
Appendix of “Learning Gaussian Graphical Models
with Observed or Latent FVSs”

A Computing the Partition Function of GGMs in QF

In Section 3 of the paper, we have stated that given the information matrix J of a GGM with an FVS
of size k, we can compute det J and hence the partition function using a message-passing algorithm
with complexity O(k2n). This algorithm is inspired by the FMP algorithm developed in [14] and is
described in Algorithm 4.

Algorithm 4 Computing the partition function when an FVS is given

Input: an FVS F of size k and an n×n information matrix J =

[
JF JTM
JM JT

]
, where JT has tree

structure T with edge set ET .
Output: det J

1. Run standard Gaussian BP on T with information matrix JT to obtain P Tii =
(
J−1
T

)
ii

for
all i ∈ T , P Tij = (J−1

T )ij for all (i, j) ∈ ET , and (gp)i = (J−1
T hp)i for all i ∈ T and

p ∈ F , where hp is the column of JM corresponding to node p.

2. Compute ĴF with (
ĴF

)
pq

= Jpq −
∑

j∈N (p)∩T

Jpjg
q
j , ∀ p, q ∈ F

3. Compute det ĴF , the determinant of ĴF .
4. Output

det J =

 ∏
(i,j)∈ET

P Tii P
T
jj −

(
P Tij
)2

P Tii P
T
jj

∏
i∈V

P Tii

−1

det ĴF .

We state the correctness and the computational complexity of Algorithm 4 in Proposition 3.

Proposition 3. Algorithm 4 computes det J exactly and the computational complexity is O(k2n).

Before giving the proof for Proposition 3, we first prove Lemma 1.

Lemma 1. If the information matrix J � 0 has tree structure T = (V, E), then we have

det (J)
−1

=
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
, (4)

where P = J−1.

Proof. WLOG, we assume the means are zero. For any tree-structured distribution p(x) with un-
derlying tree T , we have the following factorization:

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈ET

p(xi, xj)

p(xi)p(xj)
. (5)
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For a GGM of n nodes, the joint distribution, the singleton marginal distributions, and the pairwise
marginal distributions can be expressed as follows.

p(x) =
1

(2π)
n
2 (det J)

− 1
2

exp{−1

2
xTJx}

p(xi) =
1

(2π)
1
2Pii

1
2

exp{−1

2
xTP−1

ii x}

p(xi, xj) =
1

2π

(
det

[
Pii Pij
Pji Pjj

]) 1
2

exp{−1

2
xT
[
Pii Pij
Pji Pjj

]−1

x}.

Matching the normalization factors using (5), we obtain

det (J)
−1

=
∏
i∈V

Pii
∏

(i,j)∈E

det

[
Pii Pij
Pji Pjj

]
PiiPjj

. (6)

=
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
(7)

Now we proceed to prove Proposition 3.

Proof. First, we show that ĴF computed in Step 2 of Algorithm 4 equals JF −JTMJ
−1
T JM . We have[

g1 g2 · · · gk
]

= J−1
T

[
h1 h2 · · · hk

]
= J−1

T JM

from the definition in Step 1. From Step 3, we can get

ĴF = JF −
[
g1 g2 · · · gk

]T
JT
[
g1 g2 · · · gk

]
= JF −

(
J−1
T JM

)T
JT
(
J−1
T JM

)
= JF − JTMJ−1

T JM . (8)

Hence,

det J = det

([
I −JTMJ

−1
T

0 I

])
det

([
JF JTM
JM JT

])
det

([
I 0

−J−1
T JM I

])
= det

([
I −JTMJ

−1
T

0 I

] [
JF JTM
JM JT

] [
I 0

−J−1
T JM I

])
= det

[
JF − JTMJ

−1
T JM 0

0 JT

]
=
(

det ĴF

)
× (det JT ) , (9)

From Lemma 1 to follow, we have

det (JT )
−1

=
∏
i∈V

P Tii
∏

(i,j)∈ET

P Tii P
T
jj −

(
P Tij
)2

P Tii P
T
jj

. (10)

Hence, we have proved the correctness of the algorithm. Now we calculate the complexity. The
first step of Algorithm 4 has complexity O(n − k) using BP. Step 2 takes O

(
k2(n− k)

)
and the

complexity of Step 3 is O(k3). Finally the complexity of Step 4 is O(n) since T is a tree. The total
complexity is thus O(k2n). This completes the proof for Proposition3.
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Note that if the FVS is not given, we can use the factor-2 approximate algorithm in [19] to obtain
an FVS of size at most twice the minimum size with complexity O(min{m log n, n2}), where m
is the number of edges.

B Proof for Proposition 1

B.1 Preliminaries

Proposition 1 states that Algorithm 1 computes the ML estimate with covariance ΣML (together with
EML, the set of edges among the non-feedback nodes) exactly with complexity O(kn2 + n2 log n),
and that JML

∆
= Σ−1

ML can be computed with additional complexity O(k2n).

First, we define the following information quantities:

1. The entropy Hpx(x) = −
´
x
px(x) log px(x)dx

2. The conditional entropy Hpx,y(x|y) = −
´
x,y

px,y(x,y) log px|y(x|y)dxdy

3. The mutual information Ipx,y(x;y) =
´
x,y

px,y(x,y) log p(x)p(y)
p(x,y) dxdy

4. The conditional mutual information

Ipx,y,z(x;y|z) =

ˆ
x,y,z

px,y,z(x,y, z) log
p(x,y|z)

p(x|z)p(y|z)
dxdy

5. The conditional K-L divergence: D(p̂x|y||qx|y|p̂y)
∆
= D(p̂x,y||qx|yp̂y).

The (conditional) K-L divergence is always nonnegative. It is zero if and only if the two distributions
are the same (almost everywhere). When there is no confusion, the subscripts in the distributions are
often omitted, e.g., Ipx,y(x;y) written as Ip(x;y). With a slight abuse of notation, l we use p(xF )
to denote the marginal distribution of xF under the joint distribution p(x), and similarly p(xT |xF )
to denote the conditional distribution of xT given xF under the joint distribution p(x).

The standard Chow-Liu Algorithm for GGMs is summarized in 5. The complexity is O(n2 log n).
Note that in Step 3, for a fixed i, for any (i, j) /∈ ET , Σij can be computed following a topological
order of with i being the root. Hence, by book-keeping the computed products along the paths, the
complexity of computing each Σij is O(1).

Algorithm 5 the Chow-Liu Algorithm for GGMs

Input: the empirical covariance matrix Σ̂
Output: ΣCL and ECL

1. Compute the correlation coefficients ρij =
Σ̂ij√
Σ̂iiΣ̂jj

2. Find an MST (maximum weight spanning tree) of the complete graph with weights |ρij |
for edge (i, j). The edge set of the tree is denoted as ET .

3. For all i ∈ V, (ΣCL)ii = Σ̂ii; for (i, j) ∈ ET , (ΣCL)ij = Σ̂ij ; for (i, j) /∈ ET ,
(ΣCL)ij =

√
ΣiiΣjj

∏
(l,k)∈Path(i,j) ρlk, where Path(i, j) is the set of edges on the unique

path between i and j in the spanning tree.

B.2 Lemmas

Lemma 2 is a well-known result stated without proof.
Lemma 2. The p.d.f. of a tree-structured model T = (V, E) can be factorized according to either
of the following two equations:

1. p(x) = p(xr)
∏
i∈V\r p(xi|xπ(i)), where r is an arbitrary node selected as the root and

π(i) is the unique parent of node i in the tree rooted at r.
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2. p(x) =
∏
i∈V p(xi)

∏
(i,j)∈E

p(xi,xj)
p(xi)p(xj) .

For a given F and a fixed tree T with edge set ET among the non-feedback nodes, Lemma 3 gives a
closed form solution that minimizes the K-L divergence.

Lemma 3.

min
q∈QF,T

DKL(p̂||q) = −Hp̂(x) +Hp̂(xF ) +
∑
i∈V\F

Hp̂(xi|xF )−
∑

(i,j)∈ET

Ip̂(xi;xj |xF ), (11)

where QF,T is the set of distributions defined on a graph with a given FVS F and a given spanning
tree T among the non-feedback nodes. The minimum K-L divergence is obtained if and only if: 1)
q(xF ) = p̂(xF ); 2) q(xF , xi, xj) = p̂(xF , xi, xj) for any (i, j) ∈ ET .

Proof. With fixed F and T ,

DKL(p̂||q) =

ˆ
p̂(x) log

p̂(x)

q(x)
dx

= −Hp̂(x)−
ˆ
p̂(x) log q(x)dx

= −Hp̂(x)−
ˆ
p̂(x) log (q(xF )q(xT |xF )) dx

(a)
= −Hp̂(x)−

ˆ
p̂(x) log

q(xF )q(xr|xF )
∏

i∈V\F\r

q(xi|xF ,xπ(i))

 dx

= −Hp̂(x)−
ˆ
p̂(xF ) log q(xF )dxF −

ˆ
p̂(xF ,xr) log q(xr|xF )dxFdxr

−
∑

i∈V\F\r

ˆ
p̂(xF ,xπ(i),xi) log q(xi|xF ,xπ(i))dxFdxπ(i)dxi

(b)
= −Hp̂(x) +Hp̂(xF ) +D(p̂F ||qF ) +Hp̂(xr|xF ) +D(p̂r|F ||qr|F |p̂F )

+
∑

i∈V \F\r

Hp̂(xi|xF,π(i)) +D(p̂i|F,r||qi|F,r|p̂F,r)

(c)

≥ −Hp̂(x) +Hp̂(xF ) +Hp̂(xr|xF ) +
∑

i∈V \F\r

Hp̂(xi|xF,π(i)), (12)

where (a) is obtained by using Factorization 1 in Lemma 2 with an arbitrary root node r; (b) can be
directly verified using the definition of the information quantities, and the equality in (c) is satisfied
when qF = p̂F , qr|F = p̂r|F , and qi|F,π(i) = p̂i|F,π(i),∀i ∈ T\r, or equivalently when

qF = p̂F

qF,i,j = p̂F,i,j ,∀(i, j) ∈ ET . (13)

Next, we derive another expression of (12). By substituting (13) into Factorization s of Lemma 2,
we have

q∗(x) = p̂(xF )
∏
i∈T

p̂(xi|xF )
∏

(i,j)∈ET

p̂(xi,xj |xF )

p̂(xi|xF )p̂(xj |xF )
.
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Hence,

min
q∈QF,T

D(p̂||q) = D(p̂||q∗)

−Hp̂(x) +Hp̂(xF ) +
∑
i∈V \F

Hp̂(xi|xF ) (14)

+
∑

(i,j)∈ET

ˆ
p̂F,i,j(xF ,xi,xj) log

p̂(xi,xj |xF )

p̂(xi|xF )p̂(xj |xF )
dxFdxidxj (15)

= Hp̂(x) +Hp̂(xF ) +
∑
i∈V \F

Hp̂(xi|xF ) (16)

−
∑

(i,j)∈ET

ˆ
p̂F,i,j(xF ,xi,xj) log

p̂(xi|xF )p̂(xj |xF )

p̂(xi,xj |xF )
dxFdxidxj (17)

= −Hp̂(x) +H(p̂F ) +
∑
i∈V\F

H(p̂i|F |xF )−
∑

(i,j)∈ET

Ip̂(xi;xj |xF ). (18)

We have thus proved Lemma 3.

The following Lemma 4 gives a closed-form expression for the K-L divergence between two Gaus-
sians. It can be verified by calculus and the proof is omitted.

Lemma 4. For two n-dimensional Gaussian distributions p̂(x) = N (x; µ̂, Σ̂) and q(x) =
N (x;µ,Σ), we have

D(p̂||q) =
1

2

(
Tr
(

Σ−1Σ̂
)

+(µ− µ̂)
T

Σ−1 (µ− µ̂)− n ln det
(

Σ−1Σ̂
))

. (19)

An immediate implication of Lemma 4 is that when learning GGMs we always have that µML = µ̂
if there is no constraint on the mean in.

Lemma 5. If a symmetric positive definite matrix Σ is given and we know that its inverse J = Σ−1

is sparse with respect to a tree T = (V, E), then the non-zero entries of J can be computed using
(20) in time O(n).

Jij =


(1− deg(i)) Σ−1

ii +
∑
j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1
i = j ∈ V

Σij

Σ2
ij−ΣiiΣjj

(i, j) ∈ E
0 otherwise,

(20)

where N (i) is the set of neighbors of node i in T ; deg(i) is the degree of i in T .

Proof. Since Σ � 0, we can construct a Gaussian distribution p(x) with zero mean and covariance
matrix Σ. The distribution is tree-structured because J = Σ−1 has tree structure T . Hence, we have
the following factorization.

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
,
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where

p(x) =
1

(2π)
n
2 (det J)

− 1
2

exp{−1

2
xTJx}

p(xi) =
1

(2π)
1
2Pii

1
2

exp{−1

2
xTΣ−1

ii x}

p(xi, xj) =
1

2π

(
det

[
Σii Σij
Σji Σjj

]) 1
2

exp{−1

2
xT
[

Σii Σij
Σji Σjj

]−1

x}.

By matching the quadratic coefficient in the exponents, we have that

Jii = Σ−1
ii +

∑
j∈N (i)

(([
Σii Σji
Σij Σjj

]−1
)

11

− Σ−1
ii

)

= (1− deg(i)) Σ−1
ii +

∑
j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1

and for (i, j) ∈ E ,

Jij =

([
Σii Σij
Σji Σjj

]−1
)

12

=
Σij

Σ2
ij − ΣiiΣjj

The complexity of computing each Jij , (i, j) ∈ E is O(1) and the complexity of computing each
Jii is O(deg i). Since Σi∈V deg(i) equals twice the number of edges, which is O(n), the total
complexity is O(n).

Lemma 6. (The matrix inversion lemmas)

If
[
A B
C D

]
is invertible, we have[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(21)

or[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(22)

and (
A−BD−1C

)−1
= A−1 +A−1B(D − CA−1B)−1CA−1. (23)

The proof of Lemma 6 can be found in standard matrix analysis books.

B.3 Proof of Proposition 1

Proof. For a fixed FVS F , the LHS of (11) is only a function of the spanning tree among the non-
feedback nodes. Hence, the optimal set of edges among the non-feedback nodes can be obtained by
finding the maximum spanning tree of the subgraph induced by T with Ip̂(xi;xj |xF ) ≥ 0 being the
edge weight between i and j. 4

4In fact, we have given an algorithm to learn general models (not only GGMs, but also other models, e.g.,
discrete ones) defined on graphs with a given FVS F . However, we do not explore the general setting in this
paper.
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For Gaussian distributions, the covariance matrix of the distribution p̂(xT |xF ) depends only on the
set F but is invariant to the value of xF . Hence, finding the optimal edge set of the tree part is equiva-
lent to running the Chow-Liu algorithm with the input being the covariance matrix of p̂T |F (xT |xF ),
which is simply Σ̂T |F = Σ̂T − Σ̂M Σ̂−1

F Σ̂TM . Let ECL = CLE(Σ̂T |F ) and ΣCL = CL(Σ̂T |F ). Denote

the optimal covariance matrix as ΣML =

[
ΣML
F

(
ΣML
M

)T
ΣML
M ΣML

T

]
. According to (13), we must have

ΣML
F = Σ̂F and ΣML

M = Σ̂M . From (13) the corresponding conditional covariance matrix ΣML
T |F of

ΣML must equal ΣCL. Hence, we have ΣML
T |F = ΣML

T − ΣML
M

(
ΣML
F

)−1 (
ΣML
M

)T
= ΣCL. Therefore,

we can obtain ΣML
T = CL(Σ̂T |F ) + Σ̂M Σ̂−1

F Σ̂TM . We also have that EML = ECL since EML is defined
to be the set of edges among the feedback nodes.

Now we analyze the complexity of Algorithm 1. The matrix Σ̂T |F is computed with complexity
O(kn2). Computing the maximum weight spanning tree algorithm has complexity O(n2 log n)
using Kruskal’s algorithm (the amortized complexity can be further reduced, but it is not the focus
of this paper). Other operations have complexity O(n2). Hence, the total complexity of Algorithm
1 is O(kn2 + n2 log n).

Next we proceed to prove that we can compute all the non-zero entries of JML = (ΣML)
−1 in time

O(k2n).

Let JML =

[
JML
F

(
JML
M

)T
JML
M JML

T

]
. We have that JML

T =
(

CL(Σ̂T |F )
)−1

has tree structure with T .

Therefore, the non-zero entries of JML
T can be computed with complexity O(n− k).from Lemma 5.

From (22) we have

JML
M = −JML

T ΣML
M

(
ΣML
F

)−1
, (24)

which can be computed with complexityO(k2n) by matrix multiplication in the regular order. Note
that JML

T ΣML
M is computed in O(kn) since JML

T only has O(n) non-zero entries.

From (22) we have

JML
F =

(
ΣML
F

)−1
(
I +

((
ΣML
M

)T
JML
T

) (
ΣML
M

(
ΣML
F

)))
,

which has complexity O(k2n) following the order specified by the parentheses. Note that(
PML
M

)T
JML
T is computed in O(kn) because JML

T only has O(n) non-zero entries. Hence, we need
extra complexity of O(k2n) to compute all the non-zero entries of JML.

We have therefore completed the proof for Proposition 1.

For easy reference, we summarize the procedure to compute JML in Algorithm 6.

Algorithm 6 Compute JML = (ΣML)
−1 after running Algorithm 1

1. Compute JML
T using (20)

2. Compute JML
M = −JML

T ΣML
M Σ−1

F using sparse matrix multiplication

3. Compute
(
ΣML
F

)−1
(
I +

((
ΣML
M

)T
JML
T

) (
ΣML
M

(
ΣML
F

)))
following the order specified by

the parentheses using sparse matrix multiplication.

C Proof of Proposition 2

In this section, we first prove a more general result stated in Lemma 7.
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Lemma 7. In Algorithm 7, if Step 2(a) and Step 2(b) can be computed exactly, then we have
that D(p̂(xT )||q(t+1)(xT )) ≤ D(p̂(xT )||q(t)(xT )), where the equality is satisfied if and only if
p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xT ).

Algorithm 7 Alternating Projection

1. Propose an initial distribution q(0)(xF ,xT ) ∈ QF
2. Alternating projections:

(a) P1: Project to the empirical distribution:

p̂(t)(xF ,xT ) = p̂(xT )q(t)(xF |xT )

(b) P2: Project to the best fitting structure on all variables:

q(t+1)(xF ,xT ) = arg min
q(xF ,xT )∈QF

D(p̂(t)(xF ,xT )||q(xF ,xT ))

.

Proof. For any t,

D(p̂(t)(xT ,xF )||q(t)(xF ,xT ))

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )q(t)(xF |xT )

q(t)(xF ,xT )

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )

q(t)(xT )

=

ˆ
xT

p̂(xT ) log
p̂(xT )

q(t)(xT )

=D(p̂(t)(xT )||q(t)(xT )) (25)

By the definition of q(t+1) in step (b), we have

D(p̂(xT ,xF )||q(t+1)(xF ,xT )) ≤ D(p̂(t)(xT ,xF )||q(t)(xF ,xT )). (26)

Therefore,

D(p̂(xT )||q(t)(xT ))

(a)
=D(p̂(t)(xT ,xF )||q(t)(xF ,xT )) (27)
(b)

≥D(p̂(t)(xT ,xF )||q(t+1)(xF ,xT )) (28)

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )q(t)(xF |xT )

q(t+1)(xF ,xT )

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )

q(t+1)(xT )
+

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
q(t)(xF |xT )

q(t+1)(xF |xT )

=

ˆ
xT

p̂(xT ) log
p̂(xT )

q(t+1)(xT )
+

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
q(t)(xF |xT )p̂(xT )

q(t+1)(xF |xT )p̂(xT )
(29)

=D(p̂(xT )||q(t+1)(xT )) +

ˆ
xT ,xF

p̂(t)(xF ,xT ) log
p̂(t)(xF ,xT )

p̂(t+1)(xF ,xT )

=D(p̂(xT )||q(t+1)(xT )) +D(p̂(t)(xF ,xT )||p̂(t+1)(xF ,xT ))

(c)

≥D(p̂(xT )||q(t+1)(xT )), (30)
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where (a) is due to (25), (b) is due to (26), and (c) is due to thatD(p̂(t)(xF ,xT )||p̂(t+1)(xF ,xT )) ≥
0. Therefore, we always have D(p̂(xT )||q(t)) ≥ D(p̂(xT )||q(t+1)). A necessary condition for the
objective function to remain the same is that D(p̂(t)(xF ,xT )||p̂(t+1)(xF ,xT )) = 0, which implies
that p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xF ). Hence, it further implies that q(t)(xF ,xT ) = q(t+1)(xF ,xT )
under non-degenerate cases. Therefore, p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xF ) is a necessary and sufficient
condition for the objective function to remain the same. This completes the proof for Lemma 7.

Now we proceed to the proof for Proposition 2.

Proof. Use the same notation as in the latent Chow-Liu algorithm (Algorithm 3). Let p̂(xT ) =

N (0, Σ̂T ), p(t)(xF ,xT ) = N (0,Σ(t)). Then

p̂(xT ) =
1√

det
(

2πΣ̂T

) exp{−1

2
xTT Σ̂−1

T xT }

p(t)(xF |xT ) =
1√

det

(
2π
(
J

(t)

F

)−1
) exp{−1

2

(
xF −

(
J

(t)
F

)−1

J
(t)
M xT

)T
J

(t)
F

(
xF −

(
J

(t)
F

)−1

J
(t)
M xT

)T
}

Hence, following Algorithm 7, we have

p̂(t)(xF ,xT ) = p̂(xT )q(t)(xF |xT )

∝ exp{−1

2

[
xF
xT

]T  J
(t)
F

(
J

(t)
M

)T
J

(t)
M Σ̂−1

T + J
(t)
M (J

(t)
F )−1(J

(t)
M )T

[ xF
xT

]
},

which gives the same expression as in P1 of Algorithm 3. The next projection

q(t+1)(xF ,xT ) = min
q(xF ,xT )∈QF

D(p̂(t)(xF ,xT )||q(xF ,xT ))

has same form as M-L learning problem in Section 4.1.1, and therefore can be computed exactly
using the conditioned Chow-Liu algorithm (Algorithm 1). By Lemma 7, we have thus proved the
first part of Proposition 2. The second part about the complexity of an accelerated version is proved
in Section D.

D The Accelerated Latent Chow-Liu Algorithm

In this section, we describe the accelerated latent Chow-Liu algorithm (Algorithm 8), which gives
exactly the same result as the latent Chow-Liu algorithm 3, but has a lower complexity of O(kn2 +
n2 log n) per iteration. The main complexity reduction is due to the use of Algorithm 6.

We will use the following lemma in the proof of Algorithm 8.

Now we proceed to prove the correctness of the accelerated Chow-Liu algorithm and obtain its
complexity.

Proof. In P1 of the latent Chow-Liu algorithm (Algorithm 3) we have

Ĵ (t) =

 J
(t)
F (J

(t)
M )T

J
(t)
M

(
Σ̂T

)−1

+ J
(t)
M (J

(t)
F )−1(J

(t)
M )T

 .
Without explicitly computing Ĵ (t), we can directly compute Σ̂(t) =

(
Ĵ (t)

)−1

as follows.
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Let A = J
(t)
F , B = (J

(t)
M )T , C = Ĵ

(t)
M , and D =

(
Σ̂T

)−1

+ J
(t)
M (J

(t)
F )−1(J

(t)
M )T ). From (22) we

have
Σ̂

(t)
F =

(
J

(t)
F

)−1

+
(
J

(t)
F

)−1 (
J

(t)
M

)T
(D − CA−1B)−1Ĵ

(t)
M

(
J

(t)
F

)−1

and
Σ̂

(t)
T = (D − CA−1B)−1 = Σ̂T . (31)

Σ̂
(t)
F =

(
J

(t)
F

)−1

+
(
J

(t)
F

)−1 (
J

(t)
M

)T
Σ̂T Ĵ

(t)
M

(
J

(t)
F

)−1

. (32)

Also from (22), we have that

Σ̂
(t)
M = −Σ̂TJ

(t)
M

(
J

(t)
F

)−1

. (33)

It can be checked that the matrix multiplications of (31), (32), and (33) have complexity O(kn2).

P2 in Algorithm 3 can be computed with complexityO(n2k+n2 log n) from Proposition 1. There-
fore, the complexity of this accelerated version (summarized in Algorithm 8) is O(n2k + n2 log n)
per iteration. We have thus completed the proof for Proposition 2.

Algorithm 8 The accelerated Chow-Liu algorithm

Input: the empirical covariance matrix Σ̂T

Output: information matrix J =

[
JF JTM
JM JT

]
.

1. Initialization: J (0) =

 J
(0)
F

(
J

(0)
M

)T
J

(0)
M J

(0)
T

.

2. Repeat

(a) AP1: Compute

Σ̂
(t)
F =

(
J

(t)
F

)−1

+
(
Y (t)

)T
Σ̂TY

(t)

Σ̂
(t)
T = Σ̂T

Σ̂
(t)
M = −Σ̂TY

(t),

where Y (t) = Ĵ
(t)
M

(
J

(t)
F

)−1

Let Σ̂(t) =

 Σ̂
(t)
F

(
Σ̂

(t)
M

)T
Σ̂

(t)
M Σ̂T

.

(b) AP2: Compute Σ(t+1) and J (t+1)=
(
Σ(t+1)

)−1
from Σ̂(t) using Algorithm 1 and Al-

gorithm 6:

J (t+1) =

 J
(t+1)
F

(
J

(t+1)
M

)T
J

(t+1)
M J

(t+1)
T


Σ(t+1) =

 Σ
(t+1)
F

(
Σ

(t+1)
M

)T
Σ

(t+1)
M Σ

(t+1)
T
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