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Abstract
This supplement presents additional details in support of the full article. These in-
clude the application of the majorization method to maximum entropy problems.
It also contains proofs of the various theorems, in particular, a guarantee that the
bound majorizes the partition function. In addition, a proof is provided guarantee-
ing convergence on (non-latent) maximum conditional likelihood problems. The
supplement also contains supporting lemmas that show the bound remains ap-
plicable in constrained optimization problems. The supplement then proves the
soundness of the junction tree implementation of the bound for graphical mod-
els with large n. It also proves the soundness of the low-rank implementation of
the bound for problems with large d. Finally, the supplement contains additional
experiments and figures to provide further empirical support for the majorization
methodology.

Supplement for Section 2
Proof of Theorem 1 Rewrite the partition function as a sum over the integer index j = 1, . . . , n
under the random ordering π : Ω 7→ {1, . . . , n}. This defines j = π(y) and associates h and f with
hj = h(π−1(j)) and fj = f(π−1(j)). Next, write Z(θ) =

∑n
j=1 αj exp(λ

⊤fj) by introducing
λ = θ − θ̃ and αj = hj exp(θ̃

⊤fj). Define the partition function over only the first i components
as Zi(θ) =

∑i
j=1 αj exp(λ

⊤fj). When i = 0, a trivial quadratic upper bound holds

Z0(θ) ≤ z0 exp
(
1
2λ

⊤Σ0λ+ λ⊤µ0

)
with the parameters z0 → 0+,µ0 = 0, and Σ0 = z0I. Next, add one term to the current partition
function Z1(θ) = Z0(θ) + α1 exp(λ

⊤f1). Apply the current bound Z0(θ) to obtain

Z1(θ) ≤ z0 exp(
1
2λ

⊤Σ0λ+ λ⊤µ0) + α1 exp(λ
⊤f1).

Consider the following change of variables

u = Σ
1/2
0 λ−Σ

−1/2
0 (f1 − µ0))

γ = α1

z0
exp( 12 (f1 − µ0)

⊤Σ−1
0 (f1 − µ0))

and rewrite the logarithm of the bound as

logZ1(θ) ≤ log z0 − 1
2 (f1 − µ0)

⊤Σ−1
0 (f1 − µ0) + λ⊤f1 + log

(
exp( 12∥u∥

2) + γ
)
.

Apply Lemma 1 (cf. [32] p. 100) to the last term to get

logZ1(θ) ≤ log z0 − 1
2 (f1 − µ0)

⊤Σ−1
0 (f1 − µ0) + λ⊤f1 + log

(
exp
(
1
2∥v∥

2
)
+γ
)

+
v⊤(u− v)

1+γ exp(−1
2∥v∥2)

+
1

2
(u− v)⊤

(
I + Γvv⊤) (u− v)
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where Γ =
tanh(

1
2 log(γ exp(− 1

2∥v∥
2)))

2 log(γ exp(− 1
2∥v∥

2))
. The bound in [32] is tight when u = v. To achieve tightness

when θ = θ̃ or, equivalently, λ = 0, we choose v = Σ
−1/2
0 (µ0 − f1) yielding

Z1(θ) ≤ z1 exp
(
1
2λ

⊤Σ1λ+ λ⊤µ1

)
where we have

z1 = z0 + α1

µ1 =
z0

z0 + α1
µ0 +

α1

z0 + α1
f1

Σ1 = Σ0 +
tanh(12 log(α1/z0))

2 log(α1/z0)
(µ0 − f1)(µ0 − f1)

⊤.

This rule updates the bound parameters z0,µ0,Σ0 to incorporate an extra term in the sum over i in
Z(θ). The process is iterated n times (replacing 1 with i and 0 with i − 1) to produce an overall
bound on all terms.

Lemma 1 (See [32] p. 100)
For all u ∈ Rd, any v ∈ Rd and any γ ≥ 0, the bound log

(
exp

(
1
2∥u∥

2
)
+ γ
)
≤

log
(
exp

(
1
2∥v∥

2
)
+ γ
)
+

v⊤(u− v)

1 + γ exp(−1
2∥v∥2)

+
1

2
(u− v)⊤

(
I + Γvv⊤) (u− v)

holds when the scalar term Γ =
tanh( 1

2 log(γ exp(−∥v∥2/2)))

2 log(γ exp(−∥v∥2/2)) . Equality is achieved when u = v.

Proof of Lemma 1 The proof is provided in [32].

Supplement for Section 3
Maximum entropy problem We show here that partition functions arise naturally in maximum
entropy estimation or minimum relative entropyRE(p∥h) =

∑
y p(y) log

p(y)
h(y) estimation. Consider

the following problem:

min
p
RE(p∥h) s.t.

∑
y

p(y)f(y) = 0,
∑
y

p(y)g(y) ≥ 0.

Here, assume that f : Ω 7→ Rd and g : Ω 7→ Rd′
are arbitrary (non-constant) vector-valued functions

over the sample space. The solution distribution p(y) = h(y) exp
(
θ⊤f(y) + ϑ⊤g(y)

)
/Z(θ,ϑ) is

recovered by the dual optimization

θ,ϑ =
arg
max
ϑ≥0,θ

− log
∑
y

h(y) exp
(
θ⊤f(y) + ϑ⊤g(y)

)
where θ ∈ Rd and ϑ ∈ Rd′

. These are obtained by minimizing Z(θ,ϑ) or equivalently by max-
imizing its negative logarithm. Algorithm 1 permits variational maximization of the dual via the
quadratic program

min
ϑ≥0,θ

1
2 (β − β̃)⊤Σ(β − β̃) + β⊤µ

where β⊤ = [θ⊤ϑ⊤]. Note that any general convex hull of constraints β ∈ Λ ⊆ Rd+d′
could be

imposed without loss of generality.

Proof of Theorem 2 We begin by proving a lemma that will be useful later.

Lemma 2 If κΨ ≽ Φ ≻ 0 for Φ,Ψ ∈ Rd×d, then

L(θ) = −1
2 (θ − θ̃)⊤Φ(θ − θ̃)− (θ − θ̃)⊤µ

U(θ) = −1
2 (θ − θ̃)⊤Ψ(θ − θ̃)− (θ − θ̃)⊤µ

satisfy supθ∈Λ L(θ) ≥ 1
κ supθ∈Λ U(θ) for any convex Λ ⊆ Rd, θ̃ ∈ Λ, µ ∈ Rd and κ ∈ R+.
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Proof of Lemma 2 Define the primal problems of interest as PL = supθ∈Λ L(θ) and PU =
supθ∈Λ U(θ). The constraints θ ∈ Λ can be summarized by a set of linear inequalities Aθ ≤ b
where A ∈ Rk×d and b ∈ Rk for some (possibly infinite) k ∈ Z. Apply the change of variables
z = θ−θ̃. The constraint A(z+θ̃) ≤ b simplifies into Az ≤ b̃ where b̃ = b−Aθ̃. Since θ̃ ∈ Λ, it
is easy to show that b̃ ≥ 0. We obtain the equivalent primal problems PL = supAz≤b̃−

1
2z

⊤Φz−
z⊤µ and PU = supAz≤b̃−

1
2z

⊤Ψz− z⊤µ. The corresponding dual problems are

DL= inf
y≥0

y⊤AΦ−1A⊤y

2
+y⊤AΦ−1µ+y⊤b̃+

µ⊤Φ−1µ

2

DU = inf
y≥0

y⊤AΨ−1A⊤y

2
+y⊤AΨ−1µ+y⊤b̃+

µ⊤Ψ−1µ

2
.

Due to strong duality, PL = DL and PU = DU . Apply the inequalities Φ ≼ κΨ and y⊤b̃ > 0 as

PL≥ sup
Az≤b̃

−κ
2
z⊤Ψz− z⊤µ = inf

y≥0

y⊤AΨ−1A⊤y

2κ
+

y⊤AΨ−1µ

κ
+ y⊤b̃+

µ⊤Ψ−1µ

2κ

≥ 1

κ
DU =

1

κ
PU .

This proves that PL ≥ 1
κPU .

We will use the above to prove Theorem 2. First, we will upper-bound (in the Loewner ordering
sense) the matrices Σj in Algorithm 2. Since ∥fxj

(y)∥2 ≤ r for all y ∈ Ωj and since µj in
Algorithm 1 is a convex combination of fxj (y), the outer-product terms in the update for Σj satisfy

(fxj (y)− µ)(fxj (y)− µ)⊤ ≼ 4r2I.

Thus, Σj ≼ F(α1, . . . , αn)4r
2I holds where

F(α1, . . . , αn) =
n∑

i=2

tanh( 12 log(
αi∑i−1

k=1 αk
))

2 log( αi∑i−1
k=1 αk

)

using the definition of α1, . . . , αn in the proof of Theorem 1. The formula for F starts at i = 2 since
z0 → 0+. Assume permutation π is sampled uniformly at random. The expected value of F is then

Eπ[F(α1, . . . , αn)]=
1

n!

∑
π

n∑
i=2

tanh(12 log(
απ(i)∑i−1

k=1 απ(k)
))

2 log(
απ(i)∑i−1

k=1 απ(k)
)

.

We claim that the expectation is maximized when all αi = 1 or any positive constant. Also, F
is invariant under uniform scaling of its arguments. Write the expected value of F as E for short.
Next, consider ∂E

∂αl
at the setting αi = 1, ∀i. Due to the expectation over π, we have ∂E

∂αl
= ∂E

∂αo

for any l, o. Therefore, the gradient vector is constant when all αi = 1. Since F(α1, . . . , αn)
is invariant to scaling, the gradient vector must therefore be the all zeros vector. Thus, the point
when all αi = 1 is an extremum or a saddle. Next, consider ∂

∂αo

∂E
∂αl

for any l, o. At the setting

αi = 1, ∂2E
∂α2

l
= −c(n) and, ∂

∂αo

∂E
∂αl

= c(n)/(n − 1) for some non-negative constant function
c(n). Thus, the αi = 1 extremum is locally concave and is a maximum. This establishes that
Eπ[F(α1, . . . , αn)] ≤ Eπ[F(1, . . . , 1)] and yields the Loewner bound

Σj ≼

(
2r2

n−1∑
i=1

tanh(log(i)/2)

log(i)

)
I = ωI.

Apply this bound to each Σj in the lower bound on J(θ) and also note a corresponding upper bound

J(θ) ≥ J(θ̃)−tω+tλ
2 ∥θ − θ̃∥2−

∑
j

(θ − θ̃)⊤(µj−fxj (yj))

J(θ) ≤ J(θ̃)−tλ
2 ∥θ − θ̃∥2−

∑
j

(θ − θ̃)⊤(µj−fxj (yj))
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which follows from Jensen’s inequality. Define the current θ̃ at time τ as θτ and denote byLτ (θ) the
above lower bound and by Uτ (θ) the above upper bound at time τ . Clearly, Lτ (θ) ≤ J(θ) ≤ Uτ (θ)
with equality when θ = θτ . Algorithm 2 maximizes J(θ) after initializing at θ0 and performing
an update by maximizing a lower bound based on Σj . Since Lτ (θ) replaces the definition of Σj

with ωI ≽ Σj , Lτ (θ) is a looser bound than the one used by Algorithm 2. Thus, performing
θτ+1 = argmaxθ∈Λ Lτ (θ) makes less progress than a step of Algorithm 1. Consider computing the
slower update at each iteration τ and returning θτ+1 = argmaxθ∈Λ Lτ (θ). Setting Φ = (tω+tλ)I,
Ψ = tλI and κ = ω+λ

λ allows us to apply Lemma 2 as follows

sup
θ∈Λ

Lτ (θ)− Lτ (θτ ) =
1

κ
sup
θ∈Λ

Uτ (θ)− Uτ (θτ ).

Since Lτ (θτ ) = J(θτ ) = Uτ (θτ ), J(θτ+1) ≥ supθ∈Λ Lτ (θ) and supθ∈Λ Uτ (θ) ≥ J(θ∗), we
obtain

J(θτ+1)− J(θ∗) ≥
(
1− 1

κ

)
(J(θτ )− J(θ∗)) .

Iterate the above inequality starting at t = 0 to obtain

J(θτ )− J(θ∗) ≥
(
1− 1

κ

)τ

(J(θ0)− J(θ∗)) .

A solution within a multiplicative factor of ϵ implies that ϵ =
(
1− 1

κ

)τ or log(1/ϵ) = τ log κ
κ−1 .

Inserting the definition for κ shows that the number of iterations τ is at most
⌈
log(1/ϵ)
log κ

κ−1

⌉
or⌈

log(1/ϵ)
log(1+λ/ω)

⌉
. Inserting the definition for ω gives the bound.

Y 2,0
1

Y 1,1
1 Y 1,1

2 Y 1,1
3 · · · Y 1,1

m1,1

Figure 3: Junction tree of depth 2.

Algorithm 5 SmallJunctionTree
Input Parameters θ̃ and h(u), f(u) ∀u ∈ Y 2,0

1 and zi,Σi,µi ∀i = 1, . . . ,m1,1

Initialize z → 0+,µ = 0,Σ = zI

For each configuration u ∈ Y 2,0
1 {

α = h(u)(
∏m1,1

i=1 zi exp(−θ̃⊤µi)) exp(θ̃
⊤(f(u) +

∑m1,1

i=1 µi)) = h(u) exp(θ̃⊤f(u))
∏m1,1

i=1 zi
l = f(u) +

∑m1,1

i=1 µi − µ

Σ+=
∑m1,1

i=1 Σi +
tanh( 1

2 log(α/z))

2 log(α/z) ll⊤

µ+= α
z+α l

z += α }
Output z,µ,Σ

Supplement for Section 5
Proof of correctness for Algorithm 3 Consider a simple junction tree of depth 2 shown on Figure 3.
The notation Y a,b

c refers to the cth tree node located at tree level a (first level is considered as the one
with tree leaves) whose parent is the bth from the higher tree level (the root has no parent so b = 0).
Let

∑
Y

a1,b1
c1

refer to the sum over all configurations of variables in Y a1,b1
c1 and

∑
Y

a1,b1
c1

\Y a2,b2
c2

refers to the sum over all configurations of variables that are in Y a1,b1
c1 but not in Y a2,b2

c2 . Let ma,b

denote the number of children of the bth node located at tree level a + 1. For short-hand, use
ψ(Y ) = h(Y ) exp(θ⊤f(Y )). The partition function can be expressed as:
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Y 3,0
1

Y 2,1
1

Y 1,1
1 Y 1,1

2
· · · Y 1,1

m1,1

Y 2,1
2 · · ·

Y 1,2
1 Y 1,2

2
· · · Y 1,2

m1,2

Y 2,1
m2,1

Y
1,m2,1

1 Y
1,m2,1

2
· · · Y

1,m2,1
m1,m2,1

Figure 4: Junction tree of depth 3.

Z(θ) =
∑

u∈Y 2,0
1

ψ(u)m1,1∏
i=1

 ∑
v∈Y 1,1

i \Y 2,0
1

ψ(v)


≤

∑
u∈Y 2,0

1

[
ψ(u)

m1,1∏
i=1

zi exp(
1

2

(
θ − θ̃)⊤Σi(θ − θ̃) + (θ − θ̃)⊤µi

)]

=
∑

u∈Y 2,0
1

[
h(u) exp(θ⊤f(u))

m1,1∏
i=1

zi exp

(
1

2
(θ − θ̃)⊤Σi(θ − θ̃) + (θ − θ̃)⊤µi

)]

where the upper-bound is obtained by applying Theorem 1 to each of the terms
∑

v∈Y 1,1
i \Y 2,0

1
ψ(v).

By simply rearranging terms we get:

Z(θ) ≤
∑

u∈Y 2,0
1

[
h(u)

(
m1,1∏
i=1

zi exp(−θ̃⊤µi)

)
exp

(
θ⊤

(
f(u) +

m1,1∑
i=1

µi

))

exp

(
1

2
(θ − θ̃)⊤

(
m1,1∑
i=1

Σi

)
(θ − θ̃)

)]
.

One can prove that this expression can be upper-bounded by
z exp

(
1
2 (θ − θ̂)⊤Σ(θ − θ̂) + (θ − θ̂)⊤µ

)
where z, Σ and µ can be computed using Algo-

rithm 5 (a simplification of Algorithm 3). We will call this result Lemma A. The proof is similar to
the proof of Theorem 1 so is not repeated here.

Consider enlarging the tree to a depth 3 as shown on Figure 4. The partition function is now

Z(θ) =
∑

u∈Y 3,0
1

ψ(u)m2,1∏
i=1

 ∑
v∈Y 2,1

i \Y 3,0
1

ψ(v)m1,i∏
j=1

 ∑
w∈Y 1,i

j \Y 2,1
i

ψ(w)




 .

By Lemma A we can upper bound each
∑

v∈Y 2,1
i \Y 3,0

1

(
ψ(v)

∏m1,i

j=1

(∑
w∈Y 1,i

j \Y 2,1
i

ψ(w)
))

term

by the expression zi exp
(

1
2 (θ − θ̂)⊤Σi(θ − θ̂) + (θ − θ̂)⊤µi

)
. This yields

Z(θ) ≤
∑

u∈Y 3,0
1

[
ψ(u)

m2,1∏
i=1

zi exp

(
1

2
(θ − θ̃)⊤Σi(θ − θ̃) + (θ − θ̃)⊤µi

)]
.

This process can be viewed as collapsing the sub-trees S2,1
1 , S2,1

2 , . . ., S2,1
m2,1

to super-nodes that
are represented by bound parameters, zi, Σi and µi, i = {1, 2, · · · ,m2,1}, where the sub-trees are
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defined as:

S2,1
1 = {Y 2,1

1 , Y 1,1
1 , Y 1,1

2 , Y 1,1
3 , . . . , Y 1,1

m1,1
}

S2,1
2 = {Y 2,1

2 , Y 1,2
1 , Y 1,2

2 , Y 1,2
3 , . . . , Y 1,2

m1,2
}

...
S2,1
m2,1

= {Y 2,1
m2,1

, Y
1,m2,1

1 , Y
1,m2,1

2 , Y
1,m2,1

3 , . . . , Y 1,m2,1
m1,m2,1

}.

Notice that the obtained expression can be further upper bounded using again Lemma A (induction)
yielding a bound of the form: z exp

(
1
2 (θ − θ̂)⊤Σ(θ − θ̂) + (θ − θ̂)⊤µ

)
.

Finally, for a general tree, follow the same steps described above, starting from leaves and collapsing
nodes to super-nodes, each represented by bound parameters. This procedure effectively yields
Algorithm 3 for the junction tree under consideration.

Supplement for Section 6
Proof of correctness for Algorithm 4 We begin by proving a lemma that will be useful later.

Lemma 3 For all x ∈ Rd and for all l ∈ Rd,

d∑
i=1

x(i)2l(i)2 ≥

 d∑
i=1

x(i)
l(i)2√∑d
j=1 l(j)

2

2

.

Proof of Lemma 3 By Jensen’s inequality,

d∑
i=1

x(i)2
l(i)2∑d
j=1 l(j)

2
≥

(
d∑

i=1

x(i)l(i)2∑d
j=1 l(j)

2

)2

⇐⇒
d∑

i=1

x(i)2l(i)2 ≥

 d∑
i=1

x(i)l(i)2√∑d
j=1 l(j)

2

2

.

Now we prove the correctness of Algorithm 4. At the ith iteration, the algorithm stores Σi using
a low-rank representation V⊤

i SiVi + Di where Vi ∈ Rk×d is orthonormal, Si ∈ Rk×k positive
semi-definite and Di ∈ Rd×d is non-negative diagonal. The diagonal terms D are initialized to tλI
where λ is the regularization term. To mimic Algorithm 1 we must increment the Σ matrix by a
rank one update of the form Σi = Σi−1 + rir

⊤
i . By projecting ri onto each eigenvector in V, we

can decompose it as ri =
∑k

j=1 Vi−1(j, ·)riVi−1(j, ·)⊤ + g = V⊤
i−1Vi−1ri + g where g is the

remaining residue. Thus the update rule can be rewritten as:

Σi = Σi−1 + rir
⊤
i = V⊤

i−1Si−1Vi−1 +Di−1 + (V⊤
i−1Vi−1ri + g)(V⊤

i−1Vi−1ri + g)⊤

= V⊤
i−1(Si−1 +Vi−1rir

⊤
i V

⊤
i−1)Vi−1 +Di−1 + gg⊤ = V

′⊤
i−1S

′

i−1V
′

i−1 + gg⊤ +Di−1

where we define V
′

i−1 = Qi−1Vi−1 and defined Qi−1 in terms of the singular value decomposition,
Q⊤

i−1S
′

i−1Qi−1 = svd(Si−1 + Vi−1rir
⊤
i V

⊤
i−1). Note that S

′

i−1 is diagonal and nonnegative by
construction. The current formula for Σi shows that we have a rank (k + 1) system (plus diagonal
term) which needs to be converted back to a rank k system (plus diagonal term) which we denote by
Σ

′

i. We have two options as follows.
Case 1) Remove g from Σi to obtain

Σ
′

i = V
′⊤
i−1S

′

i−1V
′

i−1 +Di−1 = Σi − gg⊤ = Σi − cvv⊤

where c = ∥g∥2 and v = 1
∥g∥g.

Case 2) Remove the mth (smallest) eigenvalue in S′
i−1 and its corresponding eigenvector:

Σ
′

i = V
′⊤
i−1S

′

i−1V
′

i−1 +Di−1 + gg⊤ − S
′
(m,m)V

′
(m, ·)⊤V

′
(m, ·) = Σi − cvv⊤

where c = S
′
(m,m) and v = V(m, ·)′ .
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Clearly, both cases can be written as an update of the form Σ
′

i = Σi + cvv⊤ where c ≥ 0 and
v⊤v = 1. We choose the case with smaller c value to minimize the change as we drop from a system
of order (k+1) to order k. Discarding the smallest singular value and its corresponding eigenvector
would violate the bound. Instead, consider absorbing this term into the diagonal component to
preserve the bound. Formally, we look for a diagonal matrix F such that Σ

′′

i = Σ
′

i + F which also
maintains x⊤Σ

′′

i x ≥ x⊤Σix for all x ∈ Rd. Thus, we want to satisfy:

x⊤Σ
′′

i x ≥ x⊤Σix ⇐⇒ x⊤cvv⊤x ≤ x⊤Fx ⇐⇒ c

(
d∑

i=1

x(i)v(i)

)2

≤
d∑

i=1

x(i)2F(i)

where, for ease of notation, we take F(i) = F(i, i).

Define v
′
= 1

wv where w = v⊤1. Consider the case where v ≥ 0 though we will soon get rid of

this assumption. We need an F such that
∑d

i=1 x(i)
2F(i) ≥ c

(∑d
i=1 x(i)v(i)

)2
. Equivalently, we

need
∑d

i=1 x(i)
2F(i)
cw2 ≥

(∑d
i=1 x(i)v(i)

′
)2

. Define F(i)
′
= F(i)

cw2 for all i = 1, . . . , d. So, we need

an F
′

such that
∑d

i=1 x(i)
2F(i)

′ ≥
(∑d

i=1 x(i)v(i)
′
)2

. Using Lemma 3 it is easy to show that we

may choose F
′
(i) = v(i)

′
. Thus, we obtain F(i) = cw2F(i)

′
= cwv(i). Therefore, for all x ∈ Rd,

all v ≥ 0, and for F(i) = cv(i)
∑d

j=1 v(j) we have

d∑
i=1

x(i)2F(i) ≥ c

(
d∑

i=1

x(i)v(i)

)2

. (3)

To generalize the inequality to hold for all vectors v ∈ Rd with potentially negative entries, it is
sufficient to set F(i) = c|v(i)|

∑d
j=1 |v(j)|. To verify this, consider flipping the sign of any v(i).

The left side of the Inequality 3 does not change. For the right side of this inequality, flipping the
sign of v(i) is equivalent to flipping the sign of x(i) and not changing the sign of v(i). However, in
this case the inequality holds as shown before (it holds for any x ∈ Rd). Thus for all x,v ∈ Rd and
for F(i) = c|v(i)|

∑d
j=1 |v(j)|, Inequality 3 holds.

Supplement for Section 7
Small scale experiments In additional small-scale experiments, we compared Algorithm 2 with
steepest descent (SD), conjugate gradient (CG), BFGS and Newton-Raphson. Small-scale problems
may be interesting in real-time learning settings, for example, when a website has to learn from a
user’s uploaded labeled data in a split second to perform real-time retrieval. We considered logistic
regression on five UCI data sets where missing values were handled via mean-imputation. A range of
regularization settings λ ∈ {100, 102, 104}was explored and all algorithms were initialized from the
same ten random start-points. Table 3 shows the average number of seconds each algorithm needed
to achieve the same solution that BFGS converged to (all algorithms achieve the same solution due
to concavity). The bound is the fastest algorithm as indicated in bold.

data|λ a|100 a|102 a|104 b|100 b|102 b|104 c|100 c|102 c|104 d|100 d|102 d|104 e|100 e|102 e|104

BFGS 1.90 0.89 2.45 3.14 2.00 1.60 4.09 1.03 1.90 5.62 2.88 3.28 2.63 2.01 1.49
SD 1.74 0.92 1.60 2.18 6.17 5.83 1.92 0.64 0.56 12.04 1.27 1.94 2.68 2.49 1.54
CG 0.78 0.83 0.85 0.70 0.67 0.83 0.65 0.64 0.72 1.36 1.21 1.23 0.48 0.55 0.43

Newton 0.31 0.25 0.22 0.43 0.37 0.35 0.39 0.34 0.32 0.92 0.63 0.60 0.35 0.26 0.20
Bound 0.01 0.01 0.01 0.07 0.04 0.04 0.07 0.02 0.02 0.16 0.09 0.07 0.03 0.03 0.03

Table 3: Convergence time in seconds under various regularization levels for a) Bupa (t =
345, dim = 7), b) Wine (t = 178, dim = 14), c) Heart (t = 187, dim = 23), d) Ion
(t = 351, dim = 34), and e) Hepatitis (t = 155, dim = 20) data sets.

Influence of rank k on bound performance in large scale experiments We also examined the
influence of k on bound performance and compared it with LBFGS, SD and CG. Several choices

16



of k were explored. Table 4 shows results for the SRBCT data-set. In general, the bound performs
best but slows down for superfluously large values of k. Steepest descent and conjugate gradient
are slow yet obviously do not vary with k. Note that each iteration takes less time with smaller k
for the bound. However, we are reporting overall runtime which is also a function of the number of
iterations. Therefore, total runtime (a function of both) may not always decrease/increase with k.

k 1 2 4 8 16 32 64
LBFGS 1.37 1.32 1.39 1.35 1.46 1.40 1.54

SD 8.80 8.80 8.80 8.80 8.80 8.80 8.80
CG 4.39 4.39 4.39 4.39 4.39 4.39 4.39

Bound 0.56 0.56 0.67 0.96 1.34 2.11 4.57

Table 4: Convergence time in seconds as a function of k.

Additional latent-likelihood results For completeness, Figure 5 depicts two additional data-sets
to complement Figure 2. Similarly, Table 5 shows all experimental settings explored in order to
provide the summary Table 2 in the main article.
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Figure 5: Convergence of test latent log-likelihood for bupa and wine data-sets.

Data-set ion bupa hepatitis
Algorithm m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

BFGS -4.96 -5.55 -5.88 -5.79 -22.07 -21.78 -21.92 -21.87 -4.42 -5.28 -4.95 -4.93
SD -11.80 -9.92 -5.56 -8.59 -21.76 -21.74 -21.73 -21.83 -4.93 -5.14 -5.01 -5.20
CG -5.47 -5.81 -5.57 -5.22 -21.81 -21.81 -21.81 -21.81 -4.84 -4.84 -4.84 -4.84

Newton -5.95 -5.95 -5.95 -5.95 -21.85 -21.85 -21.85 -21.85 -5.50 -5.50 -5.50 -4.50
Bound -6.08 -4.84 -4.18 -5.17 -21.85 -19.95 -20.01 -19.97 -5.47 -4.40 -4.75 -4.92

Data-set wine SRBCT
Algorithm m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

BFGS -0.90 -0.91 -1.79 -1.35 -5.99 -6.17 -6.09 -6.06
SD -1.61 -1.60 -1.37 -1.63 -5.61 -5.62 -5.62 -5.61
CG -0.51 -0.78 -0.95 -0.51 -5.62 -5.49 -5.36 -5.76

Newton -0.71 -0.71 -0.71 -0.71 -5.54 -5.54 -5.54 -5.54
Bound -0.51 -0.51 -0.48 -0.51 -5.31 -5.31 -4.90 -0.11

Table 5: Test latent log-likelihood at convergence for different values of m ∈ {1, 2, 3, 4} on ion,
bupa, hepatitis, wine and SRBCT data-sets.
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