A Supplementary Material

A.1 Experimental Settings

For all our experiments, we fix the variance across node community memberships o = 1 and set our
hyperparameters for wy to 7, = 10 and 7, = 1 across communities. We set an agressive learning
rate so that 4o = 1 and k = .5. We use a restricted stratified node-sampling technique for all our
experiments with the non-link partition set m = 10, unless stated otherwise. All experiments were
run for 250,000 iterations from 5 random initializations with 10% of the links randomly held out
along with an equal amount of non-links for testing. For the aMMSB, we used the same settings.
The aMMSB uses a random initialization for 6;; ~ Gam(100,.01) with hyperparameters over wy,
set to the expected number of link/non-links across K uniformly distributed communities. The
learning rate was set to ;19 = 1024 and k = .5. We found these settings gave the best advantage for
the aMMSB on these datasets that were optimized for its original experiments, with the exception of
changing the Dirichlet prior to be uniform over its mixed-membership distributions (o« = 1), which
we found to improve convergence for the aMMSB across our experiments.

A.2 aHDPR ELBO

A more detailed representation of our ELBO for the aHDPR model can be seen here. Note that since
we do not estimate ¢; ¢, the ELBO needs to be computed in a more efficient manner:
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where B, = v H’Z;ll (1 —wv)and By =1— Zszl Bk Since we no longer estimate ¢, directly, we can
show how our ELBO is modified with this optimized inference procedure. In particular, we focus on equations
21, and 24:
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For an efficient calculation of our ELBO the terms that we need to simplify are
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Note the similarity of this expression with part of the updates in Equation 12. By caching the
necessary statistics needed to update 6, we can calculate our ELBO in an efficient manner.

A.3 Updates for the global stick-breaking weights

The global stick breaking weights 3 is not conjugate to node membership weights 7. In order to
obtain point estimates for 5 we perform a two-metric constrained optimization using its first order
gradients. We can write the objective for 8 w.r.t to our ELBO in the following manner:
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Since B = vy Hi:ll(l —vg) and By =1 — Z,i(:l B, we redefine the prior over 8 as a sum
over independently distributed beta variables v. We can obtain point estimates for v without having
to worry about the constrained optimization task for § which is significantly more costly then the
two-metric constrained optimization over v. We now take the derivatives for § with this in mind:
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where the derivative % will change depending on the value of k. When m > k, then % = 0.

When m = k, then % = % Finally, when m < k, then gf:L = (li/j)il)'

Our constrained optimization provides us with updates for v* at iteration £ which we can then use
in our stochastic variational approach by setting v}, = (1 — pt)v,'?l + pi(vy). From this we can

determine a new set of values for 8 by setting 8% = vf. [To—; (1 — ).



A.4 LittleSis Network Degree-based Visualization

Figure 1: The same raw graph of the top 200 degree nodes is displayed using Gephi and the force atlas
layout algorithm. Node sizes were determined by its degree and the raw graph represents a cluttered and un-
informative view of its underlying structure. We extracted the original graph from its open source database
(http://littlesis.org), which was originally a bipartite graph between individuals and the organizations they were
involved in. Other types of relationships such as campaign contributions or shared education can also be ex-
tracted, but for this study we focused on whether an individual was a member of that organization. We removed
individuals and organizations that appeared only once and to generate an undirected network, we assumed an
edge existed between people who held positions within the same organization. The largest connected compo-
nent was found to contain 18,831 nodes and 626,881 edges which we used as our final graph for analysis.



	Supplementary Material
	Experimental Settings
	aHDPR ELBO
	Updates for the global stick-breaking weights 
	LittleSis Network Degree-based Visualization


