
Fast Bayesian Inference for Non-Conjugate
Gaussian Process Regression

Mohammad Emtiyaz Khan, Shakir Mohamed, and Kevin P. Murphy
Department of Computer Science, University of British Columbia

Abstract

We present a new variational inference algorithm for Gaussian process regres-
sion with non-conjugate likelihood functions, with application to a wide array of
problems including binary and multi-class classification, and ordinal regression.
Our method constructs a concave lower bound that is optimized using an efficient
fixed-point updating algorithm. We show that the new algorithm has highly com-
petitive computational complexity, matching that of alternative approximate infer-
ence methods. We also prove that the use of concave variational bounds provides
stable and guaranteed convergence – a property not available to other approaches.
We show empirically for both binary and multi-class classification that our new
algorithm converges much faster than existing variational methods, and without
any degradation in performance.

1 Introduction

Gaussian processes (GP) are a popular non-parametric prior for function estimation. For real-valued
outputs, we can combine the GP prior with a Gaussian likelihood and perform exact posterior in-
ference in closed form. However, in other cases, such as classification, the likelihood is no longer
conjugate to the GP prior, and exact inference is no longer tractable.

Various approaches are available to deal with this intractability. One approach is Markov Chain
Monte Carlo (MCMC) techniques [1, 11, 22, 9]. Although this can be accurate, it is often quite
slow, and assessing convergence is challenging. There is therefore great interest in deterministic ap-
proximate inference methods. One recent approach is the Integrated Nested Laplace Approximation
(INLA) [21], which uses numerical integration to approximate the marginal likelihood. Unfortu-
nately, this method is limited to six or fewer hyperparameters, and is thus not suitable for models
with a large number of hyperparameters. Expectation propagation (EP) [17] is a popular alterna-
tive, and is a method that approximates the posterior distribution by maintaining expectations and
iterating until these expectations are consistent for all variables. Although this is fast and accurate
for the case of binary classification [15, 18], there are difficulties extending EP to many other cases,
such as multi-class classification and parameter learning [24, 13]. In addition, EP is known to have
convergence issues and can be numerically unstable.

In this paper, we use a variational approach, where we compute a lower bound to the log marginal
likelihood using Jensen’s inequality. Unlike EP, this approach does not suffer from numerical issues
and convergence problems, and can easily handle multi-class and other likelihoods. This is an active
area of research and many solutions have been proposed, see for example, [23, 6, 5, 19, 14]. Un-
fortunately, most of these methods are slow, since they attempt to solve for the posterior covariance
matrix, which has size O(N2), where N is the number of data points. In [19], a reparameteriza-
tion was proposed that only requires computing O(N) variational parameters. Unfortunately, this
method relies on a non-concave lower bound. In this paper, we propose a new lower bound that is
concave, and derive an efficient iterative algorithm for its maximization. Since the original objective
is unimodal, we reach the same global optimum as the other methods, but we do so much faster.
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p(z|X,θ) = N (z|µ,Σ) (1)

p(y|z) =

N∏
n=1

p(yn|zn) (2)

Type Distribution p(y|z)
Binary Bernoulli logit p(y = 1|z) = σ(z)

Categorical Multinomial logit p(y = k|z) = ezk−lse(z)

Ordinal Cumulative logit p(y ≤ k|z) = σ(φk − z)
Count Poisson p(y = k|z) = e−ez ekz

k!

z2 

y2 

X 

Σ µ 

θ 

z1 

y1 

zN 

yN 

Table 1: Gaussian process regression (top left) and its graphical model (right), along with the exam-
ple likelihoods for outputs (bottom left). Here, σ(z) = 1/(1 + e−z), lse(·) is the log-sum-exp func-
tion, k indexes over discrete output values, and φk are real numbers such that φ1 < φ2 < . . . < φK
for K ordered categories.

2 Gaussian Process Regression

Gaussian process (GP) regression is a powerful method for non-parametric regression that has gained
a great deal of attention as a flexible and accurate modeling approach. Consider N data points with
the n’th observation denoted by yn, with corresponding features xn. A Gaussian process model uses
a non-linear latent function z(x) to obtain the distribution of the observation y using an appropriate
likelihood [15, 18]. For example, when y is binary, a Bernoulli logit/probit likelihood is appropriate.
Similarly, for count observations, a Poisson distribution can be used.

A Gaussian process [20] specifies a distribution over z(x), and is a stochastic process that is char-
acterized by a mean function µ(x) and a covariance function Σ(x,x′), which are specified using a
kernel function that depends on the observed features x. Assuming a GP prior over z(x) implies that
a random vector is associated with every input x, such that given all inputs X = [x1,x2, . . . ,xN ],
the joint distribution over z = [z(x1), z(x2), . . . , z(xN )] is Gaussian.

The GP prior is shown in Eq. 1. Here, µ is a vector with µ(xi) as its i’th element, Σ is a matrix with
Σ(xi,xj) as the (i, j)’th entry, and θ are the hyperparameters of the mean and covariance functions.
We assume throughout a zero mean-function and a squared-exponential covariance function (also
known as radial-basis function or Gaussian) defined as: Σ(xi,xj) = σ2 exp[−(xi − xj)

T (xi −
xj)/(2s)]. The set of hyperparameters is θ = (s, σ). We also define Ω = Σ−1.

Given the GP prior, the observations are modeled using the likelihood shown in Eq. 2. The exact
form of the distribution p(yn|zn) depends on the type of observations and different choices instan-
tiates many existing models for GP regression [15, 18, 10, 14]. We consider frequently encountered
data such as binary, ordinal, categorical and count observations, and describe their likelihoods in Ta-
ble 1. For the case of categorical observations, the latent function z is a vector whose k’th element
is the latent function for k’th category. A graphical model for Gaussian process regression is also
shown.

Given these models, there are three tasks that are to be performed: posterior inference, prediction
at test inputs, and model selection. In all cases, the likelihoods we consider are not conjugate to
the Gaussian prior distribution and as a result, the posterior distribution is intractable. Similarly,
the integrations required in computing the predictive distribution and the marginal likelihood are
intractable. To deal with this intractability we make use of variational methods.

3 Variational Lower Bound to the Log Marginal Likelihood

Inference and model selection are always problematic in any Gaussian process regression using non-
conjugate likelihoods due to the fact that the marginal likelihood contains an intractable integral. In
this section, we derive a tractable variational lower bound to the marginal likelihood. We show
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that the lower bound takes a well known form and can be maximized using concave optimization.
Throughout the section, we assume scalar zn, with extension to the vector case being straightfor-
ward.

We begin with the intractable log marginal likelihood L(θ) in Eq. 3 and introduce a variational
posterior distribution q(z|γ). We use a Gaussian posterior with mean m and covariance V. The
full set of variational parameters is thus γ = {m,V}. As log is a concave function, we obtain a
lower bound LJ(θ,γ) using Jensen’s inequality, given in Eq. 4. The first integral is simply the
Kullback−Leibler (KL) divergence from the variational Gaussian posterior q(z|m,V) to the GP
prior p(z|µ,Σ) as shown in Eq. 5, and has a closed-form expression that we substitute to get the
first term in Eq. 6 (inside square brackets), with Ω = Σ−1.

The second integral can be expressed in terms of the expectation with respect to the marginal
q(zn|mn, Vnn) as shown in the second term of Eq. 5. Here mn is the n’th element of m and
Vnn is the n’th diagonal element of V, the two variables collectively denoted by γn. The lower
bound LJ is still intractable since the expectation of log p(yn|zn) is not available in closed form for
the distributions listed in Table 1. To derive a tractable lower bound, we make use of local variational
bounds (LVB) fb, defined such that E[log p(yn|zn)] ≥ fb(yn,mn, Vnn), giving us Eq. 6.

L(θ) = log

∫
z
p(z|θ)p(y|z)dz = log

∫
z
q(z|γ)

p(z|θ)p(y|z)

q(z|γ)
dz (3)

≥ LJ(θ,γ) := −
∫
z
q(z|γ) log

q(z|γ)

p(z|θ)
dz +

∫
z
q(z|γ) log p(y|z)dz (4)

=−DKL [q(z|γ)||p(z|θ)]+

N∑
n=1

Eq(zn|γn)[log p(yn|zn)] (5)

≥ LJ(θ,γ) :=1
2

[
log |VΩ|−tr(VΩ)−(m−µ)TΩ(m−µ)+N

]
+

N∑
n=1

fb(yn,mn,Vnn). (6)

We discuss the choice of LVBs in the next section, but first discuss the well-known form that the
lower bound of Eq. 6 takes. Given V, the optimization function with respect to m is a nonlinear
least-squares function. Similarly, the function with respect to V is similar to the graphical lasso
[8] or covariance selection problem [7], but is different in that the argument is a covariance matrix
instead of a precision matrix [8]. These two objective functions are coupled through the non-linear
term fb(·). Usually this term arises due to the prior distribution and may be non-smooth, for exam-
ple, in graphical lasso. In our case, this term arises from the likelihood, and is smooth and concave
as we discuss in next section.

It is straightforward to show that the variational lower bound is strictly concave with respect to
γ if fb is jointly concave with respect to mn and Vnn. Strict concavity of terms other than fb is
well-known since both the least squares and covariance selection problems are concave. Similar
concavity results have been discussed by Braun and McAuliffe [5] for the discrete choice model,
and more recently by Challis and Barber [6] for the Bayesian linear model, who consider concavity
with respect to the Cholesky factor of V. We consider concavity with respect to V instead of its
Cholesky factor, which allows us to exploit the special structure of V, as explained in Section 5.

4 Concave Local Variational Bounds

In this section, we describe concave LVBs for various likelihoods. For simplicity, we suppress
the dependence on n and consider the log-likelihood of a scalar observation y given a predictor z
distributed according to q(z|γ) = N (z|m, v) with γ = {m, v}. We describe the LVBs for the
likelihoods given in Table 1 with z being a scalar for count, binary, and ordinal data, but a vector of
length K for categorical data, K being the number of classes. When V is a matrix, we denote its
diagonal by v.

For the Poison distribution, the expectation is available in closed form and we do not need any
bounding: E[log p(y|η)] = ym − exp(m + v/2) − log y!. This function is jointly concave with
respect to m and v since the exponential is a convex function.
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For binary data, we use the piecewise linear/quadratic bounds proposed by [16], which is a bound
on the logistic-log-partition (LLP) function log(1 + exp(x)) and can be used to obtain a bound over
the sigmoid function σ(x). The final bound can be expressed as sum of R pieces: E(log p(y|η)) =

fb(y,m, v) = ym −
∑R
r=1 fbr(m, v) where fbr is the expectation of r’th quadratic piece. The

function fbr is jointly concave with respect to m, v and their gradients are available in closed-form.
An important property of the piecewise bound is that its maximum error is bounded and can be
driven to zero by increasing the number of pieces. This means that the lower bound in Eq. 6 can
be made arbitrarily tight by increasing the number of pieces. For this reason, this bound always
performs better than other existing bounds, such as Jaakola’s bound [12], given that the number
of pieces is chosen appropriately. Finally, the cumulative logit likeilhood for ordinal observations
depends on σ(x) and its expectation can be bounded using piecewise bounds in a similar way.

For the multinomial logit distribution, we can use the bounds proposed by [3] and [4], both leading
to concave LVBs. The first bound takes the form fb(y,m,V) = yTm − lse(m + v/2) with y
represented using a 1-of-K encoding. This function is jointly concave with respect to m and v,
which can be shown by noting the fact that the log-sum-exp function is convex. The second bound
is the product of sigmoids bound proposed by [4] which bounds the likelihood with product of
sigmoids (see Eq. 3 in [4]), with each sigmoid bounded using Jaakkola’s bound [12]. We can also
use piecewise linear/quadratic bound to bound each sigmoid. Alternatively, we can use the recently
proposed stick-breaking likelihood of [14] which uses piecewise bounds as well.

Finally, note that the original log-likelihood may not be concave itself, but if it is such that LJ has
a unique solution, then designing a concave variational lower bound will allow us to use concave
optimization to efficiently maximize the lower bound.

5 Existing Algorithms for Variational Inference

In this section, we assume that for each output yn there is a corresponding scalar latent function zn.
All our results can be easily extended to the case of multi-class outputs where the latent function is a
vector. In variational inference, we find the approximate Gaussian posterior distribution with mean
m and covariance V that maximizes Eq. 6. The simplest approach is to use gradient-based methods
for optimization, but this can be problematic since the number of variational parameters is quadratic
in N due to the covariance matrix V. The authors of [19] speculate that this may perhaps be the
reason behind limited use of Gaussian variational approximations.

We now show that the problem is simpler than it appears to be, and in fact the number of parameters
can be reduced to O(N) from O(N2). First, we write the gradients with respect to m and v in Eq.
7 and 8 and equate to zero, using gmn := ∂fb(yn,mn, vn)/∂mn and gvn := ∂fb(yn,mn, vn)/∂vn.
Also, gm and gv are the vectors of these gradients, and diag(gv) is the matrix with gv as its diagonal.

−Ω(m− µ) + gm = 0 (7)
1
2

(
V−1 −Ω

)
+ diag(gv) = 0 (8)

At the solution, we see that V is completely specified if gv is known. This property can be exploited
to reduce the number of variational parameters.

Opper and Archambeau [19] (and [18]) propose a reparameterization to reduce the number of pa-
rameters to O(N). From the fixed-point equation, we note that at the solution m and V will have
the following form,

V = (Σ−1 + diag(λ))−1 (9)
m = µ + Σα, (10)

where α and λ are real vectors with λd > 0,∀d. At the maximum (but not everywhere), α and λ
will be equal to gm and gv respectively. Therefore, instead of solving the fixed-point equations to
obtain m and V, we can reparameterize the lower bound with respect to α and λ. Substituting Eq.
9 and 10 in Eq. 6 and after simplification using the matrix inversion and determinant lemmas, we
get the following new objective function (for a detailed derivation, see [18]),

1
2

[
− log(|Bλ||diag(λ)|) + Tr(B−1λ Σ)−αTΣα

]
+

N∑
n=1

fb(yn,mn, Vnn), (11)
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with Bλ = diag(λ)−1 + Σ. Since the mapping between {α,λ} and {m,V} is one-to-one, we can
recover the latter given the former. The one-to-one relationship also implies that the new objective
function has a unique maximum. The new lower bound involves vectors of size N , reducing the
number of variational parameters to O(N).

The problem with this reparameterization is that the new lower bound is no longer concave, even
though it has a unique maximum. To see this, consider the 1-D case. We collect all the terms
involving V from Eq. 6, except the LVB term, to define the function f(V ) = [log(V Σ−1) −
V Σ−1]/2. We substitute the reparameterization V = (Σ−1 + λ)−1 to get a new function f(λ) =
[− log(1 + Σλ) − (1 + Σλ)−1]/2. The second derivative of this function is f ′′(λ) = 1

2 [Σ/(1 +

Σλ)]2(Σλ−1). Clearly, this derivative is negative for λ < 1/Σ and non-negative otherwise, making
the function neither concave nor convex.

The objective function is still unimodal and the maximum of (11) is equal to the maximum of
(6). With the reparameterization, we loose concavity and therefore the algorithm may have slow
convergence. Our experimental results (Section 7) confirm the slow convergence.

6 Fast Convergent Variational Inference using Coordinate Ascent

We now derive an algorithm that reduces the number of variational parameters to 2N while maintain-
ing concavity. Our algorithm uses simple scalar fixed-point updates to obtain the diagonal elements
of V. The complete algorithm is shown in Algorithm 1.

To derive the algorithm, we first note that the fixed-point equation Eq. 8 has an attractive property:
at the solution, the off-diagonal elements of V−1 are the same as the off-diagonal elements of Ω,
i.e. if we denote K := V−1, then Kij = Ωij . We need only find the diagonal elements of K to get
the full V. This is difficult, however, since the gradient gv depends on v.

We take the approach of optimizing each diagonal element Kii fixing all others (and fixing m as
well). We partition V as shown on the left side of Eq. 12, indexing the last row by 2 and rest of the
rows by 1. We consider a similar partitioning of K and Ω. Our goal is to compute v22 and k22 given
all other elements of K. Matrices K and V are related through the blockwise inversion, as shown
below. [

V11 v12

vT12 v22

]
=

 K−111 +
K−1

11 k12k
T

12K
−1

11

k22−kT

12K
−1

11 k12

− K−1

11 k12

k22−kT

12K
−1

11 k12

− kT

12K
−1

11

k22−kT

12K
−1

11 k12

1

k22−kT

12K
−1

11 k12

 (12)

From the right bottom corner, we have the first relation below, which we simplify further.

v22 = 1/(k22 − kT12K
−1
11 k12) ⇒ k22 = k̃22 + 1/v22 (13)

where we define k̃22 := kT12K
−1
11 k12. We also know from the fixed point Eq. 8 that the optimal v22

and k22 satisfy Eq. 14 at the solution, where gv22 is the gradient of fb with respect to v22. Substitute
the value of k22 from Eq. 13 in Eq. 14 to get Eq. 15. It is easy to check (by taking derivative) that
the value v22 that satisfies this fixed-point can be found by maximizing the function defined in Eq.
16.

0 = k22 − Ω22 + 2gv22 (14)

0 = k̃22 + 1/v22 − Ω22 + 2gv22 (15)

f(v) = log(v)− (Ω22 − k̃22)v + 2fb(y2,m22, v) (16)

The function f(v) is a strictly concave function and can be optimized by iterating the following
update: v22 ← 1/(Ω22 − k̃22 − 2gv22). We will refer to this as a “fixed-point iteration”.

Since all elements of K, except k22, are fixed, k̃22 can be computed beforehand and need not be
evaluated at every fixed-point iteration. In fact, we do not need to compute it explicitly, since we
can obtain its value using Eq. 13: k̃22 = k22 − 1/v22, and we do this before starting a fixed-point
iteration. The complexity of these iterations depends on the number of gradient evaluations gv22,
which is usually constant and very low.
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After convergence of the fixed-point iterations, we update V using Eq. 12. It turns out that this is a
rank-one update, the complexity of which is O(N2). To show these updates, let us denote the new
values obtained after the fixed-point iterations by knew22 and vnew22 respectively. and denote the old
values by kold22 and vold22 . We use the right top corner of Eq. 12 to get first equality in Eq. 17. Using
Eq. 13, we get the second equality. Similarly, we use the top left corner of Eq. 12 to get the first
equality in Eq. 18, and use Eq. 13 and 17 to get the second equality.

K−111 k12 = −(kold22 − k̃22)vold12 = −vold12 /v
old
22 (17)

K−111 = Vold
11 −

K−111 k12k
T
12K

−1
11

kold22 − k̃22
= Vold

11 − vold12 (vold12 )T /vold22 (18)

Note that both K−111 and k12 do not change after the fixed point iteration. We use this fact to obtain
Vnew. We use Eq. 12 to write updates for Vnew and use 17, 18, and 13 to simplify.

vnew12 =
K−111 k12

knew22 − k̃22
= −v

new
22

vold22

vold12 (19)

Vnew
11 = K−111 +

K−111 k12k
T
12K

−1
11

knew22 − k̃22
= Vold

11 +
vnew22 − vold22

(vold22 )2
vold12 (vold12 )T (20)

After updating V, we update m by optimizing the following non-linear least squares problem,

max
m
− 1

2 (m− µ)TΩ(m− µ) +

N∑
n=1

fb(yn,mn, Vnn) (21)

We use Newton’s method, the cost of which is O(N3).

6.1 Computational complexity

The final procedure is shown in Algorithm 1. The main advantage of our algorithm is its fast
convergence as we show this in the results section. The overall computational complexity is
O(N3 +

∑
n I

fp
n ). First term is due to O(N2) update of V for all n and also due to the opti-

mization of m. Second term is for Ifpn fixed-point iterations, the total cost of which is linear in N
due to the summation. In all our experiments, Ifpn is usually 3 to 5, adding very little cost.

6.2 Proof of convergence

Proposition 2.7.1 in [2] states that the coordinate ascent algorithm converges if the maximization
with respect to each coordinate is uniquely attained. This is indeed the case for us since each fixed
point iteration solves a concave problem of the form given by Eq. 16. Similarly, optimization with
respect to m is also strictly concave. Hence, convergence of our algorithm is assured.

6.3 Proof that V will always be positive definite

Let us assume that we start with a positive definite K, for example, we can initialize it with Ω. Now
consider the update of v22 and k22. Note that vnew22 will be positive since it is the maximum of Eq.
16 which involves the log term. Using this and Eq. 13, we get knew22 > kT12K

−1
11 k12. Hence, the

Schur complement knew22 − kT12K
−1
11 k12 > 0. Using this and the fact that K11 is positive definite, it

follows that Knew will also be positive definite, and hence Vnew will be positive definite.

7 Results

We now show that the proposed algorithm leads to a significant gain in the speed of Gaussian process
regression. The software to reproduce the results of this section are available online1. We evaluate
the performance of our fast variational inference algorithm against existing inference methods for

1http://www.cs.ubc.ca/emtiyaz/software/codeNIPS2012.html
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Algorithm 1 Fast convergent coordinate-ascent algorithm

1. Initialize K← Ω,V← Ω−1,m← µ, where Ω := Σ−1.
2. Alternate between updating the diagonal of V and then m until convergence, as follows:

(a) Update the i’th diagonal of V for all i = 1, . . . , N :
i. Rearrange V and Ω so that the i’th column is the last one.

ii. k̃22 ← k22 − 1/v22.
iii. Store old value vold22 ← v22.
iv. Run fixed-point iterations for a few steps: v22 ← 1/(Ω22 − k̃22 − 2gv22).
v. Update V.

A. V11 ← V11 + (v22 − vold22 )v12v
T
12/(v

old
22 )2.

B. v12 ← −v22v12/v
old
22 .

vi. Update k22 ← k̃22 + 1/v22.
(b) Update m by maximizing the least-squares problem of Eq. 21.

binary and multi-class classification. For binary classification, we use the UCI ionosphere data (with
351 data examples containing 34 features). For multi-class classification, we use the UCI forensic
glass data set with 214 data examples each with 6 category output and features of length 8. In both
cases, we use 80% of the dataset for training and the rest for testing.

We consider GP classification using the Bernoulli logit likelihood, for which we use the piecewise
bound of [16] with 20 pieces. We compare our algorithm with the approach of Opper and Archam-
beau [19] (Eq. 11). For the latter, we use L-BFGS method for optimization. We also compared to
the naive method of optimizing with respect to full m and V, e.g. method of [5], but do not present
these results since these algorithms have very slow convergence.

We examine the computational cost for each method in terms of the number of floating point oper-
ations (flops) for four hyperparameter settings θ = {log(s), log(σ)}. This comparison is shown in
Figure 1(a). The y-axis shows (negative of) the value of the lower bound, and the x-axis shows the
number of flops. We draw markers at iteration 1,2,4,50 and in steps of 50 from then on. In all cases,
due to non-concavity, the optimization of the Opper and Archambeau reparameterization (black
curve with squares) convergence slowly, passing through flat regions of the objective and requiring
a large number of computations to reach convergence. The proposed algorithm (blue curve with
circles) has consistently faster convergence than the existing method. For this dataset, our algorithm
always converged in 5 iterations.

We also compare the total cost to convergence, where we count the total number of flops until
successive increase in the objective function is below 10−3. Each entry is a different setting of
{log(s), log(σ)}. Rows correspond to values of log(s) while columns correspond to log(σ), with
units M,G,T denoting Mega-, Giga-, and Terra-flops. We can see that the proposed algorithm takes
a much smaller number of operations compared to the existing algorithm.

Proposed Algorithm
-1 1 3

-1 6M 7M 7M
1 26M 20M 22M
3 47M 81M 75M

Opper and Archambeau
-1 1 3

-1 20G 212G 6T
1 101G 24T 24T
3 38G 1T 24T

We also applied our method to two more datasets of [18], namely ’sonar’ and ’usps-3vs5’ dataset
and observed similar behavior.

Next, we apply our algorithm to the problem of multi-class classification, following [14], using the
stick-breaking likelihood, and compare to inference using the approach of Opper and Archambeau
[19] (Eq. 11). We show results comparing the lower bound vs the number of flops taken in Figure
1(b), for four hyperparameter settings {log(s), log(σ)}. We show markers at iterations 1, 2, 10,
100 and every 100th iteration thereafter. The results follow those discussed for binary classification,
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(b) Forensic glass data

Figure 1: Convergence results for (a) the binary classification on the ionosphere data set and (b) the
multi-class classification on the glass dataset. We plot the negative of the lower bound vs the number
of flops. Each plot shows the progress of algorithms for a hyperparameter setting {log(s), log(σ)}
shown at the top of the plot. The proposed algorithm always converges faster than the other method,
in fact, in less than 5 iterations.

where both methods reach the same lower bound value, but the existing approach converging much
slower, with our algorithm always converged within 20 iterations.

8 Discussion

In this paper we have presented a new variational inference algorithm for non-conjugate GP re-
gression. We derived a concave variational lower bound to the log marginal likelihood, and used
concavity to develop an efficient optimization algorithm. We demonstrated the efficacy of our new
algorithm on both binary and multiclass GP classification, demonstrating significant improvement
in convergence.

Our proposed algorithm is related to many existing methods for GP regression. For example, the
objective function that we consider is exactly the KL minimization method discussed in [18], for
which a gradient based optimization was used. Our algorithm uses an efficient approach where we
update the marginals of the posterior and then do a rank one update of the covariance matrix. Our
results show that this leads to fast convergence.

Our algorithm also takes a similar form to the popular EP algorithm [17], e.g. see Algorithm 3.5 in
[20]. Both EP and our algorithm update posterior marginals, followed by a rank-one update of
the covariance. Therefore, the computational complexity of our approach is similar to that of EP.
The advantage of our approach is that, unlike EP, it does not suffer from any numerical issues (for
example, no negative variances) and is guaranteed to converge.

The derivation of our algorithm is based on the observation that the posterior covariance has a special
structure, and does not directly use the concavity of the lower bound. An alternate derivation based
on the Fenchel duality exists and shows that the fixed-point iterations compute dual variables which
are related to the gradients of fb. We skip this derivation since it is tedious, and present the more
intuitive derivation instead. The alternative derivation will be made available in an online appendix.
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