
Query Complexity of Derivative-Free Optimization

Kevin G. Jamieson
University of Wisconsin

Madison, WI 53706, USA
kgjamieson@wisc.edu

Robert D. Nowak
University of Wisconsin

Madison, WI 53706, USA
nowak@engr.wisc.edu

Benjamin Recht
University of Wisconsin

Madison, WI 53706, USA
brecht@cs.wisc.edu

Abstract

This paper provides lower bounds on the convergence rate of Derivative Free Op-
timization (DFO) with noisy function evaluations, exposing a fundamental and
unavoidable gap between the performance of algorithms with access to gradients
and those with access to only function evaluations. However, there are situations
in which DFO is unavoidable, and for such situations we propose a new DFO al-
gorithm that is proved to be near optimal for the class of strongly convex objective
functions. A distinctive feature of the algorithm is that it uses only Boolean-valued
function comparisons, rather than function evaluations. This makes the algorithm
useful in an even wider range of applications, such as optimization based on paired
comparisons from human subjects, for example. We also show that regardless of
whether DFO is based on noisy function evaluations or Boolean-valued function
comparisons, the convergence rate is the same.

1 Introduction

Optimizing large-scale complex systems often requires the tuning of many parameters. With train-
ing data or simulations one can evaluate the relative merit, or incurred loss, of different parameter
settings, but it may be unclear how each parameter influences the overall objective function. In such
cases, derivatives of the objective function with respect to the parameters are unavailable. Thus,
we have seen a resurgence of interest in Derivative Free Optimization (DFO) [1, 2, 3, 4, 5, 6, 7, 8].
When function evaluations are noiseless, DFO methods can achieve the same rates of convergence
as noiseless gradient methods up to a small factor depending on a low-order polynomial of the di-
mension [9, 5, 10]. This leads one to wonder if the same equivalence can be extended to the case
when function evaluations and gradients are noisy.

Sadly, this paper proves otherwise. We show that when function evaluations are noisy, the opti-
mization error of any DFO is ⌦(

p

1/T ), where T is the number of evaluations. This lower bound
holds even for strongly convex functions. In contrast, noisy gradient methods exhibit ⇥(1/T ) error
scaling for strongly convex functions [9, 11]. A consequence of our theory is that finite differencing
cannot achieve the rates of gradient methods when the function evaluations are noisy.

On the positive side, we also present a new derivative-free algorithm that achieves this lower bound
with near optimal dimension dependence. Moreover, the algorithm uses only boolean comparisons
of function values, not actual function values. This makes the algorithm applicable to situations in
which the optimization is only able to probably correctly decide if the value of one configuration is
better than the value of another. This is especially interesting in optimization based on human subject
feedback, where paired comparisons are often used instead of numerical scoring. The convergence
rate of the new algorithm is optimal in terms of T and near-optimal in terms of its dependence
on the ambient dimension. Surprisingly, our lower bounds show that this new algorithm that uses
only function comparisons achieves the same rate in terms of T as any algorithm that has access to
function evaluations.
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2 Problem formulation and background

We now formalize the notation and conventions for our analysis of DFO. A function f is strongly
convex with constant ⌧ on a convex set B ⇢ Rd if there exists a constant ⌧ > 0 such that

f(y) � f(x) + hrf(x), y � xi+ ⌧

2

||x� y||2

for all x, y 2 B. The gradient of f , if it exists, denoted rf , is Lipschitz with constant L if
||rf(x) � rf(y)||  L||x � y|| for some L > 0. The class of strongly convex functions with
Lipschitz gradients defined on a nonempty, convex set B ⇢ Rn which take their minimum in B with
parameters ⌧ and L is denoted by F

⌧,L,B.

The problem we consider is minimizing a function f 2 F
⌧,L,B. The function f is not explicitly

known. An optimization procedure may only query the function in one of the following two ways.

Function Evaluation Oracle: For any point x 2 B an optimization procedure can observe

E
f

(x) = f(x) + w

where w 2 R is a random variable with E[w] = 0 and E[w2

] = �2.
Function Comparison Oracle: For any pair of points x, y 2 B an optimization procedure can

observe a binary random variable C
f

(x, y) satisfying

P (C
f

(x, y) = sign{f(y)� f(x)}) � 1

2

+ min

�

�
0

, µ|f(y)� f(x)|�1

 

(1)

for some 0 < �
0

 1/2, µ > 0 and  � 1. When  = 1, without loss of generality
assume µ  �

0

 1/2. Note  = 1 implies that the comparison oracle is correct with
a probability that is greater than 1/2 and independent of x, y. If  > 1, then the oracle’s
reliability decreases as the difference between f(x) and f(y) decreases.

To illustrate how the function comparison oracle and function evaluation oracles relate to each other,
suppose C

f

(x, y) = sign{E
f

(y) � E
f

(x)} where E
f

(x) is a function evaluation oracle with ad-
ditive noise w. If w is Gaussian distributed with mean zero and variance �2 then  = 2 and
µ �

�

4⇡�2e
��1/2 (see supplementary materials). In fact, this choice of w corresponds to Thurston’s

law of comparative judgment which is a popular model for outcomes of pairwise comparisons from
human subjects [12]. If w is a “spikier” distribution such as a two-sided Gamma distribution with
shape parameter in the range of (0, 1] then all values of  2 (1, 2] can be realized (see supplementary
materials).

Interest in the function comparison oracle is motivated by certain popular derivative-free optimiza-
tion procedures that use only comparisons of function evaluations (e.g. [7]) and by optimization
problems involving human subjects making paired comparisons (for instance, getting fitted for pre-
scription lenses or a hearing aid where unknown parameters specific to each person are tuned with
the familiar queries “better or worse?”). Pairwise comparisons have also been suggested as a novel
way to tune web-search algorithms [13]. Pairwise comparison strategies have previously been an-
alyzed in the finite setting where the task is to identify the best alternative among a finite set of
alternatives (sometimes referred to as the dueling-bandit problem) [13, 14]. The function compar-
ison oracle presented in this work and its analysis are novel. The main contributions of this work
and new art are as follows (i) lower bounds for the function evaluation oracle in the presence of
measurement noise (ii) lower bounds for the function comparison oracle in the presence of noise
and (iii) an algorithm for the function comparison oracle, which can also be applied to the function
evaluation oracle setting, that nearly matches both the lower bounds of (i) and (ii).

We prove our lower bounds for strongly convex functions with Lipschitz gradients defined on a com-
pact, convex set B, and because these problems are a subset of those involving all convex functions
(and have non-empty intersection with problems where f is merely Lipschitz), the lower bound also
applies to these larger classes. While there are known theoretical results for DFO in the noiseless
setting [15, 5, 10], to the best of our knowledge we are the first to characterize lower bounds for
DFO in the stochastic setting. Moreover, we believe we are the first to show a novel upper bound for
stochastic DFO using a function comparison oracle (which also applies to the function evaluation
oracle). However, there are algorithms with upper bounds on the rates of convergence for stochastic
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DFO with the function evaluation oracle [15, 16]. We discuss the relevant results in the next section
following the lower bounds .

While there remains many open problems in stochastic DFO (see Section 6), rates of convergence
with a stochastic gradient oracle are well known and were first lower bounded by Nemirovski and
Yudin [15]. These classic results were recently tightened to show a dependence on the dimension
of the problem [17]. And then tightened again to show a better dependence on the noise [11] which
matches the upper bound achieved by stochastic gradient descent [9]. The aim of this work is to
start filling in the knowledge gaps of stochastic DFO so that it is as well understood as the stochastic
gradient oracle. Our bounds are based on simple techniques borrowed from the statistical learning
literature that use natural functions and oracles in the same spirit of [11].

3 Main results

The results below are presented with simplifying constants that encompass many factors to aid in
exposition. Explicit constants are given in the proofs in Sections 4 and 5. Throughout, we denote
the minimizer of f as x⇤

f

. The expectation in the bounds is with respect to the noise in the oracle
queries and (possible) optimization algorithm randomization.

3.1 Query complexity of the function comparison oracle

Theorem 1. For every f 2 F
⌧,L,B let C

f

be a function comparison oracle with parameters
(, µ, �

0

). Then for n � 8 and sufficiently large T

inf

bxT

sup

f2F⌧,L,B

E
⇥

f(bx
T

)� f(x⇤
f

)

⇤

�

8

<

:

c
1

exp

�

�c
2

T

n

 

if  = 1

c
3

�

n

T

�

1
2(�1) if  > 1

where the infimum is over the collection of all possible estimators of x⇤
f

using at most T queries to
a function comparison oracle and the supremum is taken with respect to all problems in F

⌧,L,B and
function comparison oracles with parameters (, µ, �

0

). The constants c
1

, c
2

, c
3

depend the oracle
and function class parameters, as well as the geometry of B, but are independent of T and n.

For upper bounds we propose a specific algorithm based on coordinate-descent in Section 5 and
prove the following theorem for the case of unconstrained optimization, that is, B = Rn.
Theorem 2. For every f 2 F

⌧,L,B with B = Rn let C
f

be a function comparison oracle with
parameters (, µ, �

0

). Then there exists a coordinate-descent algorithm that is adaptive to unknown
 � 1 that outputs an estimate bx

T

after T function comparison queries such that with probability
1� �

sup

f2F⌧,L,B

E
⇥

f(bx
T

)� f(x⇤
f

)

⇤



8

>

<

>

:

c
1

exp

n

�c
2

q

T

n

o

if  = 1

c
3

n
�

n

T

�

1
2(�1) if  > 1

where c
1

, c
2

, c
3

depend the oracle and function class parameters as well as T ,n, and 1/�, but only
poly-logarithmically.

3.2 Query complexity of the function evaluation oracle

Theorem 3. For every f 2 F
⌧,L,B let E

f

be a function evaluation oracle with variance �2. Then
for n � 8 and sufficiently large T

inf

bxT

sup

f2F⌧,L,B

E
⇥

f(bx
T

)� f(x⇤
f

)

⇤

� c

✓

n�2

T

◆

1
2

where the infimum is taken with respect to the collection of all possible estimators of x⇤
f

using just
T queries to a function evaluation oracle and the supremum is taken with respect to all problems in
F

⌧,L,B and function evaluation oracles with variance �2. The constant c depends on the oracle and
function class parameters, as well as the geometry of B, but is independent of T and n.
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Because a function evaluation oracle can always be turned into a function comparison oracle (see
discussion above), the algorithm and upper bound in Theorem 2 with  = 2 applies to many typical
function evaluation oracles (e.g. additive Gaussian noise), yielding an upper bound of

�

n3�2/T
�

1/2

ignoring constants and log factors. This matches the rate of convergence as a function of T and �2,
but has worse dependence on the dimension n.

Alternatively, under a less restrictive setting, Nemirovski and Yudin proposed two algorithms for
the class of convex, Lipschitz functions that obtain rates of n1/2/T 1/4 and p(n)/T 1/2, respectively,
where p(n) was left as an unspecified polynomial of n [15]. While focusing on stochastic DFO with
bandit feedback, Agarwal et. al. built on the ideas developed in [15] to obtain a result that they
point out implies a convergence rate of n16/T 1/2 in the optimization setting considered here [16].
Whether or not these rates can be improved to those obtained under the more restrictive function
classes of above is an open question.

A related but fundamentally different problem that is somewhat related with the setting considered
in this paper is described as online (or stochastic) convex optimization with multi-point feedback
[18, 5, 19]. Essentially, this setting allows the algorithm to probe the value of the function f plus
noise at multiple locations where the noise changes at each time step, but each set of samples at each
time experiences the same noise. Because the noise model of that work is incompatible with the one
considered here, no comparisons should be made between the two.

4 Lower Bounds

The lower bounds in Theorems 1 and 3 are proved using a general minimax bound [20, Thm. 2.5].
Our proofs are most related to the approach developed in [21] for active learning, which like opti-
mization involves a Markovian sampling process. Roughly speaking, the lower bounds are estab-
lished by considering a simple case of the optimization problem in which the global minimum is
known a priori to belong to a finite set. Since the simple case is “easier” than the original optimiza-
tion, the minimum number of queries required for a desired level of accuracy in this case yields a
lower bound for the original problem.

The following theorem is used to prove the bounds. In the terms of the theorem, f is a function to
be minimized and P

f

is the probability model governing the noise associated with queries when f
is the true function.
Theorem 4. [20, Thm. 2.5] Consider a class of functions F and an associated family of probability
measures {P

f

}
f2F . Let M � 2 be an integer and f

0

, f
1

, . . . , f
M

be functions in F . Let d(·, ·) :

F ⇥ F ! R be a semi-distance and assume that:

1. d(f
i

, f
j

) � 2s > 0, for all 0  i < j M ,

2. 1

M

P

M

j=1

KL(P
i

||P
0

)  a logM ,

where the Kullback-Leibler divergence KL(P
i

||P
0

) :=

R

log

dPi
dP0

dP
i

is assumed to be well-defined
(i.e., P

0

is a dominating measure) and 0 < a < 1/8 . Then

inf

b
f

sup

f2F
P(d( bf, f) � s) � inf

b
f

max

f2{f0,...,fM}
P(d( bf, f) � s) �

p
M

1+

p
M

⇣

1� 2a� 2

q

a

logM

⌘

> 0 ,

where the infimum is taken over all possible estimators based on a sample from P
f

.

We are concerned with the functions in the class F := F
⌧,L,B. The volume of B will affect only

constant factors in our bounds, so we will simply denote the class of functions by F and refer
explicitly to B only when necessary. Let x

f

:= argmin

x

f(x), for all f 2 F . The semi-distance we
use is d(f, g) := kx

f

� x
g

||, for all f, g 2 F . Note that each point in B can be specified by one of
many f 2 F . So the problem of selecting an f is equivalent to selecting a point x 2 B. Indeed, the
semi-distance defines a collection of equivalence classes in F (i.e., all functions having a minimum
at x 2 B are equivalent). For every f 2 F we have inf

g2F f(x
g

) = inf

x2B f(x), which is a useful
identity to keep in mind.

We now construct the functions f
0

, f
1

, . . . , f
M

that will be used for our proofs. Let ⌦ = {�1, 1}n so
that each ! 2 ⌦ is a vertex of the d-dimensional hypercube. Let V ⇢ ⌦ with cardinality |V| � 2

n/8
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such that for all ! 6= !0 2 V , we have ⇢(!,!0
) � n/8 where ⇢(·, ·) is the Hamming distance. It is

known that such a set exists by the Varshamov-Gilbert bound [20, Lemma 2.9]. Denote the elements
of V by !

0

,!
1

, . . . ,!
M

. Next we state some elementary bounds on the functions that will be used
in our analysis.
Lemma 1. For ✏ > 0 define the set B ⇢ Rn to be the `1 ball of radius ✏ and define the functions
on B: f

i

(x) := ⌧

2

||x � ✏!
i

||2, for i = 0, . . . ,M , !
i

2 V , and x
i

:= argmin

x

f
i

(x) = ✏!
i

. Then
for all 0  i < j M and x 2 B the functions f

i

(x) satisfy

1. f
i

is strongly convex-⌧ with Lipschitz-⌧ gradients and x
i

2 B
2. ||x

i

� x
j

|| � ✏
p

n

2

3. |f
i

(x)� f
j

(x)|  2⌧n✏2 .

We are now ready to prove Theorems 1 and 3. Each proof uses the functions f
0

, . . . , f
M

a bit
differently, and since the noise model is also different in each case, the KL divergence is bounded
differently in each proof. We use the fact that if X and Y are random variables distributed according
to Bernoulli distributions P

X

and P
Y

with parameters 1/2 + µ and 1/2 � µ, then KL(P
X

||P
Y

) 
4µ2/(1/2� µ). Also, if X ⇠ N (µ

X

,�2

) =: P
X

and Y ⇠ N (µ
Y

,�2

) =: P
y

then KL(P
X

||P
Y

) =

1

2�

2 ||µX

� µ
Y

||2.

4.1 Proof of Theorem 1

First we will obtain the bound for the case  > 1. Let the comparison oracle satisfy

P (C
fi(x, y) = sign{f

i

(y)� f
i

(x)}) =

1

2

+ min

�

µ|f
i

(y)� f
i

(x)|�1, �
0

 

.

In words, C
fi(x, y) is correct with probability as large as the right-hand-side of above and is

monotonic increasing in f
i

(y) � f
i

(x). Let {x
k

, y
k

}T
k=1

be a sequence of T pairs in B and let
{C

fi(xk

, y
k

)}T
k=1

be the corresponding sequence of noisy comparisons. We allow the sequence
{x

k

, y
k

}T
k=1

to be generated in any way subject to the Markovian assumption that C
fi(xk

, y
k

) given
(x

k

, y
k

) is conditionally independent of {x
i

, y
i

}
i<k

. For i = 0, . . . ,M , and ` = 1, . . . , T let P
i,`

denote the joint probability distribution of {x
k

, y
k

, C
fi(xk

, y
k

)}`
k=1

, let Q
i,`

denote the conditional
distribution of C

fi(x`

, y
`

) given (x
`

, y
`

), and let S
`

denote the conditional distribution of (x
`

, y
`

)

given {x
k

, y
k

, C
fi(xk

, y
k

)}`�1

k=1

. Note that S
`

is only a function of the underlying optimization al-
gorithm and does not depend on i.

KL(P
i,T

||P
j,T

) = E
Pi,T



log

P
i,T

P
j,T

�

= E
Pi,T

"

log

Q

T

`=1

Q
i,`

S
`

Q

T

`=1

Q
j,`

S
`

#

= E
Pi,T

"

log

Q

T

`=1

Q
i,`

Q

T

`=1

Q
j,`

#

=

T

X

`=1

E
Pi,T



E
Pi,T



log

Q
i,`

Q
j,`

�

�

�

�

{x
k

, y
k

}T
k=1

��

 T sup

x1,y12B
E
Pi,1



E
Pi,1



log

Q
i,1

Q
j,1

�

�

�

�

x
1

, y
1

��

By the second claim of Lemma 1, |f
i

(x) � f
j

(x)|  2⌧n✏2, and therefore the bound above is
less than or equal to the KL divergence between the Bernoulli distributions with parameters 1

2

±
µ
�

2⌧n✏2
�

(�1), yielding the bound

KL(P
i,T

|P
j,T

) 
4Tµ2

�

2⌧n✏2
�

2(�1)

1/2� µ (2⌧n✏2)
(�1)

 16Tµ2

�

2⌧n✏2
�

2(�1)

provided ✏ is sufficiently small. We also assume ✏ (or, equivalently, B) is sufficiently small so that
|f

i

(x) � f
j

(x)|�1  �
0

. We are now ready to apply Theorem 4. Recalling that M � 2

n/8, we
want to choose ✏ such that

KL(P
i,T

|P
j,T

)  16Tµ2

�

2⌧n✏2
�

2(�1)  a
n

8

log(2)  a logM

with an a small enough so that we can apply the theorem. By setting a = 1/16 and equating the two

sides of the equation we have ✏ = ✏
T

:=

1

2

p
n

�

2

⌧

�

1/2

⇣

n log(2)

2048µ

2
T

⌘

1
4(�1)

(note that this also implies a
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sequence of sets B
T

by the definition of the functions in Lemma 1). Thus, the semi-distance satisfies

d(f
j

, f
i

) = ||x
j

� x
i

|| �
p

n/2✏
T

� 1

2

p
2

✓

2

⌧

◆

1/2

✓

n log(2)

2048µ2T

◆

1
4(�1)

=: 2s
T

.

Applying Theorem 4 we have

inf

b
f

sup

f2F
P(kx b

f

� x
f

k � s
T

) � inf

b
f

max

i2{0,...,M}
P(kx b

f

� x
i

k � s
T

) = inf

b
f

max

i2{0,...,M}
P(d( bf, f

i

) � s
T

)

�
p
M

1+

p
M

⇣

1� 2a� 2

q

a

logM

⌘

> 1/7 ,

where the final inequality holds since M � 2 and a = 1/16. Strong convexity implies that f(x) �
f(x

f

) � ⌧

2

||x� x
f

||2 for all f 2 F and x 2 B. Therefore

inf

b
f

sup

f2F
P
⇣

f(x b
f

)� f(x
f

) � ⌧

2

s2
T

⌘

� inf

b
f

max

i2{0,...,M}
P
⇣

f
i

(x b
f

)� f
i

(x
i

) � ⌧

2

s2
T

⌘

� inf

b
f

max

i2{0,...,M}
P
⇣⌧

2

kx b
f

� x
i

k2 � ⌧

2

s2
T

⌘

= inf

b
f

max

i2{0,...,M}
P
⇣

kx b
f

� x
i

k � s
T

⌘

> 1/7 .

Finally, applying Markov’s inequality we have

inf

b
f

sup

f2F
E
h

f(x b
f

)� f(x
f

)

i

� 1

7

✓

1

32

◆✓

n log(2)

2048µ2T
.

◆

1
2(�1)

4.2 Proof of Theorem 1 for  = 1

To handle the case when  = 1 we use functions of the same form, but the construction is slightly
different. Let ` be a positive integer and let M = `n. Let {⇠

i

}M
i=1

be a set of uniformly space points
in B which we define to be the unit cube in Rn, so that k⇠

i

� ⇠
j

k � `�1 for all i 6= j. Define
f
i

(x) := ||x � ⇠
i

||2, i = 1, . . . ,M . Let s :=

1

2`

so that d(f
i

, f
j

) := ||x⇤
i

� x⇤
j

|| � 2s. Because
 = 1, we have P (C

fi(x, y) = sign{f
i

(y)� f
i

(x)}) � µ for some µ > 0, all i 2 {1, . . . ,M}, and
all x, y 2 B. We bound KL(P

i,T

||P
j,T

) in exactly the same way as we bounded it in Section 4.1
except that now we have C

fi(xk

, y
k

) ⇠ Bernoulli( 1
2

+ µ) and C
fj (xk

, y
k

) ⇠ Bernoulli( 1
2

� µ). It
then follows that if we wish to apply the theorem, we want to choose s so that

KL(P
i,T

|P
j,T

)  2Tµ2/(1/2� µ)  a logM = an log

�

1

2s

�

for some a < 1/8. Using the same sequence of steps as in Section 4.1 we have

inf

b
f

sup

f2F
E
h

f(x b
f

)� f(x
f

)

i

� 1

7

✓

1

2

◆

2

exp

⇢

� 128Tµ2

n(1/2� µ)

�

.

4.3 Proof of Theorem 3

Let f
i

for all i = 0, . . . ,M be the functions considered in Lemma 1. Recall that the evaluation oracle
is defined to be E

f

(x) := f(x)+w, where w is a random variable (independent of all other random
variables under consideration) with E[w] = 0 and E[w2

] = �2 > 0. Let {x
k

}n
k=1

be a sequence
of points in B ⇢ Rn and let {E

f

(x
k

)}T
k=1

denote the corresponding sequence of noisy evaluations
of f 2 F . For ` = 1, . . . , T let P

i,`

denote the joint probability distribution of {x
k

, E
fi(xk

)}`
k=1

,
let Q

i,`

denote the conditional distribution of E
fi(xk

) given x
k

, and let S
`

denote the conditional
distribution of x

`

given {x
k

, E
f

(x
k

)}`�1

k=1

. S
`

is a function of the underlying optimization algorithm
and does not depend on i. We can now bound the KL divergence between any two hypotheses as in
Section 4.1:

KL(P
i,T

||P
j,T

)  T sup

x12B
E
Pi,1



E
Pi,1



log

Q
i,1

Q
j,1

�

�

�

�

x
1

��

.
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To compute a bound, let us assume that w is Gaussian distributed. Then
KL(P

i,T

||P
j,T

)  T sup

z2B
KL

�

N (f
i

(z),�2

)||N (f
j

(z),�2

)

�

=

T

2�2

sup

z2B
|f

i

(z)� f
j

(z)|2  T

2�2

�

2⌧n✏2
�

2

by the third claim of Lemma 1. We then repeat the same procedure as in Section 4.1 to attain

inf

b
f

sup

f2F
E
h

f(x b
f

)� f(x
f

)

i

� 1

7

✓

1

32

◆✓

n�2

log(2)

64T

◆

1
2

.

5 Upper bounds

The algorithm that achieves the upper bound using a pairwise comparison oracle is a combination
of standard techniques and methods from the convex optimization and statistical learning literature.
The algorithm is explained in full detail in the supplementary materials, and is summarized as fol-
lows. At each iteration the algorithm picks a coordinate uniformly at random from the n possible
dimensions and then performs an approximate line search. By exploiting the fact that the func-
tion is strongly convex with Lipschitz gradients, one guarantees using standard arguments that the
approximate line search makes a sufficient decrease in the objective function value in expectation
[22, Ch.9.3]. If the pairwise comparison oracle made no errors then the approximate line search
is accomplished by a binary-search-like scheme, essentially a golden section line-search algorithm
[23]. However, when responses from the oracle are only probably correct we make the line-search
robust to errors by repeating the same query until we can be confident about the true, uncorrupted
direction of the pairwise comparison using a standard procedure from the active learning literature
[24] (a similar technique was also implemented for the bandit setting of derivate-free optimization
[8]). Because the analysis of each component is either known or elementary, we only sketch the
proof here and leave the details to the supplementary materials.

5.1 Coordinate descent

Given a candidate solution x
k

after k � 0 iterations, the algorithm defines a search direction d
k

= e
i

where i is chosen uniformly at random from the possible n dimensions and e
i

is a vector of all zeros
except for a one in the ith coordinate. We note that while we only analyze the case where the search
direction d

k

is a coordinate direction, an analysis with the same result can be obtained with d
k

chosen uniformly from the unit sphere. Given d
k

, a line search is then performed to find an ↵
k

2 R
such that f(x

k+1

)� f(x
k

) is sufficiently small where x
k+1

= x
k

+↵
k

d
k

. In fact, as we will see in
the next section, for some input parameter ⌘ > 0, the line search is guaranteed to return an ↵

k

such
that |↵

k

� ↵⇤|  ⌘ where ↵⇤ = min

↵2R f(x
k

+ d
k

↵⇤
). Using the fact that the gradients of f are

Lipschitz (L) we have

f(x
k

+ ↵
k

d
k

)� f(x
k

+ ↵⇤d
k

)  L

2

||(↵
k

� ↵⇤
)d

k

||2 =

L

2

|↵
k

� ↵⇤|2  L

2

⌘2.

If we define ↵̂
k

= � hrf(xk),dki
L

then we have

f(x
k

+ ↵
k

d
k

)� f(x
k

)  f(x
k

+ ↵⇤d
k

)� f(x
k

) +

L

2

⌘2

 f(x
k

+ ↵̂
k

d
k

)� f(x
k

) +

L

2

⌘2  �hrf(xk

), d
k

i2

2L
+

L

2

⌘2

where the last line follows from applying the fact that the gradients are Lipschitz (L). Arranging the
bound and taking the expectation with respect to d

k

we get

E [f(x
k+1

)� f(x⇤
)]� L

2

⌘2  E [f(x
k

)� f(x⇤
)]� E

[

||rf(xk)||2]
2nL

 E [f(x
k

)� f(x⇤
)]

�

1� ⌧

4nL

�

where the second inequality follows from the fact that f is strongly convex (⌧). If we define ⇢
k

:=

E [f(x
k

)� f(x⇤
)] then we equivalently have

⇢
k+1

� 2nL2⌘2

⌧

⇣

1� ⌧

4nL

⌘

✓

⇢
k

� 2nL2⌘2

⌧

◆


⇣

1� ⌧

4nL

⌘

k

✓

⇢
0

� 2nL2⌘2

⌧

◆

which leads to the following result.
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Theorem 5. Let f 2 F
⌧,L,B with B = Rn. For any ⌘ > 0 assume the line search returns an ↵

k

that
is within ⌘ of the optimal after at most T

`

(⌘) queries from the pairwise comparison oracle. If x
K

is
an estimate of x⇤

= argmin

x

f(x) after requesting no more than K pairwise comparisons, then

sup

f

E[f(x
K

)� f(x⇤)]  4nL

2
⌘

2

⌧

whenever K � 4nL

⌧

log

⇣

f(x0)�f(x

⇤
)

⌘

2
2nL

2
/⌧

⌘

T
`

(⌘)

where the expectation is with respect to the random choice of d
k

at each iteration.

This implies that if we wish sup

f

E[f(x
K

) � f(x⇤)]  ✏ it suffices to take ⌘ =

p

✏⌧

4nL

2 so that at

most 4nL

⌧

log

⇣

f(x0)�f(x

⇤
)

✏/2

⌘

T
`

�

p

✏⌧

4nL

2

�

pairwise comparisons are requested.

5.2 Line search

This section is concerned with minimizing a function f(x
k

+↵
k

d
k

) over some ↵
k

2 R. In particular,
we wish to find an ↵

k

2 R such that |↵
k

�↵⇤|  ⌘ where ↵⇤ = min

↵2R f(x
k

+d
k

↵⇤
). First assume

that the function comparison oracle makes no errors. The line search operates by maintaining a pair
of boundary points ↵+, ↵� such that if at some iterate we have ↵⇤ 2 [↵�,↵+

] then at the next iterate,
we are guaranteed that ↵⇤ is still contained inside the boundary points but |↵+�↵�| 1

2

|↵+�↵�|.
An initial set of boundary points ↵+ > 0 and ↵� < 0 are found using simple binary search. Thus,
regardless of how far away or close ↵⇤ is, we converge to it exponentially fast. Exploiting the fact
that f is strongly convex (⌧) with Lipschitz (L) gradients we can bound how far away or close ↵⇤

is from our initial iterate.
Theorem 6. Let f 2 F

⌧,L,B with B = Rn and let C
f

be a function comparison oracle that makes
no errors. Let x 2 Rn be an initial position and let d 2 Rn be a search direction with ||d|| = 1. If
↵
K

is an estimate of ↵⇤
= argmin

↵

f(x + d↵) that is output from the line search after requesting
no more than K pairwise comparisons, then for any ⌘ > 0

|↵
K

� ↵⇤|  ⌘ whenever K � 2 log

2

⇣

256L(f(x)�f(x+d↵

⇤
))

⌧

2
⌘

2

⌘

.

5.3 Making the line search robust to errors

Now assume that the responses from the pairwise comparison oracle are only probably correct in
accordance with the model introduced above. Essentially, the robust procedure runs the line search
as if the oracle made no errors except that each time a comparison is needed, the oracle is repeatedly
queried until we can be confident about the true direction of the comparison. This strategy applied
to active learning is well known because of its simplicity and its ability to adapt to unknown noise
conditions [24]. However, we mention that when used in this way, this sampling procedure is known
to be sub-optimal so in practice, one may want to implement a more efficient approach like that of
[21]. Nevertheless, we have the following lemma.
Lemma 2. [24] For any x, y 2 B with P (C

f

(x, y) = sign{f(y)� f(x)}) = p, with probability
at least 1 � � the coin-tossing algorithm of [24] correctly identifies the sign of E [C

f

(x, y)] and

requests no more than log(2/�)

4|1/2�p|2 log2

⇣

log(2/�)

4|1/2�p|2

⌘

pairwise comparisons.

It would be convenient if we could simply apply the result of Lemma 2 to our line search procedure.
Unfortunately, if we do this there is no guarantee that |f(y) � f(x)| is bounded below so for the
case when  > 1, it would be impossible to lower bound |1/2 � p| in the lemma. To account
for this, we will sample at multiple locations per iteration as opposed to just two in the noiseless
algorithm to ensure that we can always lower bound |1/2� p|. Intuitively, strong convexity ensures
that f cannot be arbitrarily flat so for any three equally spaced points x, y, z on the line d

k

, if
f(x) is equal to f(y), then it follows that the absolute difference between f(x) and f(z) must be
bounded away from zero. Applying this idea and union bounding over the total number of times
one must call the coin-tossing algorithm, one finds that with probability at least 1 � �, the total
number of calls to the pairwise comparison oracle over the course of the whole algorithm does
not exceed eO

⇣

nL

⌧

�

n

✏

�

2(�1)

log

2

⇣

f(x0)�f(x

⇤
)

✏

⌘

log(n/�)
⌘

. By finding a T > 0 that satisfies this

bound for any ✏ we see that this is equivalent to a rate of O
⇣

n log(n/�)
�

n

T

�

1
2(�1)

⌘

for  > 1 and

O
⇣

exp

n

�c
q

T

n log(n/�)

o⌘

for  = 1, ignoring polylog factors.
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