A Supplementary material

A.1 Lipschitz Continuity of V f(X)
Lemma 2. Forany X,Y € S _,

1 B _ 1

LIx -y, < xt— vy, < Six -y,
where a = min{Amin (X), Amin(Y)} and b = max{Amax(X), Amax(Y)}-

Proof. To prove the right-hand side inequality, notice that
Xty ! l=XxYy-XxX)y .
Thus,
-1 -1
HX -Y ||2

Iy =20y,
1 1% =Yl [y,

)‘mﬂX(X_l)AmaX(Y_l) HX - Y”Q
ot
Amin(X) )\min(y)

IN

X =Y,

1
< X -],

To prove the left inequality, note first that
Y - X=XX'-Y Yy

Therefore,
IX =Y, = [X(X7' =Yyl
< Xl | X =YL Y,
= Amax (X)) Amax (V) || X1 =Y,
< Rlxt-v,.

This shows that 1
X1 =y, 2 g X - Y

and concludes the proof. O

The function V f(X) = S — X ! is Lipschitz continuous on any compact domain, since for X, Y €
S¥ , suchthatal < X,Y =< 0I,

IVA(X) = Vi)l = |X =Y,
<vplxT =Y,

NG
Sz X -Y],

b
< IX ¥l

A.2 Proof of Theorem 1

We now provide the proof of Theorem 1.
Lemma 3. Let O, be as in Algorithm 1 and let ©7 be the optimal point of problem (1). Also, define

b := max {)\max(@t), )\max(@?)} , ai= min {)‘mm(gt)v )\mln((‘);)} .
Then

Gt
2

H@m_@;HFgmaX{’l -4 .

be: - e;
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Proof. By construction in Algorithm 1,
Orr1 = ¢,y (00 — G(S — ;1))

Moreover, as @:‘, is a fixed point of the ISTA iteration [8, Prop. 3.1], it satisfies
0, =11c,p (0 — G(S —(©))71)).

The soft-thresholding operator 7,(-) is a proximity operator corresponding to p ||-||;. Since prox
operators are non-expansive [8, Lemma 2.2], it follows that:

€611 = O3l = llmcep (O = G(S = ©;,1)) = e (O — (S = (©5)71) ||
<6 = (S = 6:") = (6, = G(S = (©) ™)
= [1(®: + G0 = (05 + () ) -
To bound the latter expression, recall that if h : U C R™ — R™ is a differentiable mapping, with
z,y € U,and cx + (1 — ¢)y € U forall ¢ € [0, 1], then
1A (z) = h(y)|| < e {IJn (cz + (1 =) lz — yll}

where Jj, (-) is the Jacobian of h. Define h, : S | — RP” by
hy(X) = vec(X) + vec(yX 1),
where vec(-) : RP*P — RP” is the vectorization operator defined by
vec(A) = (A1, Ag, ..., Ay)"
with A; the i*" row of A. Note that for X € N

0X ox—!

67 - Ip2 and a X
where ® is the Kronecker product and I,z is the p? x p? identity matrix. Then the Jacobian of h., is
given by:

_ _X—l ®X_1,

I, (X)=1Ip—yX "0 X "

Application of the mean value theorem to h¢, over Z; . = vec(cO; + (1 — ¢)O7), c € [0, 1] yields

e, (80) — he, (©3)]| » < sup{||1 2= G2t @ 20k, } |[vee(©1) - vee(®))

—sup{||f2 ~GZie ® Z;c, }||@t ~ 65l

Denoting the eigenvalues of Z, . for given valuesof t and cas 0 < y1 < 72 < -+ < 7y, the
eigenvalues of [,2 — (tZ,;g ® thcl are {1 — C¢(yiv;) ™" szl. By Weyl’s inequality,

To = Amax(Z )< max {)\max @t)a )\max(@:)}
Y1 = >\m1n(Z ) > min {)\mln 6 ) Amm((a:;)} 3

and therefore

—1 -1 Gt Gt
Mo (2 = G200 @ Z0) =1 = 2521 - 5
—1 -1y _ Gt Gt
el G2 0 20) =1 S 1 &
Hence,
sup{HIz—QZtc(@Zt H}Smax{‘l—gé71_§;}
which completes the proof. R
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It follows from Lemma 3 that Algorithm 1 converges linearly if

s¢(G) == max{‘l—g; , 1—2—; } € (0,1),Vt. (23)
Since the minimum of
S(C)zmax{ll—ag , 1—b£2 }

isat( = ﬁ, Theorem 1 follows directly from Lemma 3. It now remains to show that the
eigenvalues of the G-ISTA iterates remain bounded in eigenvalue. A more general convergence
result for strongly convex functions exists in the literature; this result is stated below.

Theorem 4. Let f be strongly convex with convexity constant p, and V f be Lipschitz continuous
with constant L. Then for constant step size 0 < ( < %, the iterates of the ISTA iteration (equation
(), {xt}i>0 to minimize f + g as in (4), satisfy
@41 — 27| p < max{[1 = (L[, [1 = Cul} [z — 2™||
which is to say that they converge linearly with rate max {|1 — (L|, |1 — (u|}. Furthermore,
1. The step size which yields an optimal worst-case contraction bound is { = #J%L
2. The optimal worst-case contraction bound corresponding to ( = u-&-iL is given by

s(¢) : = max {|1 — (L[, [1 = Cul}

-2

14+ &
Proof. See [7, 21] and references therein. O
A.3 Proof of Theorem 2
In this section, the eigenvalues of ©;, V¢ are bounded. To begin, the eigenvalues of ©, 1= O, —

(S — @;1) are bounded.

Lemma 4. Let 0 < a < b be given positive constants and let {; > 0. Assume al < ©; < bl. Then
the eigenvalues of O, 1 := ©; — (S — ©;!) satisfy:

2\/67 - Ct)‘max(s) ifa < \/E < b

Amin(©,,1) > i 24
(Orsy) { min (a + %a b+ CT;) — Gt Amax(9) otherwise “
and
(O - Gt Gt
max( tJr%) S max | a+ E’b+€ _Ct)\min(s)~

Proof. Denoting the eigenvalue decomposition of ©; by ©; = UT'U7,
0,1 =60, —G(S—-6;)
=UTU” — ¢ (S —Uur—'u?)
=U ([T -¢Ursu-rhH)u”

Let I' = diag(v1,...,7,) with y; < -+ < 4, By Weyl’s inequality, the eigenvalues of ©, 1 are
bounded below by

i (®t+%) > v + % — Gt Amax(9),

K3

and bounded above by

Ai <®t+%> <7+ 9 — CtAmin(9)

(3
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The function f(z) = = + if over a < x < b has only one extremum which is a global minimum at
2 = 1/(;. Therefore,

. 26 ifa < VG <b
min ¢+ = . ¢ ¢ .
a<z<b x min (a + 2,0+ ﬁ) otherwise

and
max :v—&—9 :max<a—|—ct b+ Ct)
a<z<b T b’ b

Since a <1 < b,

Amin(@

t+1) =+ % — Gt Amax ()

> it (+9) -Gt
_ { 2\/?75_ Ct)‘maX(S)

ifa </{ <b
min (a+ %,b+ %t) - CtAmax(S)

otherwise
Similarly,

)\max(@tJr%) S Yp + % - Ct)\min(s)

p

G ,
S arg:?%(b ((E + J}) - Ct)\mln(s)

= max (a—|— G b+ Ct) — CtAmin ().

It remains to demonstrate that the soft-thresholded iterates O, remain bounded in eigenvalue
Lemma 5. Let0 < a < band (; > 0. Then:

min(a—&—gﬁ b—|—<t> :a+%
if and only if ¢; < ab.

Proof. Under the stated assumptions

a+Ct<b+<t<:>§t(—1>

5 <b-—a
b—a
¢>Cti 1
E_Z
@Ctgab.

O
Lemma 6. Let A be a symmetric p x p matrix. Then the soft-thresholded matrix 7. (A) satisfies

)\min(A) — pe S )\min (776 (A))
In particular, A, is positive definite if Ay (A) > pe
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Proof. Let
A= {M eM,: M, e {0, 1, —1}}.

For every € > 0, the matrix A, can be written as
Ne(A) = A+ €A1 + e2As + -+ - + e, Ay,
for some k < (’2’) + p where A; € A, ¢; > 0 and Zle €; = €. Now let
¢p = max{|Amin(M)] : M € A}.

The constant ¢, is finite since A is a finite set. Since —A € A for every A € A, and since

[Amin(—A)| = [Amax(A)], it follows that
¢p = max{|Amax(M)| : M € A}.

Applying the Gershgorin circle theorem [see, e.g., 12] gives ¢, < p. Since p is an eigenvalue of the

matrix B such that B; ; = 1 for all 4, 7, it follows that ¢, = p.

Recursive application of Weyl’s inequality gives that

)\min (775 (A)) Z Amin(A) - 6|Amax(A41)| - Ek‘)\max(Ak)‘

k
> Amin (A) —Cp Z €
=1

= Amin(4) — cpe.

O

Recall from Lemma 1 that the eigenvalues of the optimal solution to problem (1) are bounded below
by m. The following theorem shows that a = m is a valid bound to ensure that o] <

@t+1 if ol j ®t-

_ 1
Lemma 7. Letp > 0and a = TSTaTrp

Orr1 =1 (O — G(S — 67 1Y)

Then for every 0 < (; < a?, af < O441.

< b'. Assume ol =< ©; < b and consider

Proof. The result follows by combining Lemma 4 and Lemma 6. Notice first that the hypothesis

¢ < o? guarantees that /(; ¢ [, b']. Also, from Lemma 5, we have

min(a+g,b’+<t> =a+9
o

b «
since (; < o? < ab'. Hence, by Lemma 4,

G

: gt /
i 1 > >
)‘mm(@t-&-g) min (a + =0+ b’

= -+ % - Ct/\max(s)-

Now, applying Lemma 6 to ©;1 = 1¢, (0, 1 ), we obtain

Amin(©t+1) = Amin (”Ctp(@w%))

> )\min(@tJr%) — ppGe
Z o+ % _Ct)\max(s) _ppCt~

We therefore have ol < ©;,1 whenever

o + % - Ct)\max(‘s’) - pPCt Z Q.

14
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This is equivalent to
1
Ct (Oé - Amax(S) pp) Z 0
Since (; > 0, this is equivalent to

1
— = Amax(S) —pp = 0.
o

Reorganizing the terms of the previous equation, we obtain that ol < ©;1 if

1 1
a< = .
o )\maX(S)"‘pp HS”Z +pp

It remains to show that the eigenvalues of the iterates ©; remain bounded above, for all ¢.

Lemma 8. Let o = m and let ¢; < o2, Vt. Then the G-ISTA iterates O, satisfy ©; < b'I,Vt,

with o' = |67 ][, + [[©0 — |-

Proof. By Lemma 7, ol < O, for every t. As ol < ©* (Lemma 1),
Ay = min{Apin(0y), )\min(@;)}2 > 2.

B

10 = Ollr <011 — O -
Applying this result recursively gives

1©¢ = O5|F < |80 — O] -

for all ¢. Also, since A} > A; and (; < o2,

max{‘l—g , G

1R

Therefore, by Lemma 3,

Since || - ||]2 < || - || #, we therefore have
16¢ll2 = 16} ]2 < [|©¢ — O}l < [0 — O;][F < [|©0 — O |F,

and so,

Amax (01) = [|O¢ll2 < |©7]l2 + 180 — OF |
which completes the proof. O
A.4 Additional timing comparisons
This section provides additional synthetic timing comparisions for p = 500 and p = 5000. In addi-
tion, two real datasets were investigated. The “estrogen” dataset [22] contains p = 652 dimensional

gene expression data from n = 158 breast cancer patients. The “temp” dataset [6] consists of aver-
age annual temperature measurements from p = 1732 locations over n = 157 years (1850-2006).
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p 0.05 0.10 0.15 0.20

problem algorithm time/iter time/iter time/iter time/iter
nnz(Q7)/k(Q) | 31.61%/42.76 | 19.61%/18.23 | 11.08%/8.13 | 5.02%/3.06

p = 500 glasso 28.34/11 10.91/8 7.08/7 5.57/6

n =100 QUIC 8.33/23 1.98/13 0.96/11 0.38/10

nnz(Q) = 3% G-ISTA 4.44/402 1.14/110 0.30/38 0.14/18
nnz(Q5)/k(Q5) | 20.73%/6.62 3.93%/2.44 0.90%/1.49 | 0.13%/1.20

p = 500 glasso 7.44/6 4.53/5 3.45/4 2.62/3

n = 600 QUIC 1.08/9 0.17/7 0.06/5 0.04/5

nnz(Q?) = 3% G-ISTA 0.28/31 0.10/13 0.07/9 0.03/5
nnz(Q7)/k(Q7) | 31.36%/46.83 | 19.74%/19.93 | 11.65%/8.95 | 5.45%/3.25

p = 500 glasso 28.61/11 11.27/8 7.22/7 5.34/6

n =100 QUIC 8.47/23 2.01/13 0.73/9 0.22/7

nnz(2) = 15% G-ISTA 4.80/466 1.09/115 0.28/34 0.15/20
nnz(Q7)/k(Q) | 24.81%/9.78 6.36%/2.64 0.79%/1.28 | 0.03%/1.08

p = 500 glasso 8.52/6 4.59/5 3.55/4 2.54/3

n = 600 QUIC 1.56/10 0.25/7 0.05/5 0.03/5

nnz(Q) = 15% G-ISTA 0.50/51 0.10/13 0.06/7 0.02/3

Table 2: Timing comparisons for p = 500 dimensional datasets, generated as in Section 5.1

p 0.02 0.04 0.06 0.08

problem algorithm time/iter time/iter time/iter time/iter
nnz(Q7)/k(Q7) [ 26.22%/54.47 | 13.68%/23.74 | 6.36%/8.69 | 2.03%/2.31

p = 5000 glasso 30814.29/11 12612.85/8 9224.79/7 6184.84/5

n = 1000 QUIC 22547.70/21 3725.07/11 946.11/8 199.48/6
nnz(Q) = 3% G-ISTA 2651.43/575 417.20/94 93.33/25 39.05/11
nnz(7)/k(€2;) | 12.89%/15.18 3.23%/3.73 1.11%/1.60 | 0.16%/1.16

p = 5000 glasso 10307.26/7 8725.86/7 4846.58/4 3587.35/3
n = 6000 QUIC 3108.14/10 396.60/7 86.66/5 21.56/4
nnz(Q) = 3% G-ISTA 268.28/70 50.17/14 35.67/10 28.82/8
nnz(Q7)/k(Q5) | 26.08%/80.04 | 13.93%/37.12 | 6.91%/16.52 | 2.47%/3.08

p = 5000 glasso 36302.86/11 13413.57/8 9914.41/7 7408.33/6

n = 1000 QUIC 22667.29/21 4649.99/12 1329.20/9 240.25/6
nnz(Q2) = 15% G-ISTA 3952.85/849 701.57/170 176.11/45 42.46/12
nnz(Q7)/k(Q7) | 18.65%/27.69 5.34%/7.26 0.66%/1.41 | 0.03%,/1.09

p = 5000 glasso 13180.47/7 9052.77/7 4842.28 /4 3578.05/3
n = 6000 QUIC 6600.91/12 795.46/8 59.03/5 16.10/41
mnz(Q) = 15% G-ISTA 804.93/189 103.69/23 36.17/10 18.87/5

Table 3: Timing comparisons for p = 5000 dimensional datasets, generated as in Section 5.1.

p 0.15 0.30 0.45 0.60
problem algorithm time/iter time/iter time/iter time/iter
nnz(Q7)/k(27) [ 5.29%/290.03 | 3.39%/88.55 [ 2.31%/29.69 | 1.63%/8.96
p = 682 glasso 106.18/24 120.18/34 110.54/35 40.52/13
n = 158 QUIC 12.36/19 2.71/11 1.08/9 0.54/7
Dataset: estrogen G-ISTA 43.96 /2079 11.99/595 3.23/172 1.00/53
p 0.2 0.4 0.6 0.8
problem algorithm time/iter time/iter time/iter time/iter
nnz(Q7)/k(27) [ 2.02%/1075.8 | 1.77%/289.63 | 1.34%/23.02 | 0.22%/2.10
p=1732 glasso 1919.64/31 2535.86,/46 1144.07/22 254.14/5
n = 157 QUIC 497.47/18 103.76/13 10.16/8 2.31/7
Dataset: temp G-ISTA 1221.40/6194 183.20/819 30.01/159 1.78/10

Table 4: Timing comparisons for the real datasets described above.
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