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Abstract
We propose a scalable approach for making inference about latent spaces of large
networks. With a succinct representation of networks as a bag of triangular motifs,
a parsimonious statistical model, and an efficient stochastic variational inference
algorithm, we are able to analyze real networks with over a million vertices and
hundreds of latent roles on a single machine in a matter of hours, a setting that is
out of reach for many existing methods. When compared to the state-of-the-art
probabilistic approaches, our method is several orders of magnitude faster, with
competitive or improved accuracy for latent space recovery and link prediction.

1 Introduction
In the context of network analysis, a latent space refers to a space of unobserved latent represen-
tations of individual entities (i.e., topics, roles, or simply embeddings, depending on how users
would interpret them) that govern the potential patterns of network relations. The problem of latent
space inference amounts to learning the bases of such a space and reducing the high-dimensional
network data to such a lower-dimensional space, in which each entity has a position vector. De-
pending on model semantics, the position vectors can be used for diverse tasks such as community
detection [1, 5], user personalization [4, 13], link prediction [14] and exploratory analysis [9, 19, 8].
However, scalability is a key challenge for many existing probabilistic methods, as even recent state-
of-the-art methods [5, 8] still require days to process modest networks of around 100, 000 nodes.

To perform latent space analysis on at least million-node (if not larger) real social networks with
many distinct latent roles [24], one must design inferential mechanisms that scale in both the number
of vertices N and the number of latent roles K. In this paper, we argue that the following three
principles are crucial for successful large-scale inference: (1) succinct but informative representation
of networks; (2) parsimonious statistical modeling; (3) scalable and parallel inference algorithms.
Existing approaches [1, 5, 7, 8, 14] are limited in that they consider only one or two of the above
principles, and therefore can not simultaneously achieve scalability and sufficient accuracy. For
example, the mixed-membership stochastic blockmodel (MMSB) [1] is a probabilistic latent space
model for edge representation of networks. Its batch variational inference algorithm has O(N2K2)
time complexity and hence cannot be scaled to large networks. The a-MMSB [5] improves upon
MMSB by applying principles (2) and (3): it reduces the dimension of the parameter space from
O(K2) to O(K), and applies a stochastic variational algorithm for fast inference. Fundamentally,
however, the a-MMSB still depends on the O(N2) adjacency matrix representation of networks,
just like the MMSB. The a-MMSB inference algorithm mitigates this issue by downsampling zero
elements in the matrix, but is still not fast enough to handle networks with N ≥ 100, 000.

But looking beyond the edge-based relations and features, other higher-order structural statistics
(such as the counts of triangles and k-stars) are also widely used to represent the probability dis-
tribution over the space of networks, and are viewed as crucial elements in building a good-fitting
exponential random graph model (ERGM) [11]. These higher-order relations have motivated the
development of the triangular representation of networks [8], in which each network is represented
succinctly as a bag of triangular motifs with size typically much smaller than Θ(N2). This suc-
cinct representation has proven effective in extracting informative mixed-membership roles from
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networks with high fidelity, thus achieving the first principle (1). However, the corresponding statis-
tical model, called the mixed-membership triangular model (MMTM), only scales well against the
size of a network, but does not scale to large numbers of latent roles (i.e., dimension of the latent
space). To be precise, if there are K distinct latent roles, its tensor of triangle-generating parame-
ters is of size O(K3), and its blocked Gibbs sampler requires O(K3) time per iteration. Our own
experiments show that the MMTM Gibbs algorithm is unusable for K > 10.

We now present a scalable approach to both latent space modeling and inference algorithm design
that encompasses all three aforementioned principles for large networks. Specifically, we build our
approach on the bag-of-triangles representation of networks [8] and apply principles (2) and (3),
yielding a fast inference procedure that has time complexity O(NK). In Section 3, we propose the
parsimonious triangular model (PTM), in which the dimension of the triangle-generating parameters
only grows linearly in K. The dramatic reduction is principally achieved by sharing parameters
among certain groups of latent roles. Then, in Section 4, we develop a fast stochastic natural gradient
ascent algorithm for performing variational inference, where an unbiased estimate of the natural
gradient is obtained by subsampling a “mini-batch” of triangular motifs. Instead of adopting a fully
factorized, naive mean-field approximation, which we find performs poorly in practice, we pursue
a structured mean-field approach that captures higher-order dependencies between latent variables.
These new developments all combine to yield an efficient inference algorithm that usually converges
after 2 passes on each triangular motif (or up to 4-5 passes at worst), and achieves competitive or
improved accuracy for latent space recovery and link prediction on synthetic and real networks.
Finally, in Section 5, we demonstrate that our algorithm converges and infers a 100-role latent space
on a 1M-node Youtube social network in just 4 hours, using a single machine with 8 threads.

2 Triangular Representation of Networks
We take a scalable approach to network modeling by representing each network succinctly as a
bag of triangular motifs [8]. Each triangular motif is a connected subgraph over a vertex triple
containing 2 or 3 edges (called open triangle and closed triangle respectively). Empty and single-
edge triples are ignored. Although this triangular format does not preserve all network information
found in an edge representation, these three-node connected subgraphs are able to capture a number
of informative structural features in the network. For example, in social network theory, the notion of
triadic closure [21, 6] is commonly measured by the relative number of closed triangles compared to
the total number of connected triples, known as the global clustering coefficient or transitivity [17].
The same quantity is treated as a general network statistic in the exponential random graph model
(ERGM) literature [16]. Furthermore, the most significant and recurrent structural patterns in many
complex networks, so-called “network motifs”, turn out to be connected three-node subgraphs [15].

Most importantly of all, triangular modeling requires much less computational cost compared to
edge-based models, with little or no degradation of performance for latent space recovery [8]. In
networks with N vertices and low maximum vertex degree D, the number of triangular motifs
Θ(ND2) is normally much smaller than Θ(N2), allowing us to construct more efficient inference
algorithms scalable to larger networks. For high-maximum-degree networks, the triangular motifs
can be subsampled in a node-centric fashion as a local data reduction step. For each vertex i with
degree higher than a user-chosen threshold δ, uniformly sample

(
δ
2

)
triangles from the set composed

of (a) its adjacent closed triangles, and (b) its adjacent open triangles that are centered on i. Vertices
with degree ≤ δ keep all triangles from their set. It has been shown that this δ-subsampling pro-
cedure can approximately preserve the distribution over open and closed triangles, and allows for
much faster inference algorithms (linear growth in N) at a small cost in accuracy [8].

In what follows, we assume that a preprocessing step has been performed — namely, extracting and
δ-subsampling triangular motifs (which can be done in O(1) time per sample, and requires < 1% of
the actual inference time) — to yield a bag-of-triangles representation of the input network. For each
triplet of vertices i, j, k ∈ {1, . . . , N} , i < j < k, let Eijk denote the observed type of triangular
motif formed among these three vertices: Eijk = 1, 2 and 3 represent an open triangle with i, j
and k in the center respectively, and Eijk = 4 if a closed triangle is formed. Because empty and
single-edge triples are discarded, the set of triples with triangular motifs formed, I = {(i, j, k) : i <
j < k,Eijk = 1, 2, 3 or 4}, is of size O(Nδ2) after δ-subsampling [8].

3 Parsimonious Triangular Model
Given the input network, now represented as a bag of triangular motifs, our goal is to make infer-
ence about the latent position vector θi of each vertex i ∈ {1, . . . , N}. We take a mixed-membership
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(si,jk, sj,ik, sk,ij) Equivalence classes Conditional probability ofEijk ∈ {1, 2, 3, 4}

x = si,jk = sj,ik = sk,ij {1, 2, 3}, {4} Discrete
([Bxxx,1

3 ,
Bxxx,1

3 ,
Bxxx,1

3 , Bxxx,2

])
x = si,jk = sj,ik 6= sk,ij {1, 2}, {3}, {4} Discrete

([Bxx,1
2 ,

Bxx,1
2 , Bxx,2, Bxx,3

])
x = si,jk = sk,ij 6= sj,ik {1, 3}, {2}, {4} Discrete

([Bxx,1
2 , Bxx,2,

Bxx,1
2 , Bxx,3

])
x = sj,ik = sk,ij 6= si,jk {2, 3}, {1}, {4} Discrete

([
Bxx,2,

Bxx,1
2 ,

Bxx,1
2 , Bxx,3

])
sk,ij 6= si,jk 6= sj,ik {1, 2, 3}, {4} Discrete

([B0,1
3 ,

B0,1
3 ,

B0,1
3 , B0,2

])
Table 1: Equivalence classes and conditional probabilities ofEijk given si,jk, sj,ik, sk,ij (see text for details).

approach: each vertex i can take a mixture distribution over K latent roles governed by a mixed-
membership vector θi ∈ ∆K−1 restricted to the (K − 1)-simplex. Such vectors can be used for
performing community detection and link prediction, as demonstrated in Section 5. Following a de-
sign principle similar to the Mixed-Membership Triangular Model (MMTM) [8], our Parsimonious
Triangular Model (PTM) is essentially a latent-space model that defines the generative process for a
bag of triangular motifs. However, compared to the MMTM, the major advantage of the PTM lies in
its more compact and lower-dimensional nature that allows for more efficient inference algorithms
(see Global Update step in Section 4). The dimension of triangle-generating parameters in the PTM
is just O(K), rather than O(K3) in the MMTM (see below for further discussion).

To form a triangular motif Eijk for each triplet of vertices (i, j, k), a triplet of role indices
si,jk, sj,ik, sk,ij ∈ {1, . . . ,K} is first chosen based on the mixed-membership vectors θi, θj , θk.
These indices designate the roles taken by each vertex participating in this triangular motif. There
areO(K3) distinct configurations of such latent role triplet, and the MMTM uses a tensor of triangle-
generating parameters of the same size to define the probability of Eijk, one entry Bxyz for each
possible configuration (x, y, z). In the PTM, we reduce the number of such parameters by parti-
tioning the O(K3) configuration space into several groups, and then sharing parameters within the
same group. The partitioning is based on the number of distinct states in the configuration of the
role triplet: 1) if the three role indices are all in the same state x, the triangle-generating probability
is determined by Bxxx; 2) if only two role indices exhibit the same state x (called majority role),
the probability of triangles is governed by Bxx, which is shared across different minority roles; 3)
if the three role indices are all distinct, the probability of triangular motifs depends on B0, a sin-
gle parameter independent of the role configurations. This sharing yields just O(K) parameters
B0, Bxx, Bxxx, x ∈ {1, . . . ,K}, allowing PTM to scale to far more latent roles than MMTM. A
similar idea was proposed in a-MMSB [5], using one parameter ε to determine inter-role link prob-
abilities, rather than O(K2) parameters for all pairs of distinct roles, as in the original MMSB [1].

Once the role triplet (si,jk, sj,ik, sk,ij) is chosen, some of the triangular motifs can become
indistinguishable. To illustrate, in the case of x = si,jk = sj,ik 6= sk,ij , one cannot distinguish the
open triangle with i in the center (Eijk = 1) from that with j in the center (Eijk = 2), because both
are open triangles centered at a vertex with majority role x, and are thus structurally equivalent
under the given role configuration. Formally, this configuration induces a set of triangle equivalence
classes {{1, 2}, {3}, {4}} of all possible triangular motifs {1, 2, 3, 4}. We treat the triangular motifs
within the same equivalence class as stochastically equivalent; that is, the conditional probabilities
of events Eijk = 1 and Eijk = 2 are the same if x = si,jk = sj,ik 6= sk,ij . All possible cases are
enumerated as follows (see also Table 1):
1. If all three vertices have the same role x, all three open triangles are equivalent and the induced set of

equivalence classes is {{1, 2, 3}, {4}}. The probability of Eijk is determined by Bxxx ∈ ∆1, where
Bxxx,1 represents the total probability of sampling an open triangle from {1, 2, 3} and Bxxx,2 represents
the closed triangle probability. Thus, the probability of a particular open triangle is Bxxx,1/3.

2. If only two vertices have the same role x (majority role), the probability ofEijk is governed byBxx ∈ ∆2.
Here, Bxx,1 and Bxx,2 represent the open triangle probabilities (for open triangles centered at a vertex in
majority and minority role respectively), andBxx,3 represents the closed triangle probability. There are two
possible open triangles with a vertex in majority role at the center, and hence each has probabilityBxx,1/2.

3. If all three vertices have distinct roles, the probability ofEijk depends onB0 ∈ ∆1, whereB0,1 represents
the total probability of sampling an open triangle from {1, 2, 3} (regardless of the center vertex’s role) and
B0,2 represents the closed triangle probability.

To summarize, the PTM assumes the following generative process for a bag of triangular motifs:
• Choose B0 ∈ ∆1, Bxx ∈ ∆2 and Bxxx ∈ ∆1 for each role x ∈ {1, . . . ,K} according to symmetric

Dirichlet distributions Dirichlet(λ).
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• For each vertex i ∈ {1, . . . , N}, draw a mixed-membership vector θi ∼ Dirichlet (α).
• For each triplet of vertices (i, j, k) , i < j < k,

− Draw role indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).
− Choose a triangular motif Eijk ∈ {1, 2, 3, 4} based on B0, Bxx, Bxxx and the configuration of

(si,jk, sj,ik, sk,ij) (see Table 1 for the conditional probabilities).

It is worth pointing out that, similar to the MMTM, our PTM is not a generative model of networks
per se because (a) empty and single-edge motifs are not modeled, and (b) one can generate a set
of triangles that does not correspond to any network, because the generative process does not force
overlapping triangles to have consistent edge values. However, given a bag of triangular motifs E
extracted from a network, the above procedure defines a valid probabilistic model p(E | α, λ) and
we can legitimately use it for performing posterior inference p(s,θ,B | E, α, λ). We stress that our
goal is latent space inference, not network simulation.
4 Scalable Stochastic Variational Inference
In this section, we present a stochastic variational inference algorithm [10] for performing approx-
imate inference under our model. Although it is also feasible to develop such algorithm for the
MMTM [8], the O(NK3) computational complexity precludes its application to large numbers of
latent roles. However, due to the parsimonious O(K) parameterization of the PTM, our efficient
algorithm has only O(NK) complexity.

We adopted a structured mean-field approximation method, in which the true posterior of latent
variables p(s,θ,B | E, α, λ) is approximated by a partially factorized distribution q(s,θ,B),

q(s,θ,B) =
∏

(i,j,k)∈I

q(si,jk, sj,ik, sk,ij | φijk)

N∏
i=1

q(θi | γi)
K∏
x=1

q(Bxxx | ηxxx)

K∏
x=1

q(Bxx | ηxx)q(B0 | η0),

where I = {(i, j, k) : i < j < k,Eijk = 1, 2, 3 or 4} and |I| = O(Nδ2). The strong dependencies
among the per-triangle latent roles (si,jk, sj,ik, sk,ij) suggest that we should model them as a group,
rather than completely independent as in a naive mean-field approximation1. Thus, the variational
posterior of (si,jk, sj,ik, sk,ij) is the discrete distribution

q(si,jk = x, sj,ik = y, sk,ij = z)
.
= qijk(x, y, z) = φxyzijk , x, y, z = 1, . . . ,K. (1)

The posterior q(θi) is a Dirichlet(γi); and the posteriors of Bxxx, Bxx, B0 are parameterized as:
q(Bxxx) = Dirichlet(ηxxx), q(Bxx) = Dirichlet(ηxx), and q(B0) = Dirichlet(η0).

The mean field approximation aims to minimize the KL divergence KL(q ‖ p) between the ap-
proximating distribution q and the true posterior p; it is equivalent to maximizing a lower bound
L(φ,η,γ) of the log marginal likelihood of the triangular motifs (based on Jensen’s inequality)
with respect to the variational parameters {φ,η,γ} [22].

log p(E | α, λ) ≥ Eq[log p(E, s,θ,B | α, λ)]− Eq[log q(s,θ,B)]
.
= L(φ,η,γ). (2)

To simplify the notation, we decompose the variational objective L(φ,η,γ) into a global term and
a summation of local terms, one term for each triangular motif (see Appendix for details).

L(φ,η,γ) = g(η,γ) +
∑

(i,j,k)∈I

`(φijk,η,γ). (3)

The global term g(η,γ) depends only on the global variational parameters η, which govern the
posterior of the triangle-generating probabilities B, as well as the per-node mixed-membership pa-
rameters γ. Each local term `(φijk,η,γ) depends on per-triangle parameters φijk as well as the
global parameters. Define L(η,γ)

.
= maxφ L(φ,η,γ), which is the variational objective achieved

by fixing the global parameters η,γ and optimizing the local parameters φ. By equation (3),

L(η,γ) = g(η,γ) +
∑

(i,j,k)∈I

max
φijk

`(φijk,η,γ). (4)

Stochastic variational inference is a stochastic gradient ascent algorithm [3] that maximizes L(η,γ),
based on noisy estimates of its gradient with respect to η and γ. Whereas computing the true
gradient ∇L(η,γ) involves a costly summation over all triangular motifs as in (4), an unbiased
noisy approximation of the gradient can be obtained much more cheaply by summing over a small
subsample of triangles. With this unbiased estimate of the gradient and a suitable adaptive step size,
the algorithm is guaranteed to converge to a stationary point of the variational objectiveL(η,γ) [18].

1 We tested a naive mean-field approximation, and it performed very poorly. This is because the tensor of
role probabilities q(x, y, z) is often of high rank, whereas naive mean-field is a rank-1 approximation.

4



Algorithm 1 Stochastic Variational Inference
1: t = 0. Initialize the global parameters η and γ.
2: Repeat the following steps until convergence.

(1) Sample a mini-batch of triangles S.
(2) Optimize the local parameters qijk(x, y, z) for all sampled triangles in parallel by (6).
(3) Accumulate sufficient statistics for the natural gradients of η,γ (and then discard qijk(x, y, z)).
(4) Optimize the global parameters η and γ by the stochastic natural gradient ascent rule (7).
(5) ρt ← τ0(τ1 + t)−κ, t← t+ 1.

In our setting, the most natural way to obtain an unbiased gradient of L(η,γ) is to sample a “mini-
batch” of triangular motifs at each iteration, and then average the gradient of local terms in (4) only
for these sampled triangles. Formally, let m be the total number of triangles and define

LS(η,γ) = g(η,γ) +
m

|S|
∑

(i,j,k)∈S

max
φijk

`(φijk,η,γ), (5)

where S is a mini-batch of triangles sampled uniformly at random. It is easy to verify that
ES [LS(η,γ)] = L(η,γ), hence ∇LS(η,γ) is unbiased: ES [∇LS(η,γ)] = ∇L(η,γ).

Exact Local Update. To obtain the gradient ∇LS(η,γ), one needs to compute the optimal local
variational parameters φijk (keeping η and γ fixed) for each sampled triangle (i, j, k) in the mini-
batch S; these optimal φijk’s are then used in equation (5) to compute ∇LS(η,γ). Taking partial
derivatives of (3) with respect to each local term φxyzijk and setting them to zero, we get for distinct
x, y, z ∈ {1, . . . ,K},
φxyzijk ∝ exp

{
Eq[logB0,2]I[Eijk = 4] + Eq[log(B0,1/3)]I[Eijk 6= 4] + Eq[log θi,x + log θj,x + log θk,x]

}
.

(6)See Appendix for the update equations of φxxxijk and φxxyijk (x 6= y).

O(K) Approximation to Local Update. For each sampled triangle (i, j, k), the exact local update
requires O(K3) work to solve for all φxyzijk , making it unscalable. To enable a faster local up-
date, we replace qijk(x, y, z | φijk) in (1) with a simpler “mixture-of-deltas” variational distribution,

qijk(x, y, z | δijk) =
∑
a

δaaaijk I[x = y = z = a] +
∑

(a,b,c)∈A

δabcijk I[x = a, y = b, z = c],

where A is a randomly chosen set of triples (a, b, c) with size O(K), and
∑
a δ

aaa
ijk +∑

(a,b,c)∈A δ
abc
ijk = 1. In other words, we assume the probability mass of the variational poste-

rior q(si,jk, sj,ik, sk,ij) falls entirely on the K “diagonal” role combinations (a, a, a) as well as
O(K) randomly chosen “off-diagonals” (a, b, c). Conveniently, the δ update equations are identical
to their φ counterparts as in (6), except that we normalize over the δ’s instead.

In our implementation, we generateA by picking 3K combinations of the form (a, a, b), (a, b, a) or
(a, a, b), and another 3K combinations of the form (a, b, c), thus mirroring the parameter structure
of B. Furthermore, we re-pick A every time we perform the local update on some triangle (i, j, k),
thus avoiding any bias due to a single choice of A. We find that this approximation works as well
as the full parameterization in (1), yet requires only O(K) work per sampled triangle. Note that
any choice of A yields a valid lower bound to the true log-likelihood; this follows from standard
variational inference theory.

Global Update. We appeal to stochastic natural gradient ascent [2, 20, 10] to optimize the global
parameters η and γ, as it greatly simplifies the update rules while maintaining the same asymptotic
convergence properties as classical stochastic gradient. The natural gradient ∇̃LS(η,γ) is obtained
by a premultiplication of the ordinary gradient∇LS(η,γ) with the inverse of the Fisher information
of the variational posterior q. See Appendix for the exact forms of the natural gradients with respect
to η and γ. To update the parameters η and γ, we apply the stochastic natural gradient ascent rule

ηt+1 = ηt + ρt∇̃ηLS(ηt,γt), γt+1 = γt + ρt∇̃γLS(ηt,γt), (7)

where the step size is given by ρt = τ0(τ1 + t)−κ. To ensure convergence, the τ0, τ1, κ are set such
that

∑
t ρ

2
t < ∞ and

∑
t ρt = ∞ (Section 5 has our experimental values). The global update only

costs O(NK) time per iteration due to the parsimonious O(K) parameterization of our PTM.

Our full inferential procedure is summarized in Algorithm 1. Within a mini-batch S, steps 2-3
can be trivially parallelized across triangles. Furthermore, the local parameters qijk(x, y, z) can
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be discarded between iterations, since all natural gradient sufficient statistics can be accumulated
during the local update. This saves up to tens of gigabytes of memory on million-node networks.

5 Experiments
We demonstrate that our stochastic variational algorithm achieves latent space recovery accuracy
comparable to or better than prior work, but in only a fraction of the time. In addition, we perform
heldout link prediction and likelihood lower bound (i.e. perplexity) experiments on several large
real networks, showing that our approach is orders of magnitude more scalable than previous work.
5.1 Generating Synthetic Data
We use two latent space models as the simulator for our experiments — the MMSB model [1]
(which the MMSB batch variational algorithm solves for), and a model that produces power-law net-
works from a latent space (see Appendix for details). Briefly, the MMSB model produces networks
with “blocks” of nodes characterized by high edge probabilities, whereas the Power-Law model pro-
duces “communities” centered around a high-degree hub node. We show that our algorithm rapidly
and accurately recovers latent space roles based on these two notions of node-relatedness.

For both models, we synthesized ground truth role vectors θi’s to generate networks of varying diffi-
culty. We generated networks with N ∈ {500, 1000, 2000, 5000, 10000} nodes, with the number of
roles growing as K = N/100, to simulate the fact that large networks can have more roles [24]. We
generated “easy” networks where each θi contains 1 to 2 nonzero roles, and “hard” networks with 1
to 4 roles per θi. A full technical description of our networks can be found in the Appendix.
5.2 Latent Space Recovery on Synthetic Data
Task and Evaluation. Given one of the synthetic networks, the task is to recover estimates θ̂i’s
of the original latent space vectors θi’s used to generate the network. Because we are comparing
different algorithms (with varying model assumptions) on different networks (generated under their
own assumptions), we standardize our evaluation by thresholding all outputs θ̂i’s at 1/8 = 0.125
(because there are no more than 4 roles per θi), and use Normalized Mutual Information (NMI) [12,
23], a commonly-used measure of overlapping cluster accuracy, to compare the θ̂i’s with the true
θi’s (thresholded similarly). In other words, we want to recover the set of non-zero roles.

Competing Algorithms and Initialization. We tested the following algorithms:
• Our PTM stochastic variational algorithm. We used δ = 50 subsampling2 (i.e.

(
50
2

)
= 1225 triangles

per node), hyperparameters α = λ = 0.1, and a 10% minibatch size with step-size τ0(τ1 + t)κ, where
τ0 = 100, τ1 = 10000, κ = −0.5, and t is the iteration number. Our algorithm has a runtime complexity
of O(Nδ2K). Since our algorithm can be run in parallel, we conduct all experiments using 4 threads —
compared to single-threaded execution, we observe this reduces runtime to about 40%.

• MMTM collapsed blocked Gibbs sampler, according to [8]. We also used δ = 50 subsampling. The
algorithm has O(Nδ2K3) time complexity, and is single-threaded.

• PTM collapsed blocked Gibbs sampler. Like the above MMTM Gibbs, but using our PTM model.
Because of block sampling, complexity is still O(Nδ2K3). Single-threaded.

• MMSB batch variational [1]. This algorithm has O(N2K2) time complexity, and is single-threaded.

All these algorithms are locally-optimal search procedures, and thus sensitive to initial values. In
particular, if nodes from two different roles are initialized to have the same role, the output is likely
to merge all nodes in both roles into a single role. To ensure a meaningful comparison, we therefore
provide the same fixed initialization to all algorithms — for every role x, we provide 2 example
nodes i, and initialize the remaining nodes to have random roles. In other words, we seed 2% of the
nodes with one of their true roles, and let the algorithms proceed from there3.

Recovery Accuracy. Results of our method, MMSB Variational, MMTM Gibbs and PTM
Gibbs are in Figure 1. Our method exhibits high accuracy (i.e. NMI close to 1) across almost all
networks, validating its ability to recover latent roles under a range of network sizes N and roles
K. In contrast, asN (and thusK) increases, MMSB Variational exhibits degraded performance
despite having converged, while MMTM/PTM Gibbs converge to and become stuck in local minima

2 We chose δ = 50 because almost all our synthetic networks have median degree ≤ 50. Choosing δ above
the median degree ensures that more than 50% of the nodes will receive all their assigned triangles.

3 In general, one might not have any ground truth roles or labels to seed the algorithm with. For such cases,
our algorithm can be initialized as follows: rank all nodes according to the number of 3-triangles they touch,
and then seed the top K nodes with different roles x. The intuition is that “good” roles may be defined as
having a high ratio of 3-triangles to 2-triangles among participating nodes.
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Latent space recovery on Synthetic Power-Law and MMSB Networks
Accuracy vs MMSB, MMTM Runtime Full vs Mini-Batch
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Figure 1: Synthetic Experiments. Left/Center: Latent space recovery accuracy (measured using Normalized
Mutual Information) and runtime per data pass for our method and baselines. With the MMTM/PTM Gibbs and
MMSB Variational algorithms, the larger networks did not complete within 12 hours. The runtime plots
for MMSB easy and Power-Law easy experiments are very similar to the hard experiments, so we omit them.
Right: Convergence of our stochastic variational algorithm (with 10% minibatches) versus a batch variational
version of our algorithm. On N = 1, 000 networks, our minibatch algorithm converges within 1-2 data passes.

Link Prediction on Synthetic and Real Networks
Network Type Synthetic Dictionary Biological arXiv Collaboration Internet Social

Name MMSB Power-law Roget Odlis Yeast GrQc AstroPh Stanford Youtube
NodesN 2.0K 2.0K 1.0K 2.9K 2.4K 5.2K 18.7K 282K 1.1M

Edges 40K 40K 3.6K 16K 6.6K 14K 200K 2.0M 3.0M

Our Method AUC 0.93 0.97 0.65 0.81 0.75 0.82 0.86 0.94 0.71
MMSB Variational AUC 0.91 0.94 0.72 0.88 0.81 0.77 — — —

Table 2: Link Prediction Experiments, measured using AUC. Our method performs similarly to MMSB
Variational on synthetic data. MMSB performs better on smaller, non-social networks, while we perform
better on larger, social networks (or MMSB fails to complete due to lack of scalability). Roget, Odlis and
Yeast networks are from Pajek datasets (http://vlado.fmf.uni-lj.si/pub/networks/data/);
the rest are from Stanford Large Network Dataset Collection (http://snap.stanford.edu/data/).

(even after many iterations and trials), without reaching a good solution4. We believe our method
maintains high accuracy due to its parsimonious O(K) parameter structure — compared to MMSB
Variational’s O(K2) block matrix and MMTM Gibbs’s O(K3) tensor of triangle parameters.
Having fewer parameters may lead to better parameter estimates, and better task performance.

Runtime. On the larger networks, MMSB Variational and MMTM/PTM Gibbs did not even
finish execution due to their high runtime complexity. This can be seen in the runtime graphs, which
plot the time taken per data pass5: at N = 5, 000, all 3 baselines require orders of magnitude more
time than our method does at N = 10, 000. Recall that K = O(N), and that our method has time
complexity O(Nδ2K), while MMSB Variational has O(N2K2), and MMTM/PTM Gibbs has
O(Nδ2K3) — hence, our method runs in O(N2) on these synthetic networks, while the others run
in O(N4). This highlights the need for network methods that are linear in N and K.

Convergence of stochastic vs. batch algorithms. We also demonstrate that our stochastic varia-
tional algorithm with 10% mini-batches converges much faster to the correct solution than a non-
stochastic, full-batch implementation. The convergence graphs in Figure 1 plot NMI as a function of
data passes, and show that our method converges to the (almost) correct solution in 1-2 data passes.
In contrast, the batch algorithm takes 10 or more data passes to converge.

5.3 Heldout Link Prediction on Real and Synthetic Networks
We compare MMSB Variational and our method on a link prediction task, in which 10% of
the edges are randomly removed (set to zero) from the network, and, given this modified network,
the task is to rank these heldout edges against an equal number of randomly chosen non-edges.
For MMSB, we simply ranked according to the link probability under the MMSB model. For our

4 With more generous initializations (20 out of 100 ground truth nodes per role), MMTM/PTM Gibbs
converge correctly. In practice however, this is an unrealistic amount of prior knowledge to expect. We believe
that more sophisticated MCMC schemes may fix this convergence issue with MMTM/PTM models.

5One data pass is defined as performing variational inference on m triangles, where m is equal to the total
number of triangles. This takes the same amount of time for both the stochastic and batch algorithms.
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Real Networks — Statistics, Experimental Settings and Runtime
Name Nodes Edges δ 2,3-Tris (for δ) Frac. 3-Tris RolesK Threads Runtime (10 data passes)

Brightkite 58K 214K 50 3.5M 0.11 64 4 34 min
Brightkite || || || || || 300 4 2.6 h

Slashdot Feb 2009 82K 504K 50 9.0M 0.030 100 4 2.4 h
Slashdot Feb 2009 || || || || || 300 4 6.7 h

Stanford Web 282K 2.0M 20 11.4M 0.57 5 4 10 min
Stanford Web || || 50 25.0M 0.42 100 4 6.3 h

Berkeley-Stanford Web 685K 6.6M 30 57.6M 0.55 100 8 15.2 h
Youtube 1.1M 3.0M 50 36.0M 0.053 100 8 9.1 h

Table 3: Real Network Experiments. All networks were taken from the Stanford Large Network Dataset
Collection; directed networks were converted to undirected networks via symmetrization. Some networks were
run with more than one choice of settings. Runtime is the time taken for 10 data passes (which was more than
sufficient for convergence on all networks, see Figure 2).

Real Networks — Heldout lower bound of our method
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Figure 2: Real Network Experiments. Training and heldout variational lower bound (equivalent to perplex-
ity) convergence plots for all experiments in Table 3. Each plot shows both lower bounds over 10 data passes
(i.e. 100 iterations with 10% minibatches). In all cases, we observe convergence between 2-5 data passes, and
the shape of the heldout curve closely mirrors the training curve (i.e. no overfitting).

method, we ranked possible links i− j by the probability that the triangle (i, j, k) will include edge
i− j, marginalizing over all choices of the third node k and over all possible role choices for nodes
i, j, k. Table 2 displays results for a variety of networks, and our triangle-based method does better
on larger social networks than the edge-based MMSB. This matches what has been observed in the
network literature [24], and further validates our triangle modeling assumptions.
5.4 Real World Networks — Convergence on Heldout Data
Finally, we demonstrate that our approach is capable of scaling to large real-world networks, achiev-
ing convergence in a fraction of the time reported by recent work on scalable network modeling.
Table 3 lists the networks that we tested on, ranging in size from N = 58K to N = 1.1M. With
a few exceptions, the experiments were conducted with δ = 50 and 4 computational threads. In
particular, for every network, we picked δ to be larger than the average degree, thus minimizing the
amount of triangle data lost to subsampling. Figure 2 plots the training and heldout variational lower
bound for several experiments, and shows that our algorithm always converges in 2-5 data passes.

We wish to highlight two experiments, namely the Brightkite network for K = 64, and the Stanford
network for K = 5 (the first and fifth rows respectively in Table 3). Gopalan et al. ([5]) reported
convergence on Brightkite in 8 days using their scalable a-MMSB algorithm with 4 threads, while
Ho et al. ([8]) converged on Stanford in 18.5 hours using the MMTM Gibbs algorithm on 1 thread.
In both settings, our algorithm is orders of magnitude faster — using 4 threads, it converged on
Brightkite and Stanford in just 12 and 4 minutes respectively, as seen in Figure 2.

In summary, we have constructed a latent space network model with O(NK) parameters and de-
vised a stochastic variational algorithm for O(NK) inference. Our implementation allows network
analysis with millions of nodes N and hundreds of roles K in hours on a single multi-core machine,
with competitive or improved accuracy for latent space recovery and link prediction. These results
are orders of magnitude faster than recent work on scalable latent space network modeling [5, 8].
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