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Appendix

A Proof of Theorem 4

Proof. Assume w.l.o.g. that ThreshD,f,c(u) = sign(u − t∗) for some t∗ ∈ [−∞,∞]; a similar
analysis can be shown when ThreshD,f,c(u) = sign(u−t∗) for some t∗. We first recall the following
result of Clémençon et al. [8] (adapted as in [26] to account for ties and conditioning on y 6= y′).

regretrank
D [f ] =

1

2p(1− p)
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1((f(x)− f(x′))(η(x)− η(x′)) < 0

)
+

1

2
1
(
f(x) = f(x′)

))]
.

Next, given a binary classifier h : X → {±1} and a cost parameter c ∈ (0, 1), the cost-sensitive
classification error can be rewritten as

er0-1,c
D [h] = Ex

[
(1− c)η(x)1

(
h(x) = −1

)
+ c
(
1− η(x)

)
1
(
h(x) = 1

)]
and the corresponding regret can be expanded as

regret0-1,c
D [h]

= Ex
[
(1− c)η(x)1

(
h(x) = −1

)
+ c
(
1− η(x)

)
1
(
h(x) = 1

)]
− Ex

[
(1− c)η(x)1

(
η(x) ≤ c

)
+ c
(
1− η(x)

)
1
(
η(x) > c

)]
= Ex

[(
c− η(x)

)
1
(
h(x) = 1, η(x) ≤ c

)]
+ Ex

[(
η(x)− c

)
1
(
h(x) = −1, η(x) > c

)]
.

For h = sign ◦ (f − t∗),

regret0-1,c
D [sign ◦ (f − t∗)]

= Ex
[(
c− η(x)

)
1
(
f(x) > t∗, η(x) ≤ c

)]
+ Ex

[(
η(x)− c

)
1
(
f(x) ≤ t∗, η(x) > c

)]
(1)

= a+ b (say).

We then have

2p(1− p) regretrank
D [f ] ≥ 1

2
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1((f(x)− f(x′))(η(x)− η(x′)) ≤ 0

))]
(getting rid of the term accounting for ties)

≥ 1

2
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) ≥ f(x′), η(x) ≤ c, η(x′) > c

)
+1
(
f(x) ≤ f(x′), η(x) > c, η(x′) ≤ c

))]
=

2

2
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) ≥ f(x′), η(x) ≤ c, η(x′) > c

))]
= term1 + term2 + term3, (2)

where

term1 = Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) ≥ f(x′) > t∗, η(x) ≤ c, η(x′) > c

))]
,

term2 = Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(t∗ ≥ f(x) ≥ f(x′), η(x) ≤ c, η(x′) > c

))]
and

term3 = Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) > t∗, f(x′) ≤ t∗, η(x) ≤ c, η(x′) > c

))]
.

Each of the above terms corresponds to different sets of pairs of instances; term1 corresponds to pairs
where both instances are ranked by f above t∗; term2 corresponds to pairs where both instances are
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ranked by f below (or at the same position as) t∗; term3 corresponds to pairs (x, x′), where x is
ranked by f above t∗, while x′ is ranked below (or at the same position as) t∗. We next bound each
of these terms separately.
term1

= Ex,x′

[∣∣η(x′)− c+ c− η(x)
∣∣(1(f(x) ≥ f(x′) > t∗, η(x) ≤ c, η(x′) > c

))]
≥ Ex,x′

[
2
∣∣η(x′)− c

∣∣∣∣c− η(x)
∣∣(1(f(x) ≥ f(x′) > t∗, η(x) ≤ c, η(x′) > c

))]
(since u+ v ≥ 2

√
uv ≥ 2uv, ∀u, v ∈ [0, 1])

= 2Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)Ex′

[∣∣η(x′)− c
∣∣1(t∗ < f(x′) ≤ f(x), η(x′) > c

)]]
.

(3)
By definition, t∗ yields the minimum classification regret among all choices of thresholds t ∈ R:

t∗ = argmin
t∈[−∞,∞]

{
regret0-1,c

D

[
sign ◦

(
f − t

)]}
= argmin

t∈[−∞,∞]

Ex′
[(
η(x′)− c

)
1
(
f(x′) ≤ t, η(x′) > c

)
+
(
c− η(x′)

)
1
(
f(x′) > t, η(x′) ≤ c

)]
(from Eq. (1)).

It can hence be shown that for any t > t∗,
Ex′
[∣∣η(x′)− c

∣∣1(t∗ < f(x′) ≤ t, η(x′) > c
)]
≥ Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′) ≤ t, η(x′) ≤ c

)]
.

Applying the above inequality to Eq. (3) with t = f(x), we have
term1

≥ 2Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′) ≤ f(x), η(x′) ≤ c

)]]
≥ 2

2
Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′), η(x′) ≤ c

)]]
(since Ex,x′ [g(x, x′)1(f(x) ≤ f(x′))] ≥ 1

2
Ex,x′ [g(x, x′)])

= Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)

]
Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′), η(x′) ≤ c

)]
= Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)

]2
= a2.

Similarly, one can show

term2 ≥ Ex

[∣∣η(x)− c
∣∣1(f(x) ≤ t∗, η(x) > c)

]2
= b2.

In the case of term3, we have

term3 = Ex,x′

[∣∣η(x′)− c+ c− η(x)
∣∣(1(f(x) > t∗, f(x′) ≤ t∗, η(x) ≤ c, η(x′) > c

))]
≥ Ex,x′

[
2
∣∣η(x′)− c

∣∣∣∣c− η(x)
∣∣(1(f(x) > t∗, f(x′) ≤ t∗, η(x) ≤ c, η(x′) > c

))]
(since u+ v ≥ 2

√
uv ≥ 2uv, ∀u, v ∈ [0, 1])

≥ 2Ex,x′

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c

)∣∣η(x′)− c
∣∣1(f(x′) ≤ t∗, η(x′) > c

)]
= 2Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c

)]
Ex′

[∣∣η(x′)− c
∣∣1(f(x′) ≤ t∗, η(x′) > c

)]
= 2ab.

Applying the bounds on term1, term2 and term3 in Eq. (2), we have
2p(1− p) regretrank

D [f ] ≥ a2 + b2 + 2ab

= (a+ b)2

=
(
regret0-1,c

D [sign ◦ (f − t∗)]
)2
.

Hence the proof.
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B Proof of Theorem 6

Proof.

regret0-1,c
D [sign ◦ (f − t̂S,f,c)]

= er0-1,c
D [sign ◦ (f − t̂S,f,c)]− er0-1,c,∗

D

= er0-1,c
D [sign ◦ (f − t̂S,f,c)]− er0-1,c

D [ThreshD,f,c ◦ f ] + er0-1,c
D [ThreshD,f,c ◦ f ]− er0-1,c,∗

D

(where ThreshD,f,c is obtained from (OP1))

=
(

er0-1,c
D [sign ◦ (f − t̂S,f,c)]− er0-1,c

D [ThreshD,f,c ◦ f ]
)

+ regret0-1,c
D [ThreshD,f,c ◦ f ].

(4)

The second term in the above expression can be upper bounded in terms of the ranking regret of
f using Theorem 4. We now derive a bound on the first term by using standard VC-dimension
based uniform convergence result for binary classification. Note that the real-valued function f ,
when applied to each instance drawn from D, induces a distribution over R× {±1}; let us call this
distribution Df . Also, let Sf = {(f(x1), y1), . . . , (f(xn), yn)} be the set constructed by applying
f to each instance in S; given that S is drawn iid from D, it follows that Sf is also iid drawn from
Df . Recall that Tinc is the set of all increasing functions from R to {±1} (see Section 3). One can
now view the optimization problem in (OP1) as risk minimization over Tinc w.r.t. the distributionDf

and the optimization problem in (OP2) as empirical risk minimization over Tinc w.r.t. the training
sample Sf . In other words,

inf
θ∈Tinc

{
er0-1,c
D

[
θ ◦ f

]}
= inf
θ∈Tinc

{
er0-1,c
Df

[
θ
]}

= er0-1,c
Df

[
θ∗
]

and
inf
t∈R

{
er0-1,c
S

[
sign ◦

(
f − t

)]}
= inf
θ∈Tinc

{
er0-1,c
Sf

[
θ
]}

= er0-1,c
Sf

[
θ̂
]
.

Thus the first term in Eq. (4) evaluates to er0-1,c
Df

[
θ̂
]
− er0-1,c

Df

[
θ∗
]
. Using standard results, one can

show that the following upper bound on this quantity holds with probability at least 1− δ (over the
draw of S ∼ Dn):

er0-1,c
Df

[
θ̂
]
− er0-1,c

Df

[
θ∗
]
≤

√
32
(
VC-dim(Tinc)

(
ln(2n) + 1

)
+ ln

(
4
δ

))
n

,

where VC-dim(Tinc) is the VC dimension of Tinc. Thus with probability at least 1− δ (over the draw
of S ∼ Dn), we have

regret0-1,c
D [sign ◦ (f − t̂S,f,c)]

≤

√
32
(
VC-dim(Tinc)

(
ln(2n) + 1

)
+ ln

(
4
δ

))
n

+
√

2
√
p(1− p) regretrank

D [f ].

It is easy to see that VC-dim(Tinc) = 2; plugging this in the above expression completes the proof.

C Proof of Theorem 10

Our proof for Theorem 10 is simpler than the one in [20] which holds for a more general result. We
first state and prove two lemmas which will be useful in our proof.
Lemma 20. Let D be a distribution over X × {±1}. For any binary class probability estimator
η̂ : X → [0, 1] calibrated w.r.t. D and threshold t ∈ [0, 1],

er0-1,c
D

[
sign ◦ (η̂ − t)] = Esη̂

[
(1− c)sη̂1(sη̂ ≤ t) + c

(
1− sη̂

)
1(sη̂ > t)

]
and

er0-1,c
D

[
sign ◦ (η̂ − t)] = Esη̂

[
(1− c)sη̂1(sη̂ < t) + c

(
1− sη̂

)
1(sη̂ ≥ t)

]
,

where sη̂ is the random variable associated with the score distribution of η̂ over [0, 1].
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Proof. We give a proof for the first part of the result; the second part involving sign can be proved
in a similar manner. For simplicity of notation, we omit the subscript on sη̂ . For any c ∈ (0, 1), we
have

er0-1,c
D

[
sign ◦ (η̂ − t)]

= Ex
[
(1− c)η(x)1(η̂(x) ≤ t) + c

(
1− η(x)

)
1(η̂(x) > t)

]
= Es

[
Ex
[
(1− c)η(x)1(η̂(x) ≤ t) + c

(
1− η(x)

)
1(η̂(x) > t)

∣∣ η̂(x) = s
]]

= Es

[
(1− c)Ex

[
η(x)

∣∣ η̂(x) = s
]
1(s ≤ t) + c

(
1−Ex

[
η(x)

∣∣ η̂(x) = s
])
1(s > t)

]]
= Es

[
(1− c)P(y = 1|s)1(s ≤ t) + c

(
1−P(y = 1|s)

)
1(s > t)

]
(follows from Ex

[
η(x)

∣∣ η̂(x) = s
]

= P(y = 1|s)).

The next lemma states that for any binary class probability estimator η̂ calibrated w.r.t. D and a
given cost parameter c ∈ (0, 1), the optimal classification transform on η̂ that yields minimum
cost-sensitive classification error is simply θ(u) = sign(u− c).
Lemma 21. Let D be a distribution over X × {±1}. For any binary class probability estimator
η̂ : X → [0, 1] calibrated w.r.t. D and cost parameter c ∈ (0, 1),

ThreshD,η̂,c = sign ◦ (η̂ − c).

Proof. Let sη̂ denote the random variable associated with the score distribution of η̂ over [0, 1]; for
simplicity of notation, we omit the subscript on sη̂ . Let us start by considering functions θ ∈ Tinc of
the form θ(u) = sign(u− t) for some t ∈ [0, 1]. For any c ∈ (0, 1), we have

argmint∈[0,1]

{
er0-1,c
D

[
sign ◦ (η̂ − t)]

}
= argmint∈[0,1]

{
Es
[

(1− c)s1(s ≤ t) + c
(
1− s

)
1(s > t)︸ ︷︷ ︸

minimum at t = c

]}
(from Lemma 20)

= c.

The last step follows from the fact that the point-wise minimum is attained at t = c; this implies that
θ(u) = sign(u − c) yields the least possible value of er0-1,c

D

[
θ ◦ η̂

]
over all increasing functions in

Tinc, and hence we have ThreshD,η̂,c = sign ◦ (η̂ − c).

We are now ready to prove Theorem 10. As before, let sη̂ denote the random variable associated
with the score distribution of η̂ over [0, 1]; for simplicity of notation, let us omit the subscript on sη̂ .

Proof of Theorem 10. Starting with the right hand side, we have
2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,f,c ◦ f ]

]
= 2Ec∼U(0,1)

[
er0-1,c
D

[
sign ◦ (η̂ − c)]

]
(from Lemma 21)

= 2Ec∼U(0,1)

[
Es
[
(1− c)s1(s ≤ c) + c(1− s)1(s > c)

]]
(from Lemma 20)

= 2Es

[
Ec∼U(0,1)

[
(1− c)s1(s ≤ c)

]
+ Ec∼U(0,1)

[
c(1− s)1(s > c)

]]
(exchanging expectations)

= 2Es

[
s

∫ 1

s

(1− c) dc+ (1− s)
∫ s

0

c dc
]

= Es
[
s(1− s)2 + (1− s)s2

]
= Es

[
P(y = 1|s)(1− s)2 +

(
1−P(y = 1|s)

)
s2
]

(since η̂ is calibrated)

= Ex
[
η(x)(1− η̂(x))2 +

(
1− η(x)

)
η̂(x)2

]
(follows from P(y = 1|s) = Ex

[
η(x)

∣∣ η̂(x) = s
]
)

= ersq
D[η̂].
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D Proof of Lemma 11

Proof. Expanding the left hand side, we have

regretsq
D[η̂] = ersq

D[η̂]− ersq,∗
D = ersq

D[η̂]− ersq
D[η]

= 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]]
− 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η,c ◦ η

]]
(from Theorem 10)

= 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]]
− 2Ec∼U(0,1)

[
er0-1,c
D

[
sign ◦ (η − c)

]]
(from Lemma 21)

= 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]
− er0-1,c,∗

D

]
≤

√
8p(1− p) regretrank

D [η̂] (from Theorem 4).

E Proof of Lemma 13

We will find it useful to introduce a few notations. For a given ranking model f : X→[a, b] and
distribution D over X × {±1}, define µ̄f (t) = P(f(x) ≤ t) and η̄f (t) = P(y = 1, f(x) ≤ t) for
all t ∈ [a, b]; as before, p = P(y = 1).

We first state a result of [27, 28] that characterizes the minimizer of (OP3).
Theorem 22 ( [27, 28]). Let f : X → [a, b] (where a, b ∈ R, a < b) be any bounded-range ranking
model andD be any probability distribution overX×{±1} such that (D, f) satisfies Assumption A.
Moreover assume that µf (see Assumption A), if mixed, does not have a point mass at the end-points
a, b, and that the function ηf : [a, b]→[0, 1] defined as ηf (t) = P(y = 1 | f(x) = t) is square-
integrable w.r.t. the density of the continuous part of µf . Then the minimizer CalD,f : [a, b]→[0, 1]
of (OP3) exists, and CalD,f (τ) for any τ ∈ (a, b) is given by the right-continuous slope of the largest
convex minorant5 of following graph at t = τ :

G[f ] =
{(
µ̄f (t), η̄f (t)

)
: t ∈ [a, b]

}
. (5)

Moreover, G[CalD,f ◦ f ] is piece-wise linear on all portions where it disagrees with G[f ]; in partic-
ular, there exists a collection of disjoint open intervals {(aα, bα) | α ∈ Λ} in [a, b], where Λ is some
index set, such that CalD,f evaluates to a constant on each such interval (with the constant being
distinct for each interval) and CalD,f is equal to ηf everywhere else in [a, b]:

CalD,f (t) =

{
να if t ∈ (aα, bα), for some α ∈ Λ

ηf (t) otherwise
,

where

να =
η̄f (bα)− η̄f (aα)

µ̄f (bα)− µ̄f (aα)
, (6)

with να 6= να′ for any α 6= α′, α, α′ ∈ Λ.

While the proof for the above result in [27,28] assumes a continuous and strictly positive density µf
over [a, b], it can be extended to handle the slightly more general conditions considered here.

We are now ready to prove the two properties stated for CalD,f in Lemma 13.

Proof of Lemma 13. We shall assume that the score distribution of f over [a, b] is continuous, and
µf denotes the corresponding probability density function; a similar proof can be shown when the
score distribution is discrete or is mixed and satisfies conditions stated in the Lemma. For simplicity
of notation, let us denote CalD,f as Cal.

Proof of (1): We need to show that for any u ∈ range(Cal ◦ f), P(y = 1 | Cal(f(x)) = u) = u.
There are three possible cases that we could consider: (i) u = να, for some unique α ∈ Λ (see

5A real-valued function g1 is a minorant of another real-valued function g2 defined over the same domain,
if g1(z) ≤ g2(z), ∀z; similarly, g1 is a majorant of g2, if g1(z) ≥ g2(z), ∀z.
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Eq. (6)), with Cal(t) = u,∀t ∈ (aα, bα), and Cal(t) 6= u, for all t /∈ (aα, bα); (ii) u 6= να, for any
α ∈ Λ; (iii) u = να for some unique α ∈ Λ, and there exists t /∈ ∪α∈Λ(aα, bα) with Cal(t) = u.

For any u ∈ range(Cal◦f) satisfying case (i), there exists α ∈ Λ s.t. να = u. We have from Eq. (6),

u =
η̄f (bα)− η̄f (aα)

µ̄f (bα)− µ̄f (aα)

=

∫ bα
aα
ηf (s)µf (s)ds∫ bα
aα
µf (s)ds

= P
(
y = 1

∣∣ f(x) ∈ (aα, bα)
)

= P
(
y = 1

∣∣ Cal(f(x)) = u
)
.

The last step follows from the fact that for all t /∈ (aα, bα), Cal(t) 6= u.

For any u ∈ range(Cal ◦ f) satisfying case (ii), there exists no α ∈ Λ with να = u; we thus have
from Theorem 22 that ηf (t) = u for all t with Cal(t) = u. Then

P
(
y = 1

∣∣ Cal(f(x)) = u
)

=

∫
{s : Cal(s)=u} ηf (s)µf (s)ds∫
{s : Cal(s)=u} µf (s)ds

=

∫
{s : Cal(s)=u} uµf (s)ds∫
{s : Cal(s)=u} µf (s)ds

= u.

For any u ∈ range(Cal ◦ f) satisfying case (iii), there exists a unique α ∈ Λ for which να = u, with
Cal(t) = u,∀t ∈ (aα, bα), and there also exists t /∈ ∪α∈Λ(aα, bα), for which Cal(t) = ηf (t) = u.

P
(
y = 1

∣∣ Cal(f(x)) = u
)

=

∫
{s : Cal(s)=u} ηf (s)µf (s)ds∫
{s : Cal(s)=u} µf (s)ds

=

∫ bα
aα
ηf (s)µf (s)ds +

∫
{s : Cal(s)=ηf (s)=u} ηf (s)µf (s)ds∫

{s : Cal(s)=u} µf (s)ds

=
u
∫ bα
aα
µf (s)ds + u

∫
{s : Cal(s)=ηf (s)=u} µf (s)ds∫

{s : Cal(s)=u} µf (s)ds

(applying Eq. (6) to the first integral in the numerator)
= u.

Proof of (2): Recall that for a ranking model f , errank
D [f ] is equivalent to one minus the area under

the ROC curve6 (AUC) of f . It is thus enough to show that the ROC curve of Cal ◦ f is a majorant
for the ROC curve of f . The ROC curve for f can be defined as

ROC[f ] =

{(
P(f(x) ≤ t | y = −1), P(f(x) > t | y = 1)

)
: t ∈ [a, b]

}
=

{(
1

1− p

∫ t

a

(1− ηf (s))µf (s)ds,
1

p

∫ b

t

ηf (s)µf (s)ds

)
: t ∈ [a, b]

}
. (7)

As illustrated in Figure 4, each point in the graphG[f ] (defined in Eq. (5)) has a corresponding point
in ROC[f ]; similarly, each line segment inG[f ] corresponds to a line segment in ROC[f ]. Moreover,
for any two given ranking models f1 and f2, if a line segment in G[f1] is a minorant for a certain
portion of G[f2], the corresponding line segment in ROC[f1] is a majorant for the corresponding
portion of ROC[f2] (see segments AB and A’B’ in Figure 4). Since, from Theorem 22, we have
that G[Cal ◦ f ] is a minorant for G[f ], and G[Cal ◦ f ] is piece-wise linear on all portions where it
disagrees with G[f ], it follows that ROC[Cal ◦ f ] is a majorant for ROC[f ].

6The ROC curve of a ranking model f is the plot of the true positive rate (probability of classifying a
random positive example as positive) against the false positive rate (probability of classifying a random negative
example as positive) of a classifier of the form sign ◦ (f − t) for all thresholds t ∈ [a, b].

15



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

A

B

C

µ̄

η̄

 

 

G[f1]

G[f2]

(a) G[f ]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A’

B’

C’

FPR

T
P
R

 

 

ROC[f1]

ROC[f2]

(b) ROC[f ]

Figure 4: Sample plots illustrating the relationship between the graph G (plot of η̄f (t) against µ̄f (t)
for all t ∈ [a, b]; see Eq. (5)) and the ROC curve (plot of true positive rate TPRf (t) = P(f(x) >
t | y = 1) against false positive rate FPRf (t) = P(f(x) ≤ t | y = −1) for all t ∈ [a, b]; see
Eq. (7)). (a) Graph G for ranking models f1 and f2: the graphs for f1 and f2 agree on all points
except for the portion between points A and B, where the line segment AB in G[f2] is a minorant
for G[f1]. (b) ROC curve for the ranking models f1 and f2: the points A, B and C in the graph G
for f1 and f2 correspond to points A’, B’ and C’ respectively in the ROC curves for f1 and f2; the
line segment AB in G[f2] corresponds to the line segment A’B’ in ROC[f2], which is a majorant for
the corresponding portion in ROC[f1]. Moreover, while G[f2] is a convex minorant for G[f1], the
corresponding ROC curve ROC[f2] is a concave majorant for ROC[f1].

F Proof of Theorem 14

Proof. Using the fact that CalD,f ◦ f is calibrated (property 1 in Lemma 13), we have

regretsq
D[Cal ◦ f ] ≤

√
8p(1− p) regretrank

D [CalD,f ◦ f ] (from Lemma 11)

≤
√

8p(1− p) regretrank
D [f ] (from property 2 in Lemma 13).

G Proof of Theorem 16

Proof.

regretsq
D[ĈalS,f ◦ f ] = ersq

D[ĈalS,f ◦ f ]− ersq
D[η]

= ersq
D[ĈalS,f ◦ f ]− ersq

D[CalD,f ◦ f ] + ersq
D[CalD,f ◦ f ]− ersq

D[η]

=
(

ersq
D[ĈalS,f ◦ f ]− ersq

D[CalD,f ◦ f ]
)

+ regretsq
D[CalD,f ◦ f ] (8)

Using Theorem 14, the second term in the above expression can be upper bounded in terms of the
ranking regret of f . We now focus on upper bounding the first term. As in the proof of Theorem 6,
consider the distribution Df induced by f over R×{±1} and let Sf be the set obtained by applying
f to each instance in S; clearly, Sf is iid drawn from Df . One can then view the optimization
problem in OP4 as empirical risk minimization over Ginc w.r.t. the sample Sf . Using standard
Rademacher averages based uniform convergence result for empirical risk minimization over a real-
valued function class with the squared loss, we have that the following holds with probability at least
1− δ (over the draw of S ∼ Dn):

ersq
D[ĈalS,f ◦ f ]− inf

g∈Ginc
ersq
D[g ◦ f ] ≤ 4RSf (Ginc) + 2

√
2 ln

(
8
δ

)
n

,

whereRSf (Ginc) is the empirical Rademacher average of Ginc w.r.t. Sf . Using Dudley’s integral, and

bounds on covering numbers of Ginc, one can show RSf (Ginc) ≤ 24
√

2 ln(n)
n (see for example [21]);
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we thus have with probability at least 1− δ (over the draw of S ∼ Dn),

ersq
D[ĈalS,f ◦ f ]− inf

g∈Ginc
ersq
D[g ◦ f ] ≤ 96

√
2 ln(n)

n
+ 2

√
2 ln

(
8
δ

)
n

.

Plugging this into Eq. (8) (along with the upper bound on the second term) completes the proof.
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