
A Proofs for Section 4

A.1 Proof of the Initialization Step

Proof of Theorem 4.1. Recall that x0 is the top singular vector of S = 1
n

∑
ℓ |aℓTx∗|2aℓaℓT . As aℓ

are rotationally invariant random variables, wlog, we can assume that x∗ = e1 where e1 is the first
canonical basis vector. Also note that E

[
|〈a, e1〉|2aaT

]
= D, where D is a diagonal matrix with

D11 = Ea∼NC(0,1)[|a|4] = 8 and Dii = Ea∼NC(0,1),b∼NC(0,1)[|a|2|b|2] = 1, ∀i > 1.

We break our proof of the theorem into two steps:

(1): Show that, with probability > 1− 4
m2 : ‖S−D‖2 < c/4.

(2): Use (1) to prove the theorem.

Proof of Step (2): We have 〈x0,Sx0〉 ≤ c/4 + 3
((

x
0
)T

e1

)2

+
∑n

i=2(x
0
i)

2 = c/4 +

2
((

x
0
)T

e1

)2

+ 1. On the other hand, since x
0 is the top singular value of S, by using tri-

angle inequality, we have 〈x0,Sx0〉 > 3 − c/4. Hence, 〈x0, e1〉2 > 1 − c/2. This yields
‖x0 − x

∗‖22 = 2− 2〈x0, e1〉2 < c.

Proof of Step (1): We now complete our proof by proving (1). To this end, we use the following
matrix concentration result from [26]:

Theorem A.1 (Theorem 1.5 of [26]). Consider a finite sequence Xi of self-adjoint independent
random matrices with dimensions n×n. Assume that E[Xi] = 0 and ‖Xi‖2 ≤ R, ∀i, almost surely.
Let σ2 := ‖∑i E[Xi]‖2. Then the following holds ∀ν ≥ 0:

P

(
‖ 1
m

m∑

i=1

Xi‖2 ≥ ν

)
≤ 2n exp

( −m2ν2

σ2 +Rmν/3

)
.

Note that Theorem A.1 assumes maxℓ |a1ℓ|2‖aℓ‖2 to be bounded, where a1ℓ is the first component
of aℓ. However, aℓ is a normal random variable and hence can be unbounded. We address this issue
by observing that probability that Pr(‖aℓ‖2 ≥ 2n OR |a1ℓ|2 ≥ 2 logm) ≤ 2 exp(−n/2) + 1

m2 .

Hence, for large enough n, ĉ and m > ĉn, w.p. 1− 3
m2 ,

max
ℓ
|a1ℓ|2‖aℓ‖2 ≤ 4n log(m). (6)

Now, consider truncated random variable ãℓ s.t. ãℓ = aℓ if |a1ℓ|2 ≤ 2 log(m)&‖aℓ‖2 ≤ 2n and
ãℓ = 0 otherwise. Now, note that ãℓ is symmetric around origin and also E[ãiℓãjℓ] = 0, ∀i 6= j.

Also, E[|ãiℓ|2] ≤ 1. Hence, ‖E[|ã1ℓ|2‖ãℓ‖2ãℓã†ℓ]‖2 ≤ 4n log(m). Now, applying Theorem A.1

given above, we get (w.p. ≥ 1− 1/m2)

‖ 1
m

∑

ℓ

|ã1ℓ|2ãℓã†ℓ − E[|ã1ℓ|2ãℓã†ℓ]‖2 ≤
4n log3/2(m)√

m
.

Furthermore, aℓ = ãℓ with probability larger than 1− 3
m2 . Hence, w.p. ≥ 1− 4

m2 :

‖S − E[|ã1ℓ |2ãℓã†ℓ]‖2 ≤
4n log3/2(m)√

m
.

Now, the remaining task is to show that ‖E[|ã1ℓ |2ãℓã
†
ℓ] − E[|a1ℓ |2aℓa

†
ℓ]‖2 ≤ 1

m . This follows easily

by observing that E[ãiℓã
j
ℓ ] = 0 and by bounding E[|ã1ℓ |2|ãiℓ|2− |a1ℓ |2|aiℓ|2 ≤ 1/m by using a simple

second and fourth moment calculations for the normal distribution.

A.2 Proof of per step reduction in error

In all the lemmas in this section, δ is a small numerical constant (can be taken to be 0.01).
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Lemma A.2. Assume the hypothesis of Theorem 4.2 and let x
+ be as defined in (3). Then,

there exists an absolute numerical constant c such that the following holds (w.p. ≥ 1 − η
4 ):∥∥∥

(
AA

T
)−1

A (D− I)AT
x
∗
∥∥∥
2
< cdist (x∗,x) .

Proof. Using (4) and the fact that ‖x∗‖2 = 1, x∗Tx+ = 1 + x
∗T (

AA
T
)−1

A (D− I)AT
x
∗.

That is, |x∗Tx+| ≥ 1−‖
(

1
2mAA

T
)−1 ‖2‖ 1√

2m
A‖2‖ 1√

2m
(D− I)AT

x
∗‖2. Now, using standard

bounds on the singular values of Gaussian matrices [27] and assuming m > ĉ log 1
ηn, we have

(w.p. ≥ 1 − η
4 ): ‖

(
1

2mAA
T
)−1 ‖2 ≤ 1/(1 − 2/

√
ĉ)2 and ‖A‖2 ≤ 1 + 2/

√
ĉ. Note that both the

quantities can be bounded by constants that are close to 1 by selecting a large enough ĉ. Also note
that 1

2mAA
T converges to I (the identity matrix), or equivalently 1

mAA
T converges to 2I since the

elements of A are standard normal complex random variables and not standard normal real random
variables.

The key challenge now is to bound
∥∥(D− I)AT

x
∗∥∥

2
by c

√
mdist

(
x
∗,xt

)
for a global constant

c > 0. Note that since (4) is invariant with respect to
∥∥xt

∥∥
2
, we can assume that

∥∥xt
∥∥
2
= 1. Note

further that, since the distribution of A is rotationally invariant and is independent of x∗ and x
t,

wlog, we can assume that x∗ = e1 and x
t = αe1 +

√
1− α2e2, where α = 〈xt,x∗〉.

Hence,
∥∥(D− I)AT

e1

∥∥2

2
=

∑m
l=1 |a1l|

2 ∣∣Ph
((
αa1l +

√
1− α2a2l

)
a1l

)
− 1

∣∣2 =
∑m

l=1 Uℓ,
where Ul is given by,

Ul
def
= |a1l|2

∣∣∣Ph
((

αa1l +
√
1− α2a2l

)
a1l

)
− 1

∣∣∣
2

. (7)

Using Lemma A.3 finishes the proof.

The following lemma, Lemma A.3 shows that if Uℓ are as defined in Lemma A.2 then, the sum of
Uℓ, 1 ≤ ℓ ≤ m concentrates well around E [Uℓ] and also E [Uℓ] ≤ c

√
mdist

(
x
∗,xt

)
. The proof of

Lemma A.3 requires careful analysis as it provides tail bound and expectation bound of a random
variable that is a product of correlated sub-exponential complex random variables.

Lemma A.3. Assume the hypothesis of Lemma A.2. Let Uℓ be as defined in (7) and let each
a1l, a2l, ∀1 ≤ l ≤ m be sampled from standard normal distribution for complex numbers. Then,
with probability greater than 1− η

4 , we have:
∑m

l=1 Ul ≤ c2m(1−α2), for a global constant c > 0.

Proof of Lemma A.3. We first estimate P [Ul > t] so as to:

1. Calculate E [Ul] and,

2. Show that Ul is a subexponential random variable and use that fact to derive concentration
bounds.

Now, P [Ul > t] =
∫∞√

t

2

p|a1l|(s)P
[
Wl >

√
t

s

∣∣∣|a1l| = s
]
ds, where,

Wl
def
=

∣∣∣Ph
((

αa1l +
√
1− α2a2l

)
a1l

)
− 1

∣∣∣ .
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P

[
Wl >

√
t

s

∣∣∣∣|a1l| = s

]
= P

[∣∣∣Ph
((

αa1l +
√

1− α2a2l

)
a1l

)
− 1

∣∣∣ >
√
t

s

∣∣∣∣|a1l| = s

]

= P

[∣∣∣∣∣Ph
(
1 +

√
1− α2a2l
αa1l

)
− 1

∣∣∣∣∣ >
√
t

s

∣∣∣∣∣|a1l| = s

]

(ζ1)

≤ P

[√
1− α2 |a2l|
α |a2l|

>
c
√
t

s

∣∣∣∣∣|a1l| = s

]

= P

[
|a2l| >

cα
√
t√

1− α2

]

(ζ2)

≤ exp

(
1− cα2t

1− α2

)
,

where (ζ1) follows from Lemma A.7 and (ζ2) follows from the fact that a2l is a sub-gaussian random
variable. So we have:

P [Ul > t] ≤
∫ ∞
√

t

2

exp

(
1− cα2t

1− α2

)
ds = exp

(
1− cα2t

1− α2

)∫ ∞
√

t

2

se−
s
2

2 ds = exp

(
1− ct

1− α2

)
.

(8)

Using this, we have the following bound on the expected value of Ul:

E [Ul] =

∫ ∞

0

P [Ul > t] dt ≤
∫ ∞

0

exp

(
1− ct

1− α2

)
dt ≤ c

(
1− α2

)
. (9)

From (8), we see that Ul is a subexponential random variable with parameter c
(
1− α2

)
. Using

Proposition 5.16 from [27], we obtain:

P

[∣∣∣∣∣

m∑

l=1

Ul − E [Ul]

∣∣∣∣∣ > δm
(
1− α2

)
]
≤ 2 exp

(
−min

(
cδ2m2

(
1− α2

)2

(1− α2)
2
m

,
cδm

(
1− α2

)

1− α2

))

≤ 2 exp
(
−cδ2m

)
≤ η

4
.

So, with probability greater than 1− η
4 , we have:

m∑

l=1

Ul ≤ c2m(1− α2).

This proves the lemma.

Lemma A.4. Assume the hypothesis of Theorem 4.2 and let x+ be as defined in (3). Then, ∀z s.t.
〈z,x∗〉 = 0, the following holds (w.p. ≥ 1− η

4 e
−n): |〈z,x+〉| ≤ 5

9dist (x
∗,x).

Proof. Fix z such that 〈z,x∗〉 = 0. Since the distribution of A is rotationally invariant, wlog

we can assume that: a) x
∗ = e1, b) x = αe1 +

√
1− α2e2 where α ∈ R and α ≥ 0 and c)

z = βe2 +

√
1− |β|2e3 for some β ∈ C. Note that we first prove the lemma for a fixed z and then

using union bound, we obtain the result ∀z ∈ C
n. We have:

∣∣〈z,x+〉
∣∣ ≤ |β| |〈e2,x+〉|+

√
1− |β|2|〈e3,x+〉|. (10)

Now,
∣∣e2Tx+

∣∣ =
∣∣∣e2T

(
AA

T
)−1

A (D− I)AT
e1

∣∣∣

≤ 1

2m

∣∣∣∣∣e2
T

((
1

2m
AA

T

)−1

− I

)
A (D− I)AT

e1

∣∣∣∣∣+
1

2m

∣∣e2TA (D− I)AT
e1

∣∣

≤ 1

2m

∥∥∥∥∥

(
1

2m
AA

T

)−1

− I

∥∥∥∥∥
2

‖A‖2
∥∥(D− I)AT

e1

∥∥
2
+

1

2m

∣∣e2TA (D− I)AT
e1

∣∣ ,

≤ 4c√
ĉ
dist

(
x
t,x∗

)
+

1

2m

∣∣e2TA (D− I)AT
e1

∣∣ , (11)
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where the last inequality follows from the proof of Lemma A.2.

Similarly,
∣∣e3Tx+

∣∣ =
∣∣∣e3T

(
AA

T
)−1

A (D− I)AT
e1

∣∣∣

≤ 1

2m

∣∣∣∣∣e3
T

((
1

2m
AA

T

)−1

− I

)
A (D− I)AT

e1

∣∣∣∣∣+
1

2m

∣∣e3TA (D− I)AT
e1

∣∣

≤ 1

2m

∥∥∥∥∥

(
1

2m
AA

T

)−1

− I

∥∥∥∥∥
2

‖A‖2
∥∥(D− I)AT

e1

∥∥
2
+

1

2m

∣∣e3TA (D− I)AT
e1

∣∣

≤ 4c√
ĉ
dist

(
x
t,x∗

)
+

1

2m

∣∣e3TA (D− I)AT
e1

∣∣ , (12)

Again, the last inequality follows from the proof of Lemma A.2. The lemma now follows by using
(10), (11), (12) along with Lemmas A.5 and A.6.

Lemma A.5. Assume the hypothesis of Theorem 4.2 and the notation therein. Then,

∣∣e2TA (D− I)AT
e1

∣∣ ≤ 100

99
m
√
1− α2,

with probability greater than 1− η
10e

−n.

Proof. We have:

e2
T
A (D− I)AT

e1 =

m∑

l=1

a1la2l

(
Ph

((
αa1l +

√
1− α2a2l

)
a1l

)
− 1

)

=

m∑

l=1

|a1l| a′2l
(
Ph

(
α |a1l|+

√
1− α2a′2l

)
− 1

)
,

where a′2l
def
= a2lPh (a1l) is identically distributed to a2l and is independent of |a1l|. Define the

random variable Ul as:

Ul
def
= |a1l| a′2l

(
Ph

(
1 +

√
1− α2a′2l
α |a1l|

)
− 1

)
.

Similar to Lemma A.2, we will calculate P [Ul > t] to show that Ul is subexponential and use it
to derive concentration bounds. However, using the above estimate to bound E [Ul] will result in a
weak bound that we will not be able to use. Lemma 4.3 bounds E [Ul] using a different technique
carefully.

P [|Ul| > t] ≤ P

[
|a1l| |a′2l|

c
√
1− α2 |a′2l|
α |a1l|

> t

]

= P

[
|a′2l|

2
>

cαt√
1− α2

]
≤ exp

(
1− cαt√

1− α2

)
,

where the last step follows from the fact that a′2l is a subgaussian random variable and hence |a′2l|
2

is a subexponential random variable. Using Proposition 5.16 from [27], we obtain:

P

[∣∣∣∣∣

m∑

l=1

Ul − E [Ul]

∣∣∣∣∣ > δm
√
1− α2

]
≤ 2 exp

(
−min

(
cδ2m2

(
1− α2

)

(1− α2)m
,
cδm

√
1− α2

√
1− α2

))

≤ 2 exp
(
−cδ2m

)
≤ η

10
exp (−n) .

Using Lemma 4.3, we obtain:

∣∣e2TA (D− I)AT
e1

∣∣ =
∣∣∣∣∣

m∑

l=1

Ul

∣∣∣∣∣ ≤ (1 + δ)m
√

1− α2,

with probability greater than 1− η
10 exp(−n). This proves the lemma.
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Proof of Lemma 4.3. Let w2 = |w2| eiθ. Then |w1| , |w2| and θ are all independent random vari-
ables. θ is a uniform random variable over [−π, π] and |w1| and |w2| are identically distributed with
probability distribution function:

p(x) = x exp

(
−x2

2

)
1{x≥0}.

We have:

E [U ] = E

[
|w1| |w2| eiθ

(
Ph

(
1 +

√
1− α2 |w2| e−iθ

α |w1|

)
− 1

)]

= E

[
|w1| |w2|E

[
eiθ

(
Ph

(
1 +

√
1− α2 |w2| e−iθ

α |w1|

)
− 1

)]∣∣∣∣∣|w1| , |w2|
]

Let β
def
=

√
1−α2|w2|
α|w1| . We will first calculate E

[
eiθPh

(
1 + βe−iθ

)∣∣|w1| , |w2|
]
. Note that the above

expectation is taken only over the randomness in θ. For simplicity of notation, we will drop the
conditioning variables, and calculate the above expectation in terms of β.

eiθPh
(
1 + βe−iθ

)
= (cos θ + i sin θ)

1 + β cos θ − iβ sin θ
[
(1 + β cos θ)

2
+ β2 sin2 θ

] 1

2

=
cos θ + β + i sin θ

(1 + β2 + 2β cos θ)
1

2

.

We will first calculate the imaginary part of the above expectation:

Im
(
E
[
eiθPh

(
1 + βe−iθ

)])
= E

[
sin θ

(1 + β2 + 2β cos θ)
1

2

]
= 0, (13)

where the last step follows because we are taking the expectation of an odd function. Focusing on
the real part, we let:

F (β)
def
= E

[
cos θ + β

(1 + β2 + 2β cos θ)
1

2

]

=
1

2π

∫ π

−π

cos θ + β

(1 + β2 + 2β cos θ)
1

2

dθ.

Note that F (β) : R → R and F (0) = 0. We will show that there is a small absolute numerical
constant γ (depending on δ) such that:

0 < β < γ ⇒ |F (β)| ≤ (
1

2
+ δ)β. (14)

We show this by calculating F ′(0) and using the continuity of F ′(β) at β = 0. We first calculate
F ′(β) as follows:

F ′(β) =
1

2π

∫ π

−π

1

(1 + β2 + 2β cos θ)
1

2

− (cos θ + β) (β + cos θ)

(1 + β2 + 2β cos θ)
3

2

dθ

=
1

2π

∫ π

−π

sin2 θ

(1 + β2 + 2β cos θ)
3

2

dθ
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From the above, we see that F ′(0) = 1
2 and (14) then follows from the continuity of F ′(β) at β = 0.

Getting back to the expected value of U , we have:

|E [U ]| =
∣∣∣∣∣E

[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

<γ

}

]

+E

[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

≥γ

}

]∣∣∣∣∣

=

∣∣∣∣∣E
[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

<γ

}

]∣∣∣∣∣

+

∣∣∣∣∣E
[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

≥γ

}

]∣∣∣∣∣

(ζ1)

≤
(
1

2
+ δ

)
E

[
|w1| |w2|

√
1− α2 |w2|
α |w1|

]
+ E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
,

=

(
1

2
+ δ

)(√
1− α2

α

)
E

[
|w2|2

]
+ E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
,

(ζ2)
= (1 + 2δ)

(√
1− α2

α

)
+ E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
, (15)

where (ζ1) follows from (14) and the fact that |F (β)| ≤ 1 for every β and (ζ2) follows from the fact

that E
[
|z2|2

]
= 2. We will now bound the second term in the above inequality. We start with the

following integral:
∫ ∞

t

s2e−
s
2

2 ds = −
∫ ∞

t

sd
(
e−

s
2

2

)

= te−
t
2

2 +

∫ ∞

t

e−
s
2

2 ds ≤ (t+ e)e−
t
2

c , (16)

where c is some constant. The last step follows from standard bounds on the tail probabilities of
gaussian random variables. We now bound the second term of (15) as follows:

E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
=

∫ ∞

0

t2e−
t
2

2

∫ ∞

αt√
1−α2

s2e−
s
2

2 dsdt

(ζ1)

≤
∫ ∞

0

t2e−
t
2

2

(
αt√
1− α2

+ e

)
e
− α

2
t
2

c(1−α2) dt

≤
∫ ∞

0

(
αt3√
1− α2

+ et2
)
e
− t

2

c(1−α2) dt

=
α√

1− α2

∫ ∞

0

t3e
− t

2

c(1−α2) dt+ e

∫ ∞

0

t2e
− t

2

c(1−α2) dt

(ζ2)

≤ c
(
1− α2

) 3

2

(ζ3)

≤ δ
√
1− α2

where (ζ1) follows from (16), (ζ2) follows from the formulae for second and third absolute moments
of gaussian random variables and (ζ3) follows from the fact that 1 − α2 < δ. Plugging the above
inequality in (15), we obtain:

|E [U ]| ≤ (1 + 2δ)

(√
1− α2

α

)
+ δ

√
1− α2 ≤ (1 + 4δ)

√
1− α2,

where we used the fact that α ≥ 1− δ
2 . This proves the lemma.
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Lemma A.6. Assume the hypothesis of Theorem 4.2 and the notation therein. Then,

∣∣e3TA (D− I)AT
e1

∣∣ ≤ δm
√
1− α2,

with probability greater than 1− η
10e

−n.

Proof. The proof of this lemma is very similar to that of Lemma A.5. We have:

e3
T
A (D− I)AT

e1 =

m∑

l=1

a1la3l

(
Ph

((
αa1l + a2l

√
1− α2a3l

)
a1l

)
− 1

)

=
m∑

l=1

|a1l| a′3l
(
Ph

(
α |a1l|+ a′2l

√
1− α2

)
− 1

)
,

where a′3l
def
= a3lPh (a1l) is identically distributed to a3l and is independent of |a1l| and a′2l. Define

the random variable Ul as:

Ul
def
= |a1l| a′3l

(
Ph

(
1 +

a′2l
√
1− α2

α |a1l|

)
− 1

)
.

Since a′3l has mean zero and is independent of everything else, we have:

E [Ul] = 0.

Similar to Lemma A.5, we will calculate P [Ul > t] to show that Ul is subexponential and use it to
derive concentration bounds.

P [|Ul| > t] ≤ P

[
|a1l| |a′3l|

c
√
1− α2 |a′2l|
α |a1l|

> t

]

= P

[
|a′2la′3l| >

cαt√
1− α2

]
≤ exp

(
1− cαt√

1− α2

)
,

where the last step follows from the fact that a′2l and a′3l are independent subgaussian random vari-
ables and hence |a′2la′3l| is a subexponential random variable. Using Proposition 5.16 from [27], we
obtain:

P

[∣∣∣∣∣

m∑

l=1

Ul − E [Ul]

∣∣∣∣∣ > δm
√
1− α2

]
≤ 2 exp

(
−min

(
cδ2m2

(
1− α2

)

(1− α2)m
,
cδm

√
1− α2

√
1− α2

))

≤ 2 exp
(
−cδ2m

)
≤ η

10
exp (−n) .

Hence, we have:

∣∣e3TA (D− I)AT
e1

∣∣ =
∣∣∣∣∣

m∑

l=1

Ul

∣∣∣∣∣ ≤ δm
√
1− α2,

with probability greater than 1− η
10 exp(−n). This proves the lemma.

Lemma A.7. For every w ∈ C, we have:

|Ph (1 + w)− 1| ≤ 2 |w| .

Proof. The proof is straight forward:

|Ph (1 + w)− 1| ≤ |Ph (1 + w)− (1 + w)|+ |w| = |1− |1 + w||+ |w| ≤ 2 |w| .
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B Proofs for Section 5

Proof of Lemma 5.1. For every j ∈ [n] and i ∈ [m], consider the random variable Zij
def
= |aijyi|.

We have the following:

• if j ∈ S, then

E [Zij ] =
2

π

(√
1−

(
x∗j

)2
+ x∗j arcsinx

∗
j

)

≥ 2

π

(
1− 5

6

(
x∗j

)2 − 1

6

(
x∗j

)4
+ x∗j

(
x∗j +

1

6

(
x∗j

)3
))

≥ 2

π
+

1

6
(x∗min)

2
,

where the first step follows from Corollary 3.1 in [17] and the second step follows from the

Taylor series expansions of
√
1− x2 and arcsin(x),

• if j /∈ S, then E [Zij ] = E [|aij |]E [|yi|] = 2
π and finally,

• for every j ∈ [n], Zij is a sub-exponential random variable with parameter c = O(1) (since
it is a product of two standard normal random variables).

Using the hypothesis of the theorem about m, we have:

• for any j ∈ S, P

[
1
m

∑m
i=1 Zij −

(
2
π + 1

12 (x
∗
min)

2
)
< 0

]
≤ exp

(
−c (x∗min)

4
m
)
≤

δn−c, and

• for any j /∈ S, P

[
1
m

∑m
i=1 Zij −

(
2
π + 1

12 (x
∗
min)

2
)
> 0

]
≤ exp

(
−c (x∗min)

4
m
)
≤

δn−c.

Applying a union bound to the above, we see that with probability greater than 1 − δ, there is a
separation in the values of 1

m

∑m
i=1 Zij for j ∈ S and j /∈ S. This proves the theorem.
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