥∥∥
•

(both the spectral norm of T1 and Û1
r are bounded by 1) (39)

=
∥∥∥U1

r − Û1
r

∥∥∥
•

+
∥∥∥U2

r T2 − Û2
r T̂2

∥∥∥
•

(reshaping does not change the norm) (40)

6
d−2∑
i=1

∥∥∥U ir − Û ir∥∥∥• +
∥∥∥Ad−1 − Âd−1

∥∥∥
•

(by induction on i) (41)

Next, we derive perturbation bound for U ir. Assume that all singular values of Ai have multiplicity
1, and then the perturbed version Û ir due to sampling error can be parameterized as Û ir = (U ir +
U i⊥D)(I +D>D)−1/2 where U i>r U i⊥ = 0. Then∥∥∥U ir − Û ir∥∥∥• =

∥∥∥U ir − (U ir + U i⊥D)(I +D>D)−1/2
∥∥∥
•

(42)

=
∥∥∥(I − (I +D>D)−1/2)U ir − U i⊥D(I +D>D)−1/2

∥∥∥
•

(43)

=
∥∥∥(I − (I +D>D)−1/2)U ir

∥∥∥
•
−
∥∥∥U i⊥D(I +D>D)−1/2

∥∥∥
•

(44)

6higher order errors (will be dropped) + ‖D‖• (45)

6

∥∥∥Ai − Âi∥∥∥
•

λ
(Wedin’s theorem) (46)

=

∥∥∥Pi−1CX1:i;Xi+1:d
− P̂i−1ĈX1:i;Xi+1:d

∥∥∥
•

λ
(47)

(Pi−1 := ((U i−1>
r . . . (U2>

r (U1>
r ⊗ I)⊗ I) . . .⊗ I)) (48)

6

∥∥CX1:i;Xi+1:d
− C̄X1:i;Xi+1:d

∥∥
• +

∑i−1
j=1

∥∥∥U jr − Û jr∥∥∥•
λ

(49)

(50)

which is bounded in a recursive fashion. We now will derive a closed form bound for
∥∥∥U ir − Û ir∥∥∥•.

For simplicity of notation, Let ai :=
∥∥∥U ir − Û ir∥∥∥• and ∆ :=

∥∥CX1:d
− C̄X1:d

∥∥
•, we have that

λ a1 6 ∆ (51)
λ a2 6 ∆ + a1 (52)
λ a3 6 ∆ + a1 + a2 (53)
λ . . . (54)

λ ai 6 ∆ +

i−1∑
j=1

aj (55)

Rearranging terms, we have that
λ 0 0 . . . 0
−1 λ 0 . . . 0
−1 −1 λ . . . 0

...
...

...
. . .

...
−1 −1 −1 . . . λ



a1

a2

a3

...
ai

 6


∆
∆
∆
...

∆

 . (56)
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Solving the above equation, we have that

ai 6
(1 + λ)i−1

λi
∆ ⇔

∥∥∥U ir − Û ir∥∥∥• 6 (1 + λ)i−1

λi
∥∥CX1:d

− C̄X1:d

∥∥
• (57)

Therefore, equation (41) is bounded by∥∥∥C̃X1:d
− ĈX1:d

∥∥∥
•

=

d−2∑
i=1

∥∥∥U ir − Û ir∥∥∥• +
∥∥∥Ad−1 − Âd−1

∥∥∥
•

(58)

6
d−2∑
i=1

(1 + λ)i−1

λi
∥∥CX1:d

− C̄X1:d

∥∥
• +

∥∥CX1:d
− C̄X1:d

∥∥
• +

d−2∑
i=1

(1 + λ)i−1

λi
∥∥CX1:d

− C̄X1:d

∥∥
•

(59)

6
(1 + λ)d−2

λd−2

∥∥CX1:d
− C̄X1:d

∥∥
• (60)

Furthermore, based on the concentration inequality for kernel embeddings [13], we have that with
high probability at least 1− δ∥∥∥C̃X1:d

− ĈX1:d

∥∥∥
•
≤ (1 + λ)d−2

λd−2

∥∥CX1:d
− C̄X1:d

∥∥
• 6

(1 + λ)d−2c

λd−2
√
n

(61)

with some constant c associated with the kernel and the probability δ.
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