
Supplementary Material

A Perturbation Results
We discuss here the perturbation results for the quadratic approximation (5) to the linear program
(3). These results constitute a proof of Theorem 5.

We note for future reference that the optimality (KKT) conditions for the primal-dual pair of LPs
(3) and (4) are

Ax = b, 0  c�ATu ? x � 0. (9)
The QP approximation (5) is equivalent to the following monotone linear complementarity problem
(LCP):

0  x ? F
�

(x) := c�AT ū+ �AT

(Ax� b) +
1

�
(x� x̄). (10)

Here we rely on Renegar’s theory [17] which requires not only that primal and dual are both solvable,
but also that they are still solvable after we make arbitrary small perturbations to the data (A, b, c).
This includes cases in which the basis has fewer nonzeros than there are equality constraints (a
situation known as “primal degeneracy”). We assume throughout that A has full row rank m. If A
were row rank deficient, then even if the primal-dual pair had a solution, we would be able to find
an arbitrarily small perturbation that renders the primal infeasible.

In accordance with Renegar, we use d := (A, b, c) to denote the data for the problems (3) and (4). We
denote by Pri; the set of data d for which the primal (3) is infeasible, and define Dual; analogously
for the dual (4). Renegar uses the “distance to infeasibility” to define a condition number for the
primal and dual. Specifically, defining

�
P

:=

dist(d, Pri;)
kdk , �

D

:=

dist(d,Dual;)
kdk , (11)

the quantities 1/�
P

and 1/�
D

capture the sensitivity of the optimal objective value for the problem
(3) to perturbations in b and c. Note that both �

P

and �
D

lie in the interval [0, 1].

We assume �
P

> 0 and �
D

> 0 throughout the analysis below. This implies that the primal and dual
are both feasible, hence by strong duality both have solutions x⇤ and u⇤ (not necessarily unique).
Lemma 7. Suppose that �

P

> 0 and �
D

> 0, and let x⇤
be any solution of (3) and u⇤

be any

solution of (4), and define

C⇤ := max(kx⇤ � x̄k, ku⇤ � ūk).
Then the unique solution x(�) of (5) satisfies the following inequalities:

kAx(�)� bk  ��1

h
ku⇤ � ūk+

p
ku⇤ � ūk2 + kx⇤ � x̄k2

i

 ��1

(1 +

p
2)C⇤,

kx(�)� x̄k 
h
2ku⇤ � ūk

h
ku⇤ � ūk+

p
ku⇤ � ūk2 + kx⇤ � x̄k2

i
+ kx⇤ � x̄k2

i
1/2


p
6C⇤.

Proof. Note that x⇤ is a feasible point for (5), so we have by optimality of x(�) that f
�

(x(�)) 
f
�

(x⇤
), that is,

cTx(�)� ūT

(Ax(�)� b) +
�

2

kAx(�)� bk2 + 1

2�
kx(�)� x̄k2  cTx⇤

+

1

2�
kx⇤ � x̄k2,

and thus
�

2

kAx(�)� bk2 + 1

2�
kx(�)� x̄k2  cT (x⇤ � x(�)) + ūT

(Ax(�)� b) +
1

2�
kx⇤ � x̄k2.

Note from x(�) � 0 and (9) that

0  x(�)T (c�ATu⇤
)) �cTx(�)  �(u⇤

)

TAx(�).

10

We also have from (9) that cTx⇤
= (u⇤

)

TAx⇤. By combining these observations, we obtain
�

2

kAx(�)� bk2 + 1

2�
kx(�)� x̄k2  (u⇤ � ū)TA(x⇤ � x(�)) +

1

2�
kx⇤ � x̄k2. (12)

By dropping the second term on the left-hand side of this expression, multiplying by �, and using
Cauchy-Schwartz and Ax⇤

= b, we obtain
�2

2

kAx(�)� bk2  ku⇤ � ūk�kAx(�)� bk+ 1

2

kx⇤ � x̄k2.

Denoting e
�

:= �kAx(�)� bk, this inequality reduces to the condition
1

2

e2
�

� ku⇤ � ūke
�

� 1

2

kx⇤ � x̄k2  0.

Solving this quadratic for e
�

, we obtain

e
�

 ku⇤ � ūk+
p
ku⇤ � ūk2 + kx⇤ � x̄k2,

proving the first claim.

For the second claim, we return to (12), dropping the first term on the left-hand side, to obtain
1

2�
kx(�)� x̄k2  ku⇤ � ūkkAx(�)� bk+ 1

2�
kx⇤ � x̄k2.

By substituting the bound on kAx(�) � bk just derived, multiplying by 2� and taking the square
root, we obtain the result.

Fixing � and x(�), we now consider the following perturbed linear program

min cT
�

x s.t. Ax = b
�

, x � 0, (13)
and its dual

max bT
�

u s.t. ATu  c
�

, (14)
where

b
�

:= Ax(�), c
�

:= c+
1

�
(x(�)� x̄).

From Lemma 7, we have

kb� b
�

k  1

�
(1 +

p
2)C⇤  2.5C⇤

�
, kc� c

�

k  1

�

p
6C⇤  2.5C⇤

�
. (15)

KKT conditions for (13), (14) are

0  x̂ ? c+
1

�
�AT û � 0, Ax̂ = Ax(�).

It is easy to check, by comparing with (10), that these conditions are satisfied by
x̂ = x(�), û = ū� �A(x(�)� x⇤

).

Hence x̂ = x(�) is a solution of (13). There may be other solutions, but they will have the same
objective value, of course.

We now use the following result, which follows immediately from [17, Theorem 1, part (5)].5

Theorem 8. Let d = (A, b, c) be the data defining the primal-dual pair (3) and (4), and suppose

that �
P

and �
D

defined by (11) are both positive. Consider the following perturbation applied to the

b and c components: �d := (0,�b,�c), and assume that

k�dk
kdk  �

P

,
k�dk
kdk  �

D

.

Then, denoting the solution of (3) by x⇤
and the solution of the linear program with perturbed data

d+�d by x⇤
�

, we have

|cTx⇤ � (c+�c)Tx⇤
�

|  k�bk
�
D

kck+ k�ck
dist(d, Pri;)� k�dk +

k�ck
�
P

kbk+ k�bk
dist(d,Dual;)� k�dk .

5Note that Renegar appears to use a different formulation for the linear program, namely Ax  b rather
than Ax = b. However, his inequality represents a complete ordering with respect to a closed convex cone CY ,
and when we set CY = {0}, we recover Ax = b.

11

Our main theorem is obtained by applying this result with the perturbations

�b := b
�

� b = Ax(�)� b, �c := c
�

� c =
1

�
(x(�)� x̄). (16)

We have the following result.
Theorem 9. Suppose that

� � ¯� :=

10C⇤
kdkmin(�

P

, �
D

)

.

We then have the following bound on the difference between the optimal values of (3) and (13):

|cTx⇤ � cT
�

x(�)|  1

�

25C⇤
2�

P

�
D

.

Proof. Note first that from (15) and

k�dk  k�bk+ k�ck  5C⇤
�

.

From our assumption on �, we have

k�dk
kdk  5C⇤

�kdk  1

2

min(�
P

, �
D

),

so that the assumptions of Theorem 8 are satisfied. We have moreover from the definitions (11) that

dist(d, Pri;)� k�dk = kdk

�
P

� k�dk
kdk

�
� 1

2

kdk�
P

,

and similarly dist(d,Dual;) � (1/2)kdk�
D

. By substituting into the inequality of Theorem 8, and
using the bounds just derived together with (15), we obtain

|c⇤x⇤ � cT
�

x(�)|  2.5��1C⇤
�
D

(kck+ 2.5��1C⇤)

.5kdk�
P

+

2.5��1C⇤
�
P

(kbk+ 2.5��1C⇤)

.5kdk�
D

.

Since
kck  kdk, kbk  kdk, 2.5C⇤

�
 1

4

min(�
P

, �
D

)kdk  1

4

kdk,

we have

|c⇤x⇤ � cT
�

x(�)|  2.5��1C⇤(2.5)kdk
(1/2)kdk�

P

�
D

=

1

�

25C⇤
2�

P

�
D

,

completing the proof.

The following corollary is almost immediate.
Corollary 10. Suppose the conditions of Theorem 9 are satisfied. Then

|cTx⇤ � cTx(�)|  1

�


25C⇤
2�

P

�
D

+ 6C2

⇤ +

p
6kx̄kC⇤

�
.

Proof. We have from the definition of c
�

that

|cTx⇤ � cTx(�)|  |cTx⇤ � cT
�

x(�)|+ 1

�
x(�)T (x(�)� x̄)

= |cTx⇤ � cT
�

x(�)|+ 1

�
kx(�)� x̄k2 + 1

�
x̄T

(x(�)� x̄)

 1

�


25C⇤
2�

P

�
D

+ 6C2

⇤ +

p
6kx̄kC⇤

�
.

where the final inequality follow from Lemma 7 and Theorem 9.

12

B Details of Rounding Schemes
In this section, we provide details of known LP-rounding schemes for covering, packing and
multiway-cut problems. (Vazirani [22] provides a comprehensive survey on the theory and algo-
rithms for LP-rounding.). We then discuss how these algorithms can be extended to round (✏, �)
optimal solutions.

B.1 Set Cover
Given a universe U with N elements, a collection of subsets S = {S

1

, S
2

. . . S
k

} each associated
with a positive cost function c : S ! R+. In the set cover problem, we must identify a minimum
cost sub-collection of sets S that covers all elements in U . The set cover problem can be formulated
as the following IP:

min

X

s2S
c
s

x
s

subject to
X

s:a2s

x
s

� 1 8a 2 U, x
s

2 {0, 1} 8s 2 S. (17)

A simple way to convert a solution x⇤
s

of the LP relaxation to an integral solution is to pick all sets
x
s

where x⇤
s

> 1/f , where f is a bound on the maximum number of sets in which a single element
is present. Such an algorithm achieves an f -factor approximation [7]. An alternative approximation
scheme is a randomized scheme due to [20]. In this scheme, we put s 2 S into the set cover with
probability equal to the optimal fractional solution x⇤

s

. In expectation, this approximation scheme is
a O(logN)-factor approximation, and is a valid set cover with probability 1/2.

B.2 Set Packing
Using the same notation for U , N , S , and x

s

, 8s 2 S as above, the set packing problem is to
identify the lowest cost collection of mutually disjoint sets. It can be formulated as the following IP:

max

X

s2S
c
s

x
s

subject to
X

s:a2s

w
a,s

x
s

 1 8a 2 U, x
s

2 {0, 1} 8s 2 S, (18)

where w
a,s

is the weight of element a 2 U in set s 2 S .

Bansal et al. [1] proposed an ek + o(k)-factor approximation (see Algorithm B.2) for the special
case of k-column sparse set packing where the maximum number of sets containing each element is
at most k. They use the following stronger formulation of the set packing problem:

max

X

s2S
c
s

x
s

(19)

subject to
X

s:a2s

w
a,s

x
s

 1 8a 2 U,

X

a2B(s)

x
s

 1 8a 2 U,

x
s

2 {0, 1} 8s 2 S,

where w
a,s

= 1 if the element a 2 U is present in set s 2 S, c
s

is the cost of set s 2 S and
B(s) := {a 2 U |w

a,s

> 1/2}.

Algorithm 2 A ek + o(k)-factor randomized LP-rounding algorithm for set packing
1: Find any feasible solution x̂ to the LP relaxation of (19).
2: Choose set s 2 S with probability x̂

s

/(k✓). Let C ✓ S denote the chosen sets.
3: For each set s 2 C and element a 2 U , let E

a,s

denote the event that the sets {s
2

2 C : w
a,s2 >

w
a,s

} have a total weight (with respect to element a) exceeding 1. Mark s for deletion if E
a,s

occurs for any a 2 s.
4: Delete all sets from s 2 C that are marked for deletion.

B.3 Multiway-Cuts
Given a graph G(V,E) and a set of terminals V

1

, V
2

, . . . V
k

, a k-way cut partitions the set of vertices
V into k mutually disjoint sets. The cost of the k-way cut is the sum of the costs of all the edges that

13

run across the partitions. A k-way cut of minimum cost is the solution to the following problem:

min

1

2

X

u,v2E

c
u,v

kX

i=1

|xi

u

� xi

v

| (20)

subject to x
v

2 �

k

8v 2 V

x
v

2 {0, 1}k 8v 2 V,

where �

k

:= {x 2 Rk

:

P
k

i=1

x
i

= 1, x � 0} is the set of simplex constraints in k dimensions.
Although it might appear that the formulation in (20) is non-linear, one can easily linearize (20) to

min

1

2

X

u,v2E

c
u,v

kX

i=1

xi

uv

subject to x
v

2 �

k

8v 2 V

xi

uv

� xi

v

� xi

u

8u, v 2 E, i 2 {1 . . . k}
xi

uv

� xi

u

� xi

v

8u, v 2 E, i 2 {1 . . . k}
xi

uv

2 [0, 1] 8u, v 2 E, i 2 {1 . . . k}
xi

v

2 {0, 1} 8v 2 V, i 2 {1 . . . k}
There is a 3/2�1/k factor approximation for multiway-cut using the region-growing algorithm due
to [5]. The details of the algorithm are laid out in [22, Algorithm 19.4].

C Rounding Infeasible Solutions
In this section, we briefly describe how we can extend known LP-rounding algorithms to infeasible
(✏, �)-approximate solutions. We discuss how one can go from an (✏, �)-approximate solution to a
feasible (0, f(✏, �))-approximate solution, for some positive function f(·, ·). The arguments in this
section are based on simple ideas of scaling and projection.

As is the case in the main manuscript, we illustrate our approach using vertex cover. Let x̂ be an
(✏, �)-approximate solution of the following vertex cover LP:

min

x2[0,1]

n
1

Tx subject to x
i

+ x
j

� 1 for (i, j) 2 E,

so that in particular, x
i

2 [0, 1] for all i, and x
i

+ x
j

� 1 � ✏ for all (i, j) 2 E. We claim that the
point

z := ⇧

[0,1]

n
(x/(1� ✏))

is a (0, �/(1�"))-approximate solution. To check feasibility, suppose for contradiction that z
i

+z
j

<
1 for some (i, j) 2 E. We thus have z

i

< 1 and z
j

< 1, so that z
i

= x
i

/(1�✏) and z
j

= x
j

/(1�✏).
Therefore, z

i

+ z
j

= (x
i

+ x
j

)/(1� ✏) � 1, a contradiction.

C.1 Rounding for Coverings
We consider a covering program P = (A, b, c) with positive integer data, that is, (A, b, c) � 0 and
A 2 Zm⇥n, b 2 Zm, and c 2 Zn. Suppose that there are also [0, 1] bound constraints on each
component of x. The problem formulation is as follows:

min

x2[0,1]

n
cTx subject to Ax � b. [P (A, b, c)]

To obtain a formulation closer to the standard form (3), we can introduce slack variables and write
min

x2[0,1]

n
,z2[0,1)

m
cTx subject to Ax� z = b, z � 0.

We can always set z = max{Ax� b, 0} to translate between feasible solutions of the two programs.

The following quantity q(P) defines a minimum infeasibility measure over all infeasible, integral
solutions to P :

q(P) = min

j=1,...,m

min

x2{0,1}n
:Aj·x<bj

b
j

�A
j·x,

where A
j· denotes the jth row of A. Notice for q(P) � 1 for any non-trivial covering program P ,

by integrality alone.

14

Lemma 11. Let P be a covering program with a nonempty solution set. Let x̂ be an (✏, �)-
approximate solution of P , and suppose that ✏/q(P)  1. Then there is a (0, �/(1� ↵))-
approximate solution x̃ defined as

x̃ = ⇧

[0,1]

n
((1� ↵)�1x̂),

where ↵ 2 [✏/q(P), 1).

Proof. We first show that x̃ is feasible. Without loss of generality, assume that z
j

= max(A
j·x̂ �

b
j

, 0) for j = 1, . . . ,m. Since x̂ is a (✏, �) solution, we have kAx̂� z � bk1 ✏. With z defined as
in our formula, this bound implies that

Ax̂ = b � �✏1, (21)

where 1 is the all-ones vector in Rn. After scaling by x̂ by (1�↵)�1, some components may exceed
1. Hence, we partition the indices into two sets ⌦

1

= {i | x̂
i

� 1�↵} and ⌦

<1

= {1, 2, . . . , n}\⌦
1

.
For any ⌦ ✓ [n], we define the following projection operator:

⇡
⌦

(x) :=

⇢
x
i

if i 2 ⌦

0 otherwise.

We can then write x̃ as follows:

x̃ = ⇡
⌦11 + (1� ↵)�1⇡

⌦<1 x̂.

Assume for contradiction that x̃ is infeasible. Then there must be some constraint j for which
A

j·x̃ < b
j

. Using the decomposition above and the fact that ↵ 2 (0, 1), we have

A
j·⇡⌦<1 x̂ < (b

j

�A
j·⇡⌦11)(1� ↵). (22)

On the other hand, by (21), we have

A
j·(⇡⌦11 + ⇡

⌦<1 x̂) � A
j·(⇡⌦1 x̂+ ⇡

⌦<1 x̂) � b
j

� ✏.

and so
A

j·⇡⌦<1 x̂ � b
j

�A
j·⇡⌦11 � ✏ (23)

By combining (22) and (23), we obtain

(b
j

�A
j·⇡⌦11)(1� ↵) > (b

j

�A
j·⇡⌦11)� ✏

Since b
j

� A
j·⇡⌦11 � b

j

� A
j·x̃ > 0, we can divide by b

j

� A
j·⇡⌦11 without changing signs to

obtain
✏

b
j

�A
j·⇡⌦11

> ↵) b
j

�A
j·⇡⌦11 < ✏/↵. (24)

We have by using the definition of ↵ that b
j

�A
j·⇡⌦11 � q(P) � ✏/↵, since ⇡

⌦

1 is an integral but
infeasible point for (P). This fact contradicts (24), so we have proved feasibility of x̃ for (P).

We now bound the difference between c⇤x̃ and c⇤x⇤, where x⇤ is the optimal solution of (P). Since
x̃ is feasible, we have that cTx⇤  cT x̃. For the upper bound, we have

cT x̃� cTx⇤  (1� ↵)�1cT x̂� cTx⇤  (1� ↵)�1

(cT x̂� cTx⇤
)  �

1� ↵
cTx⇤.

The first inequality follows from cT z � cT (⇧
[0,1]

nz) since c � 0; the second inequality is from
↵ 2 (0, 1); and the third inequality follows from the fact that x̂ is a (✏, �) approximation.

In our experiments, we set ↵ = ✏/q(P), which is computed using the approximate (✏, �) optimal
fractional solution.

15

C.2 Rounding for Packing

A packing problem is a maximization linear program P (A, b, c) where A, b, c � 0 and A 2 Zm⇥n,
b 2 Zm, and c 2 Zn along with bound constraints [0, 1] on all variables. That is,

max

u2[0,1]

m
uT b subject to ATu  c. [P (A, b, c)]

In this class of problems, we can assume without loss of generality that c � 1. The equality con-
strained formulation of this problem is

max

u2[0,1]

m
,z2Rn

uT b subject to ATu+ z = c, z � 0.

(We can set z = max(c�ATu, 0) to obtain the equivalence.)

We use A·i to denote the ith column of A in the discussion below.
Lemma 12. Let P be a packing program. Let û be an (✏, �)-approximate solution of P , then there

is a (0, �+↵

1+↵

)-approximate solution ũ defined as

ũ = û/(1 + ↵)

provided that û 2 [0, 1]m where ↵ � ✏/ (min

i=1,2,...,n

c
i

).

Proof. We observe first that ũ 2 [0, 1]m. To prove that AT ũ  c, note that since û is an (✏, �)-
approximate solution, we have

AT û  c+ ✏1  c+ ↵

✓
min

l=1,2,...,n

c
l

◆
1  (1 + ↵)c,

proving the claim.

Let u⇤ be an optimal solution of P (A, b, c). Since ũ is feasible and this is a maximization problem,
we have uT

⇤ b � ũT b � 0. For the other bound, we have

uT

⇤ b� ũT b = uT

⇤ b�
1

1 + ↵
ûT b  uT

⇤ b�
1� �

1 + ↵
uT

⇤ b =
� + ↵

1 + ↵
uT

⇤ b,

completing the proof.

A quick examination of the proof suggests that we can take ↵ :=

⇣
max

i=1,2,...,n

A

T
·iû�ci

ci

⌘

+

, which
is never larger than ↵ as defined above. In our experiments, we set ↵ using this tighter bound and
✓ =

1

k

in algorithm B.2. We note that the algorithm is sensitive to the value of ✓. Any positive value
of ✓k � 1 will always return a valid independent set. The proofs in [1] require that ✓ must be greater
or equal to 1, but we found that ✓ =

1

k

works much better in practice.

C.3 Rounding for Multiway-Cuts
Since we enforce the simplex constraints in the SCD solve, every solution obtained by our quadratic
relaxation is automatically feasible for our linear program.

D Linear Programming Condition Numbers
In this section, we describe estimates of (�

P

, �
D

) in detail for vertex cover, and sketch the ideas for
estimating these quantities for the other relaxations that we consider in this paper.

D.1 Vertex Cover: The Bounds in Detail
Consider vertex cover with a graph G = (V,E), where |V | = n and |E| = m. The LP relaxation is
as follows

min

x2Rn
+

1Tx subject to x
v

+ x
w

� 1 for all (v, w) 2 E and x
v

 1 for all v 2 V. (25)

The dual of this program is

max

u2Rm
+ ,z2R+

uT 1 � zT 1 subject to
X

e:e3v

u
e

� z
v

 1 for each v 2 V.

16

Computing kdk. Define kdk = max{kAk
F

, kbk
2

, kck
2

} for this problem, where (A, b, c) are the
data defining (25). We have

kAk
F

=

p
2m+ n, kbk

2

=

p
m+ n kck =

p
n

Hence, kdk =

p
2m+ n.

Primal Bound. We define x =

2

3

1, and figure how large a perturbation (�A,�b,�c) is needed
to problem data (A, b, c) to make this particular point infeasible. The norm of this quantity will give
a lower bound on the distance to infeasibility.

By construction of x, we have that Ax � b = 1

3

1. For infeasibility with respect to one of the cover
constraints, we would need for some i that

|(�A)

i·x��b
i

| � 1

3

,

which, given our definition of x, would require

2

3

nX

j=1

|�A
ij

|+ |�b
i

| > 1

3

. (26)

We must therefore have that
nX

j=1

|�A
ij

| � 1

4

and/or |�b
i

| > 1

6

.

In the first case, noting that
1

4

n�1/2

= min

z2[0,1]

n
kzk

2

subject to zT 1 � 1

4

,

we would have that k�Ak
F

� k(�A)

i·k2 � n�1/2/4. In the second case, we would have k�bk
2

�
|�b

i

| � 1/6.

Suppose that the infeasibility happens instead with respect to one of the x  1 constraints. A similar
argument for the violated constraint would lead to the same necessary condition (26) and the same
bounds.

In either case, assuming that n � 3, we have

k(�A,�b,�c)k � n�1/2/4,

so that
�
P

� kdk�1n�1/2/4.

Dual Bound. We consider here a fixed vector (u, z) = 0. For infeasibility, we would need �c
i

<
�1 for some i, and therefore k�dk � 1.We thus have

�
D

� kdk�1

Putting the primal and dual bounds together, and using our bound on kdk, we obtain

1

�
P

�
D

= O(kdk2n1/2

) = O((m+ n)n1/2

).

D.2 Packing and Covering Programs
Suppose we have a covering program with data (A, b, c) � 0, with [0, 1] bound constraints on each
variable. That is,

min

x2Rn
+

cTx subject to Ax � b, x  1,

its dual is a packing program:

max

u2Rm
+ ,z2Rn

+

uT b� zT 1 subject to ATu� z  c.

17

Generalizing our argument above, we find a point that has the most slack from each constraint.
Defining the following measure of slack:

s(A, b, c) = max

x2Rn
+:Ax�b,x1

min{ min

i=1,...,n

1� x
i

, min

j=1,...,m

b
j

�A
j·x},

we can obtain a lower bound �
P

� kdk�1n�1/2s(A, b, c)/2, as follows. Suppose that x
S

is the
point that achieves the maximum slack. We need that one of the following conditions holds for at
least one constraint i: �A

i·xS

> s(P)/2 or |�b
i

| � s(P)/2. Observe that

�A
i·xS

 kx
S

k
2

k�A
i·k2  n1/2k�A

i

k
2

.

(The second inequality follows from 0  x
S

 1.) Thus, in this case, k�A
i

k
2

> s(A, b, c)n�1/2/2.
Using a similar argument to the previous subsection, we have

�
P

� kdk�1k�dk � kdk�1s(A, b, c)n�1/2/2.

Since (u, z) = (0, 0) is feasible for the dual, we have by a similar argument to the previous
subsection that infeasibility occurs only if |�c

i

| � c
i

for at least one i. We therefore have
k�dk � min

i=1,2,...,n

c
i

, so that

�
D

� kdk�1

min

i=1,2,...,n

c
i

.

Putting the bounds on �
P

and �
D

together, we have
1

�
P

�
D

 kdk2 1

s(A, b, c)min

i=1,2,...,n

c
i

O(n1/2

).

E Extended Experimental Results
In this section, we elaborate our discussion on the experimental results in Section 4.2 and provide
additional evidence to support our claims. Figures 5 and 6 compare the performance of Thetis with
Cplex-IP and Cplex-LP on all tested instances of vertex cover, independent set, and multiway-cut.
In all three formulations, we used unit costs in the objective function. The results in Figure 6 were
obtained by using default tolerance on Cplex-LP, while Figure 5 uses the same tolerance setting as
the main manuscript.

Maximum Independent Set. We observed that the rounded feasible solutions obtained using
Thetis were of comparable quality to those obtained by rounding the more accurate solutions com-
puted by Cplex-LP. The integral solutions obtained from Cplex-IP were only marginally better than
that obtained by LP-rounding, but at a cost of at least an order of magnitude more time.

Multiway Cuts. The number of variables in the multiway-cut problem is O((|E| + |V |) ⇥ k)
where |E| is the number of edges, |V | is the number of vertices and k is the number of terminals.
The terminals were chosen randomly to be in the same connected component of the graph. All the
test instances, excepting Google+, were fully connected. For Google+, 201949 (of 211186 vertices)
were connected to the terminals. For all instances, including Google+, all codes were run on (20)
built using the entire graph.

We solved the QP-approximation of (20) using a block-SCD method, which is variant of Algorithm
1, in which an update step modifies a block of co-ordinates of size k. For the blocks corresponding
to variables x

v

, 8v 2 V , we performed a projection on to the k-dimensional simplex �

k

. The
simplex projection was necessary to ensure that the approximate LP solution is always feasible for
(20). We disabled presolve for Thetis to prevent the simplex constraints from being eliminated or
altered. We did not disable presolve for Cplex-LP or Cplex-IP.

Our results demonstrate that Thetis is much more scalable than both Cplex-IP and Cplex-LP. Thetis
was an order of magnitude faster than Cplex-LP on the Bhoslib instances while generating solutions
of comparable quality. Both Thetis and Cplex-LP recovered the optimal solution on some of the
instances. On the SNAP instances, both Cplex-IP and Cplex-LP failed to complete within an hour
on any of the instances. Cplex-IP was able to generate feasible solutions using its heuristics, but was
able to unable to solve the root-node relaxation on any of the SNAP instances.

18

VC Cplex IP Cplex LP Thetis
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 1475 0.7 2.48 767.0 1534 0.88 959.7 1532
frb59-26-2 - 1475 0.6 3.93 767.0 1534 0.86 979.7 1532
frb59-26-3 - 1475 0.5 4.42 767.0 1534 0.89 982.9 1533
frb59-26-4 - 1475 0.5 2.65 767.0 1534 0.89 983.6 1531
frb59-26-5 - 1475 0.5 2.68 767.0 1534 0.90 979.4 1532
Amazon 85.5 1.60⇥105 - 24.8 1.50⇥105 2.04⇥105 2.97 1.50⇥105 1.97⇥105

DBLP 22.1 1.65⇥105 - 22.3 1.42⇥105 2.08⇥105 2.70 1.42⇥105 2.06⇥105

Google+ - 1.06⇥105 0.01 40.1 1.00⇥105 1.31⇥105 4.47 1.00⇥105 1.27⇥105

MC Cplex IP Cplex LP Thetis
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 72.3 346 - 312.2 346 346 5.86 352.3 349
frb59-26-2 561.1 254 - 302.9 254 254 5.82 262.3 254
frb59-26-3 27.7 367 - 311.6 367 367 5.86 387.7 367
frb59-26-4 65.4 265 - 317.1 265 265 5.80 275.7 265
frb59-26-5 553.9 377 - 319.2 377 377 5.88 381.0 377
Amazon - 12 NA - - - 55.8 7.3 5
DBLP - 15 NA - - - 63.8 11.7 5

Google+ - 6 NA - - - 109.9 5.8 5
MIS Cplex IP Cplex LP Thetis
(max) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 50 18.0 4.65 767 15 0.88 447.7 18
frb59-26-2 - 50 18.0 4.74 767 17 0.88 448.6 17
frb59-26-3 - 52 13.4 3.48 767 19 0.87 409.2 19
frb59-26-4 - 53 11.3 4.41 767 18 0.90 437.2 17
frb59-26-5 - 51 15.6 4.43 767 18 0.88 437.0 18
Amazon 35.4 1.75⇥105 - 23.0 1.85⇥105 1.56⇥105 3.09 1.73⇥105 1.43⇥105

DBLP 17.3 1.52⇥105 - 23.2 1.75⇥105 1.41⇥105 2.72 1.66⇥105 1.34⇥105

Google+ - 1.06⇥105 0.02 44.5 1.11⇥105 9.39⇥104 4.37 1.00⇥105 8.67⇥104

Figure 5: Wall-clock time and quality of fractional and integral solutions for three graph analysis
problems using Thetis, Cplex-IP and Cplex-LP. Each code was given a time limit of one hour, with
‘-’ indicating a timeout. BFS is the objective value of the best integer feasible solution found by
Cplex-IP. The gap is defined as (BFS�BB)/BFS where BB is the best known solution bound found
by Cplex-IP within the time limit. A gap of ‘-’ indicates that the problem was solved to within
0.01% accuracy and NA indicates that Cplex-IP was unable to find a valid solution bound. LP is the
objective value of the LP solution, and RSol is objective value of the rounded solution.

19

VC Cplex-IP Cplex-LP (default tolerances) Thetis
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 1475 0.7 4.59 767.0 1534 0.88 959.7 1532
frb59-26-2 - 1475 0.6 4.67 767.0 1534 0.86 979.7 1532
frb59-26-3 - 1475 0.5 4.76 767.0 1534 0.89 982.9 1533
frb59-26-4 - 1475 0.5 4.90 767.0 1534 0.89 983.6 1531
frb59-26-5 - 1475 0.5 4.72 767.0 1534 0.90 979.4 1532
Amazon 85.5 1.60⇥105 - 21.6 1.50⇥105 1.99⇥105 2.97 1.50⇥105 1.97⇥105

DBLP 22.1 1.65⇥105 - 23.7 1.42⇥105 2.07⇥105 2.70 1.42⇥105 2.06⇥105

Google+ - 1.06⇥105 0.01 60.0 1.00⇥105 1.30⇥105 4.47 1.00⇥105 1.27⇥105

MC Cplex-IP Cplex-LP (default tolerances) Thetis (✏ = 0.1)
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 72.3 346 - 397.9 346 346 5.86 352.3 349
frb59-26-2 561.1 254 - 348.1 254 254 5.82 262.3 254
frb59-26-3 27.7 367 - 386.6 367 367 5.86 387.7 367
frb59-26-4 65.4 265 - 418.9 265 265 5.80 275.7 265
frb59-26-5 553.9 377 - 409.6 377 377 5.88 381.0 377
Amazon - 12 NA - - - 55.8 7.28 5
DBLP - 15 NA - - - 63.8 11.70 5

Google+ - 6 NA - - - 109.9 5.84 5
MIS Cplex-IP Cplex-LP (default tolerances) Thetis (✏ = 0.1)
(max) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 50 18.0 4.88 767 16 0.88 447.7 18
frb59-26-2 - 50 18.0 4.82 767 16 0.88 448.6 17
frb59-26-3 - 52 13.4 4.85 767 16 0.87 409.2 19
frb59-26-4 - 53 11.3 4.67 767 15 0.90 437.2 17
frb59-26-5 - 51 16.6 4.82 767 16 0.88 437.0 18
Amazon 35.4 1.75⇥105 - 25.7 1.85⇥105 1.58⇥105 3.09 1.73⇥105 1.43⇥105

DBLP 17.3 1.52⇥105 - 24.0 1.75⇥105 1.41⇥105 2.72 1.66⇥105 1.34⇥105

Google+ - 1.06⇥105 0.02 68.8 1.11⇥105 9.40⇥104 4.37 1.00⇥105 8.67⇥104

Figure 6: Wall-clock time and quality of fractional and integral solutions for three graph analysis
problems using Thetis, Cplex-IP and Cplex-LP (run to default tolerance). Each code was given a
time limit of one hour, with ‘-’ indicating a timeout. BFS is the objective value of the best integer
feasible solution found by Cplex-IP. The gap is defined as (BFS�BB)/BFS where BB is the best
known solution bound found by Cplex-IP within the time limit. A gap of ‘-’ indicates that the
problem was solved to within 0.01% accuracy and NA indicates that Cplex-IP was unable to find a
valid solution bound. LP is the objective value of the LP solution, and RSol is objective value of the
rounded solution.

20

