Action-Model Based Multi-agent Plan Recognition

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper

Authors

Hankz Zhuo, Qiang Yang, Subbarao Kambhampati

Abstract

Multi-Agent Plan Recognition (MAPR) aims to recognize dynamic team structures and team behaviors from the observed team traces (activity sequences) of a set of intelligent agents. Previous MAPR approaches required a library of team activity sequences (team plans) be given as input. However, collecting a library of team plans to ensure adequate coverage is often difficult and costly. In this paper, we relax this constraint, so that team plans are not required to be provided beforehand. We assume instead that a set of action models are available. Such models are often already created to describe domain physics; i.e., the preconditions and effects of effects actions. We propose a novel approach for recognizing multi-agent team plans based on such action models rather than libraries of team plans. We encode the resulting MAPR problem as a \emph{satisfiability problem} and solve the problem using a state-of-the-art weighted MAX-SAT solver. Our approach also allows for incompleteness in the observed plan traces. Our empirical studies demonstrate that our algorithm is both effective and efficient in comparison to state-of-the-art MAPR methods based on plan libraries.