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Simple Gaussian Mixture Models (GMMs) learned from pixels of natural image 
patches have been recently shown to be surprisingly strong performers in modeling 
the statistics of natural images. Here we provide an in depth analysis of this simple 
yet rich model. We show that such a GMM model is able to compete with even 
the most successful models of natural images in log likelihood scores, denoising 
performance and sample quality. We provide an analysis of what such a model 
learns from natural images as a function of number of mixture components -
including covariance structure, contrast variation and intricate structures such as 
textures, boundaries and more. Finally, we show that the salient properties of the 
GMM learned from natural images can be derived from a simplified Dead Leaves 
model which explicitly models occlusion, explaining its surprising success relative 
to other models. 

1 GMMs and natural image statistics models 

Many models for the statistics of natural image patches have been suggested in recent years. Finding 
good models for natural images is important to many different research areas - computer vision, 
biological vision and neuroscience among others. Recently, there has been a growing interest in 
comparing different aspects of models for natural images such as log-likelihood and multi-information 
reduction performance, and much progress has been achieved [1,2, 3,4,5, 6]. Out of these results 
there is one which is particularly interesting: simple, unconstrained Gaussian Mixture Models 
(GMMs) with a relatively small number of mixture components learned from image patches are 
extraordinarily good in modeling image statistics [6, 4]. This is a surprising result due to the simplicity 
of GMMs and their ubiquity. Another surprising aspect of this result is that many of the current 
models may be thought of as GMMs with an exponential or infinite number of components, having 
different constraints on the covariance structure of the mixture components. 

In this work we study the nature of GMMs learned from natural image patches. We start with a 
thorough comparison to some popular and cutting edge image models. We show that indeed, GMMs 
are excellent performers in modeling natural image patches. We then analyze what properties of 
natural images these GMMs capture, their dependence on the number of components in the mixture 
and their relation to the structure of the world around us. Finally, we show that the learned GMM 
suggests a strong connection between natural image statistics and a simple variant of the dead 
leaves model [7, 8] , explicitly modeling occlusions and explaining some of the success of GMMs in 
modeling natural images. 
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Figure 1: (a) Log likelihood comparison - note how the GMM is able to outperform (or equal) all 
other models despite its simplicity. (b) Denoising performance comparison - the GMM outperforms 
all other models here as well, and denoising performance is more or less consistent with likelihood 
performance. See text for more details . 

2 Natural image statistics models - a comparison 

As a motivation for this work, we start by rigorously comparing current models for natural images with 
GMMs. While some comparisons have been reported before with a limited number of components in 
the GMM [6] , we want to compare to state-of-the-art models also varying the number of components 
systematically. 

Each model was trained on 8 x 8 or 16 x 16 patches randomly sampled from the Berkeley Segmentation 
Database training images (a data set of millions of patches). The DC component of all patches 
was removed, and we discard it in all calculations . In all experiments, evaluation was done on the 
same, unseen test set of a 1000 patches sampled from the Berkeley test images. We removed patches 
having standard deviation below 0.002 (intensity values are between 0 and 1) as these are totally flat 
patches due to saturation and contain no structure (only 8 patches were removed from the test set). 
We do not perform any further preprocessing. The models we compare are: White Gaussian Noise 
(Ind. G), PCA/Gaussian (PCA G), PCA/Laplace (PCA L), ICA (ICA) [9,10,11], 2xOvercompiete 
sparse coding (2 x OCSC) [9] , Gaussian Scale Mixture (GSM), Mixture of Gaussian Scale Mixture 
(MoGSM) [6], Karklin and Lewicki (KL) [12] and the GMM (with 200 components). 

We compare the models using three criteria - log likelihood on unseen data, denoising results on 
unseen data and visual quality of samples from each model. The complete details of training, testing 
and comparisons may be found in the supplementary material of this paper - we encourage the reader 
to read these details. All models and code are available online at: www.cs.huji.ac.ilJ~daniez 

Log likelihood The first experiment we conduct is a log likelihood comparison. For most of the 
models above, a closed form calculation of the likelihood is possible, but for the 2 x OCSC and KL 
models, we resort to Hamiltonian Importance Sampling (HAIS) [13]. HAIS allows us to estimate 
likelihoods for these models accurately, and we have verified that the approximation given by HAIS 
is relatively accurate in cases where exact calculations are feasible (see supplementary material for 
details) . The results of the experiment may be seen in Figure 1a. There are several interesting results 
in this figure. First, the important thing to note here is that GMMs outperforms all of the models 
and is similar in performance to Karklin and Lewicki. In [6] a GMM with far less components (2-5) 
has been compared to some other models (notably Restricted Boltzman Machines which the GMM 
outperforms, and MoGSMs which slightly outperform the GMMs in this work) . Second, ICA with 
its learned Gabor like filters [10] gives a very minor improvement when compared to PCA filters 
with the same marginals. This has been noted before in [1]. Finally, overcomp1ete sparse coding is 
actually a bit worse than complete sparse coding - while this is counter intuitive, this result has been 
reported before as well [14, 2]. 

Denoising We compare the denoising performance of the different models. We added independent 
white Gaussian noise with known standard deviation IJ"n = 25/ 255 to each of the patches in the 
test set x. We then calculate the MAP estimate :X: of each model given the noisy patch. This can 
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be done in closed form for some of the models, and for those models where the MAP estimate 
does not have a closed form, we resort to numerical approximation (see supplementary material 
for more details). The performance of each model was measured using Peak Signal to Noise Ratio 

(PSNR): PSNR = 10glO ( 1I Ix~xIl 2 ) . Results can be seen in Figure lb. Again, the GMM performs 

extraordinarily well, outperforming all other models. As can be seen, results are consistent with the 
log likelihood experiment - models with better likelihood tend to perform better in denoising [4]. 

Sample Quality As opposed to log likelihood and denoising, generating samples from all the 
models compared here is easy. While it is more of a subjective measure, the visual quality of samples 
may be an indicator to how well interesting structures are captured by a model. Figure 2 depicts 
16 x 16 samples from a subset of the models compared here. Note that the GMM samples capture a 
lot of the structure of natural images such as edges and textures, visible on the far right of the figure. 
The Karklin and Lewicki model produces rather structured patches as well. GSM seems to capture 
the contrast variation of images, but the patches themselves have very little structure (similar results 
obtained with MoGSM, not shown). PCA lacks any meaningful structure, other than 1/ f power 
spectrum. 

As can be seen in the results we have just presented, the GMM is a very strong performer in modeling 
natural image patches. While we are not claiming Gaussian Mixtures are the best models for natural 
images, we do think this is an interesting result, and as we shall see later, it relates intimately to the 
structure of natural images. 

3 Analysis of results 

So far we have seen that despite their simplicity, GMMs are very capable models for natural images. 
We now ask - what do these models learn about natural images, and how does this affect their 
performance? 

3.1 How many mixture components do we need? 

While we try to learn our GMMs with as few a priori assumptions as possible, we do need to set 
one important parameter - the number of components in the mixture . As noted above, many of the 
current models of natural images can be written in the form of GMMs with an exponential or infinite 
number of components and different kinds of constraints on the covariance structure. Given this, 
it is quite surprising that a GMM with a relatively small number of component (as above) is able 
to compete with these models. Here we again evaluate the GMM as in the previous section but 
now systematically vary the number of components and the size of the image patch. Results for the 
16 x 16 model are shown in figure 3, see supplementary material for other patch sizes. 

As can be seen, moving from one component to two already gives a tremendous boost in performance, 
already outperforming lCA but still not enough to outperform GSM, which is outperformed at around 
16 components. As we add more and more components to the mixture performance increases, but 
seems to be converging to some upper bound (which is not reached here, see supplementary material 
for smaller patch sizes where it is reached). This shows that a small number of components is indeed 

PCAG GSM KL GMM Natural Images 

Figure 2: Samples generated from some of the models compared in this work. PCA G produces no 
structure other than 1/ f power spectrum. GSM capture the contrast variation of image patches nicely, 
but the patches themselves have no structure. The GMM and KL models produce quite structured 
patches - compare with the natural image samples on the right. 
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Figure 3: (a) Log likelihood of GMMs trained on natural image patches, as a function of the number 
of components in the mixture. Models of 16 x 16 were trained on a training set. Likelihood was 
calculated on an unseen test set of patches. Already at 2 components the GMM outperforms rCA and 
at 16 components it outperforms the 16 component GSM model. Likelihood continues to improve 
as we add more components. See supplementary material for other patch sizes. (b) Denoising 
performance as a function of number of components - performance behave qualitatively the same as 
likelihood. 

sufficient to achieve good performance and begs the questions - what do the first few components 
learn that gives this boost in performance? what happens when we add more components to the 
mixture, further improving performance? Before we answer these questions, we will shortly discuss 
what are the properties of GMMs which we need to examine to gain this understanding. 

3.2 GMMs as generative models 

In order to gain a better understanding of GMMs it will be useful to think of them from a generative 
perspective. The process of generating a sample from a GMM is a two step procedure; a non-linear 
one, and a linear one. We pick one of the mixture components - the chances for the k-th component 
to be picked are its mixing weight 1rk. Having picked the k-th component, we now sample N 
independent Gaussian variables with zero mean and unit variance, where N is the number of pixels 
in a patch (minus one for the DC component). We arrange these coefficients into a vector z. From 
the covariance matrix of the k-th component we calculate the eigenvector matrix V k and eigenvalue 
matrix D k . Then, the new sample x is: 

This tells us that we can think of each covariance matrix in the mixture as a dictionary with N 
elements. The dictionary elements are the "directions" each eigenvector in patch space points to, and 
each of those is scaled by the corresponding eigenvalue. These are linearly mixed to form our patch. 
In other words, to gain a better understanding of what each mixture component is capturing, we need 
to look at the eigenvectors and eigenvalues of its corresponding covariance matrix. 

3.3 Contrast 

Figure 4 shows the eigenvectors and eigenvalues of the covariance matrices of a 2 component mixture 
- as can be seen, the eigenvectors of both mixture components are very similar and they differ only 
in their eigenvalue spectrum. The eigenvalue spectrum, on the other hand, is very similar in shape 
but differs by a multiplicative constant (note the log scale). This behavior remains the same as we 
add more and more components to the mixture - up to around 8-10 components (depending on the 
patch size, not shown here) we get more components with similar eigenvector structure but different 
eigenvalue distributions. 

Modeling a patch as a mixture with the same eigenvectors but eigenvalues differing by a scalar 
multiplier is in fact equivalent to saying that each patch is the product of a scalar z and a multivariate 
Gaussian. This is exactly the Gaussian Scale Mixture model we compared to earlier! As can be 
seen, 8- 10 components are already enough to equal the performance of the 16 component GSM. 
This means that what the first few components of the mixture capture is the contrast variability of 
natural image patches. This also means that factorial models like rCA have no hope in capturing this 
as contrast is a global scaling of all coefficients together (something which is highly unlikely under 
factorial models). 
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Figure 4: Eigenvectors and eigenvalues of covariance matrices in a 2 component GMM trained on 
natural images. Eigenvectors are sorted according to decreasing eigenvalue order, top left is the 
largest eigenvalue. Note that the two components have approximately the same eigenvectors (up to 
sign, and both resembling the Fourier basis) but different eigenvalue spectra. The eigenvalues mostly 
differ by a scalar multiplication (note the log scale), hinting that this is, in fact, approximately a GSM 
(see text for details). 

3.4 Textures and boundaries 

We have seen that the first components in the GMM capture the contrast variation of natural images, 
but as we saw in Figure 3, likelihood continues to improve as we add more components, so we ask: 
what do these extra components capture? 

As we add more components to the mixture, we start revealing more specialized components which 
capture different properties of natural images. Sorting the components by their mixing weights (where 
the most likely ones are first), we observe that the first few tens of components are predominantly 
Fourier like components, similar to what we have seen thus far, with varying eigenvalue spectra. 
These capture textures at different scales and orientations. Figure 5 depicts two of these texture 
components - note how their eigenvector structure is similar, but samples sampled from each of them 
reveal that they capture different textures due to different eigenvalue spectra. 

A more interesting family of components can be found in the mixture as we look into more rare 
components. These components model boundaries of objects or textures - their eigenvectors are 
structured such that most of the variability is on one side of an edge crossing the patch. These edges 
come at different orientations, shifts and contrasts. Figure 5 depicts some of these components 
at different orientations, along with two flat texture components for comparison. As can be seen, 
we obtain a Fourier like structure which is concentrated on one side of the patch. Sampling from 
the Gaussian associated with each mixture component (bottom row) reveals what each component 
actually captures - patches with different textures on each side of an edge. 

To see how these components relate to actual structure in natural images we perform the following 
experiment. We take an unseen natural image, and for each patch in the image we calculate the most 
likely component from the learned mixture. Figure 6 depicts those patches assigned to each of the 
five components in Figure 5, where we show only non-overlapping patches for clarity (there are 
many more patches assigned to each component in the image). The colors correspond to each of 
the components in Figure 5. Note how the boundary components capture different orientations, and 
prefer mostly borders with a specific ordering (top to bottom edge, and not vice versa for example), 
while texture components tend to stay within object boundaries. The sources for these phenomena 
will be discussed in the next section. 

4 The "mini" dead leaves model 

4.1 Dead leaves models 

We now show that many of the properties of natural scenes that were captured by the GMM model 
can be derived from a variant of the dead leaves model [15]. In the original dead leaves model, two 
dimensional textured surfaces (which are sometimes called "objects" or "leaves") are sampled from a 
shape and size distribution and then placed on the image plane at random positions, occluding one 
another to produce an image. With a good choice of parameters, such a model creates images which 
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