
5 Appendix

5.1 d-separation

Definition 3 (d-separation3). A path p is said to be d-separated by a set of nodes Z if and only if:
(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, or
(2) p contains an inverted fork (or collider) i → m ← j such that the middle node m is not in Z
and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a
node in Y and is denoted by Y⊥⊥X|Z.

Definition 4 (Minimal Separator). Given two sets of nodes X and Y in DAG and a set Z that
d-separates X from Y , Z is a minimal separator if no proper subset of Z d-separates X from Y .
There are polynomial time algorithms to find minimal separators4.

5.2 Benefits of Graphical Models

Although the results in this paper could have been obtained from conditional independencies alone
oblivious to causal directionalities in the m-graph, it behooves us to emphasize that the power of
graphical models stem from its causal interpretation. It is only through such interpretation that a user
can decide the plausibility of the conditional independence assumptions embedded in the graph. The
non-graphical literature on missing data, though based on conditional independencies, rarely pays
attention to the cognitive question of whether researchers are capable of judging the plausibility of
those assumptions. Another advantage of graphical models, be they causal or probabilistic, is that
the sum total of conditional independencies that follow from a given set of assumptions are explicitly
represented in the graph and need not be derived by lengthy procedures involving say, probability
theory or graphoid axioms.

5.3 Constrained Recoverability

For any set S ⊆ Vm, let RS represent the set of R variables corresponding to variables in S. In any
observation (r, v∗, vo), letting S ⊆ Vm be the set of observed variables, we have

P (r, v∗, vo) = P (RS = 0, RVm\S = 1, s, vo). (10)

We assume that we are given a missingness pattern that specifies which sets of variables in Vm
are never observed simultaneously and which could be observed simultaneously. We will represent
the observed missingness pattern (more precisely observability pattern) as a collection C of sets
S ⊆ Vm such that P (RS = 0, RVm\S = 1, s, vo) > 0 for some (s, vo) values. We denote C the
collection of the rest of sets S in Vm with P (RS = 0, RVm\S = 1, s, vo) = 0 for all s and vo values.

Definition 5 (Recoverability). Given a m-graph G, and observed missingness pattern C, a target
probabilistic relation Q defined on the variables in V is said to be recoverable if there exists an
algorithm that produces a consistent estimate of Q. In other words, Q is recoverable if it can be
expressed in terms of the observed strictly positive probabilities P (RS = 0, RVm\S = 1, S, Vo)

for S ∈ C - that is, if QM1 = QM2 for every pair of models PM1(V,U,R) and PM2(V,U,R)
compatible with G with PM1(RS = 0, RVm\S = 1, S, Vo) = PM2(RS = 0, RVm\S = 1, S, Vo) >
0 for all S ∈ C.

Note that for recoverability it is not necessary to require PM1(RS = 0, RVm\S = 1, S, Vo) =

PM2(RS = 0, RVm\S = 1, S, Vo) = 0 for all S ∈ C.

3Pearl, Judea. Causality: models, reasoning and inference, Cambridge Univ press, 2009.
41. Acid, Silvia, and Luis M. De Campos. ”An algorithm for finding minimum d-separating sets in belief

networks.” Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1996.
2. Tian, Jin, Azaria Paz, and Judea Pearl. Finding minimal d-separators. Computer Science Department,
University of California, 1998.
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5.4 Recoverable-MNAR vs Rubin’s MAR: A brief discussion

Fig. 1(d) is an example of a problem which we label MNAR and which permits recoverabil-
ity of P (X,Y ). Among others, the following conditional independence claims hold in Fig 1(d):
Y⊥⊥(Rx, Ry)|X and X⊥⊥Rx. Given data from this example conditional independence such as
P (Rx = 1, Ry = 0|X,Y ) = P (Rx = 1, Ry = 0|Y ) required by MAR is not dictated by the graph
and so, it will be violated by all but a small fraction of the distributions generated by the graph.
Each distribution that violates this equality would be labeled MNAR by Rubin[25] and would be
considered recoverable-MNAR in our graph-based taxonomy. The same holds for all examples that
we labeled MNAR. In fact, only exceptional distributions may have a chance of being classified as
MAR.

5.5 Necessity Proof for Theorem 2

Lemma 3. P (X) is not recoverable in a m-graph G over (V,U,R) containing a single edge X →
RX .

Proof. To prove non-recoverability of P (X) we present two models compatible with G:

PM1(v, u, r) = P1(x, rX)
∏

i,Vi 6=X

P (vi)
∏
j

P (uj)
∏

k,Rk 6=RX

P (rk), (11)

PM2(v, u, r) = P2(x, rX)
∏

i,Vi 6=X

P (vi)
∏
j

P (uj)
∏

k,Rk 6=RX

P (rk). (12)

We construct P1(x, rX) and P2(x, rX) as given in Table 1 such that they agree on the observed
distributions: P1(X,RX = 0) = P2(X,RX = 0) > 0 and P1(RX = 1) = P2(RX = 1) > 0, but
disagree on the query P1(X) 6= P2(X).

X RX P1(X,RX) P2(X,RX)

0 0 1/3 1/3
1 0 1/3 1/3
0 1 0 1/3
1 1 1/3 0

Table 1: Two distributions for X → RX .

Then we have that the two models agree on all the observed distributions:

PMi(RS = 0, RX = 0, RV ′
m\S = 1, x, s, vo) = Pi(RX = 0, x)P (RS = 0, RV ′

m\S = 1, s, vo), i = 1, 2,

(13)

and

PMi(RS = 0, RX = 1, RV ′
m\S = 1, s, vo) = Pi(RX = 1)P (RS = 0, RV ′

m\S = 1, s, vo), i = 1, 2,

(14)

where V ′m = Vm \ {X} and S ⊆ V ′m. But PM1(x) = P1(x) disagrees with PM2(x) = P2(x).

Lemma 4. If a target relation Q is not recoverable in m-graph G, then Q is not recoverable in the
graph G′ resulting from adding a single edge to G.5

Proof. If Q is not recoverable in G, then there exist two models PM1(V,U,R) and PM2(V,U,R)
compatible with G decomposed as

PMk(v, u, r) =
∏
i

PMk(vi|pavi )
∏
j

PMk(uj |pauj )
∏
l

PMk(rl|parl ), k = 1, 2, (15)

5This lemma and its proof closely follow Lemma 13 in J. Tian and J. Pearl, On the identification of causal
effects, UCLA Cognitive Systems Laboratory, Technical Report (R-290-L), 2003.
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such that, for all S ⊆ Vm
PM1(RS = 0, RVm\S = 1, S, Vo) = PM2(RS = 0, RVm\S = 1, S, Vo) > 0, (16)

and

QM1 6= QM2 . (17)

For the graph G′, we can specify model parameters in such a way that the extra edge added to G
is ineffective and hence construct the same distributions as M1 and M2. Without loss of generality,
assuming G′ is obtained from G by adding edge X → Vq where X could be a V or U variable. We
construct two models M ′1 and M ′2 compatible with G′ with parameters given by

PM ′
k(vq|pavq , x) = PMk(vq|pavq), k = 1, 2, (18)

PM ′
k(vi|pavi ) = PMk(vi|pavi ), i 6= q, k = 1, 2, (19)

PM ′
k(uj |pauj ) = PMk(uj |pauj ), ∀j, k = 1, 2, (20)

PM ′
k(rl|parl ) = PMk(rl|parl ), ∀l, k = 1, 2. (21)

Clearly PM ′
k(v, u, r) = PMk(v, u, r), k = 1, 2. Therefore the two models M ′1 and M ′2 also satisfy

Eqs. (16) and (17). And we conclude Q is not recoverable in G′. The same arguments apply if G′ is
obtained from G by adding a parent to U or R variable.

5.6 Proof of Theorem 3

Proof. Since the model is Markovian, P (v) may be decomposed as

P (v) =
∏

i,Vi∈Vo

P (vi|paoi , pami )
∏

j,Vj∈Vm

P (vj |paoj , pamj ). (22)

RPam
i

must be non-descendants of Vi, otherwise they will be descendants of Pami . Therefore
Vi⊥⊥RPam

i
|(Paoi ∪ Pami ). Similarly, RVj

and RPam
j

must be non-descendants of Vj and we have
Vj⊥⊥(RVj ∪RPam

j
)|(Paoj ∪ Pamj ). Using these conditional independences we obtain Eq. (9) from

(22).

5.7 Proof of Lemma-1

Proof. Let the order be O = V1, V2, V3, ...Vn. The factorization corresponding to O is :

P (V1, .., Vn) =
∏

j P (Vj |Vj+1, ..., Vn) = P (Vi|Vi+1, ...Vn)
∏

j 6=i P (Vj |Vj+1, ..., Vn)

If there is no (minimal) separator S such that S ⊆ {Vi+1, ...Vn} then we must have
Vi��⊥⊥RVi |Vi+1, ...Vn. Thus we have shown that there exists a term P (Vi|Vi+1, ...Vn) in the fac-
torization that does not satisfy the condition in Theorem-4, thereby making O non-admissible.
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