
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

This document contains derivations and other supplemental information for the NIPS 2012 submis-
sion, “Variational Inference for Crowdsourcing”.

A Derivation of the Belief Propagation Algorithm

A.1 Sum-product Belief Propagation

We derive the belief propagation algorithm (15) in Theorem 3.1.

Theorem 3.1.

Let x̂i = log
bi(+1)

bi(−1)
, xi→j = log

mi→j(+1)

mi→j(−1)
, and yj→i = Lij log

mj→i(+1)

mi→j(−1)
.

Then, sum-product BP (5)-(7) can be expressed as

xt+1
i→j =

∑
j′∈Mi\j

Lijy
t
j′→i, yt+1

j→i = log

∑γj−1
k=0 ψ(k + 1, γj)e

t+1
k∑γj−1

k=0 ψ(k, γj)e
t+1
k

, (1)

and x̂t+1
i =

∑
j∈Mi

Lijy
t+1
i→j , where the terms ek for k = 0, . . . , Nj − 1, are the

elementary symmetric polynomials in variables {exp(Li′jxi′→j)}i′∈Nj\i , that is, ek =∑
s : |s|=k

∏
i′∈s exp(Li′jxi′→j). In the end, the true labels are decoded as ẑti = sign[x̂ti].

Proof. First, by update (5), we have

xt+1
i→j = log

mt
j→i(+1)

mt
j→i(−1)

= log

∏
j′→Mi\j

mt
j→i(+1)∏

j′→Mi\j
mt
j→i(−1)

=
∑

j′∈Mi\j

Lijy
t
i→j′ .

Similar derivation applies to update (7). We just need to consider the update (6) in the following.

For a given z, we defineN+
j\i[z] = {i

′ ∈ Nj\i : zi′ = Li′j}. LetAk := {zNj\i : |N
+
j\i[z]| = k}. By

update (6) we have,

mt+1
j→i(+Lij) =

∑
zNj\i

ψj(zNj)
∏

i′∈Nj\i

mt+1
i′→j(z

′
i) (2)

=

γj−1∑
k=0

ψj(k + 1, γj)
∑
z∈Ak

∏
i′∈Nj\i

mt+1
i′→j(z

′
i) (3)

= C

γj−1∑
k=0

ψj(k + 1, γj)
∑
z∈Ak

∏
i′∈Nj\i

mt+1
i′→j(z

′
i)

mt+1
i′→j(−Li′j)

(4)

= C

γj−1∑
k=0

ψj(k + 1, γj)
∑
z∈Ak

∏
i′∈N+

j\i[z]

mt+1
i′→j(Li′j)

mt+1
i′→j(−Li′j)

(5)

= C

γj−1∑
k=0

ψj(k + 1, γj)
∑
z∈Ak

∏
i′∈N+

j\i[z]

exp(xt+1
i′→j) (6)

= C

γj−1∑
k=0

ψj(k + 1, γj)ek, (7)

where C is a constant, C = (
∏
i′∈Nj\i m

t+1
i′→j(−Li′j)). Similarily, one can show that

mt+1
j→i(−Lij) = C

γj−1∑
k=0

ψj(k, γj)ek. (8)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Therefore, we have

yt+1
j→i = log

mt+1
j→i(+Lij)

mt+1
j→i(−Lij)

= log

∑γj−1
k=0 ψj(k + 1, γj)ek∑γj−1
k=0 ψj(k, γj)ek

.

The proof is completed.

It remains a problem to calculate the elementary symmetric polynomials ek. Here we present a
divide and conquer algorithm with a running time of O(γj(log γj)

2). Note that ek is the k-th coef-
ficient of polynomial

∏γj−1
i=0 (x + exi), where exi = exp(xi→j). We divide the polynomial into a

product of two polynomials,

γj−1∏
i=0

(x+ exi) =
{ d γj2 e∏
i=0

(x+ exi)
}
·
{ γj−1∏
i=d

γj
2 e

(x+ exi)
}
.

Since the merging step requires a polynomial multiplication, which is solved by fast Fourier trans-
formation with O(γj log γj), by the master theorem, we get a total cost of O(γj(log γj)

2).

A more straightforward algorithm can be derived via dynamic programming, but with a higher cost
of O(γ2j). Let e(k, n) be the k-th symmetric polynomial of the first n numbers of {xei}i′∈Nj\i ; one
can calculate ek through the recursive formula e(k, n) = e(k, n− 1)exn + e(k, n).

A.2 Max-product Belief Propagation

Similarly to the sum-product BP that we focus on in the main text, one can derive an effi-
cient max-product belief propagation to find the joint maximum a posterior configuration, ẑ =
argmaxz p(z|L, θ), which minimizes the block-wise error rate prob[∃i : zi 6= ẑi] instead of the bit-
wise error rate 1

N

∑
i∈[N] prob[zi 6= ẑi]. The max-product belief propagation update, in its general

form, is

From tasks to workers: mt+1
i→j(zi) ∝

∏
j′∈Mi/j

mt
j′→i(zi), (9)

From workers to taskers: mt+1
j→i(zi) ∝ max

zNj/i

{
ψj(zNj)

∏
i′∈Nj

mt+1
i′→j(zi′)

}
, (10)

Calculating the beliefs: bt+1
i (zi) ∝

∏
j∈Mi

mt+1
j→i(zi). (11)

Similarly to Theorem 3.1, max-product BP can be performed efficiently by exploiting the special
structure of the high order potential ψ(zNj).

Theorem A.1.

Let x̂i = log
bi(+1)

bi(−1)
, xi→j = log

mi→j(+1)

mi→j(−1)
, and yj→i = Lij log

mj→i(+1)

mi→j(−1)
.

Then max-product BP (9)-(11) can be rewritten as

xt+1
i→j =

∑
j′∈Mi\j

Lijy
t
i→j′ , yt+1

j→i = log
max0≤k≤γj−1{ψj(k + 1, γj)v

t+1
k }

max0≤k≤γj−1{ψj(k, γj)vt+1
k }

, (12)

and x̂t+1
i =

∑
j∈Mi

Lijy
t+1
i→j , where vk = exp(

∑k
n=0 x[n]) and x[n] is the n-th largest number in

{Li′jxi′→j}i′∈Nj\i . In the end, the true labels are decoded as ẑti = sign[x̂ti].

The main cost of (12) is for sorting {Li′jxi′→j}i′∈Nj\i , requiring a running time of O(γj log γj);
this is slightly faster than sum-product BP, which requires O(γj(log γj)

2). See Tarlow et al. [2010]
for a similar derivation and more general treatment of structured high-order potentials.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

B Extensions of Belief Propagation

Compared to KOS, our BP algorithm is derived using a principled Bayesian paradigm, and hence
can be easily extended to more general models and cases beyond the assumptions made in the paper.
In this section, we show in detail how to extend the BP algorithm to work on the two-coin worker-
error model, to estimate the hyperparameters of the algorithmic priors, and to incorporate additional
task features and other side information.

B.1 Extending to the Two-Coin Model

In the paper, we initially assumed that the sensitivities equals the specificities, i.e., qj = sj = tj .
Here we extend the BP algorithm to the more general case when sj and tj are defined separately.
Assume sj and tj independently follow two beta priors, i.e., p(sj |θ) ∝ sαs−1j (1 − sj)

βs−1 and
p(tj |θ) ∝ tαt−1j (1− tj)βt−1. The ψj(zNj) defined in (4) becomes

ψj(zNj) =

∫
p(sj |θ)p(tj |θ)

∏
i∈Nj

p(Lij |sj , tj)dsjdtj = B(c11+αs, c21+βs)B(c22+αt, c12+βt),

where c11 =
∑
i∈Nj I[Lij = 1, zi = 1], c21 =

∑
i∈Nj I[Lij = −1, zi = 1], c22 =

∑
i∈Nj I[Lij =

−1, zi = −1], c12 =
∑
i∈Nj I[Lij = 1, zi = −1]. In addition, let γ+j =

∑
i∈Nj I[Lij = 1] and

γ−j =
∑
i∈Nj I[Lij = −1]. Note that c21 = γ−j − c11, c12 = γ+j − c22, we have

ψj(zNj) = B(c11 + αs, γ
−
j − c22 + βs)B(c22 + αt, γ

+
j − c11 + βt)

def
= ψj(c11, c22),

where we rewrite ψj(zNj) as ψ(c11, c22) (with a slight abuse of notation), because ψj(zNj) depends
on zNj only through c11 and c22, the true positive and true negative counts. Similar to Theorem 3.1,
one can show that belief propagation (6) can be reduced to

yj→i =



log[

γ+
j\i∑

k1=0

γ−
j\i∑

k2=0

ψ(k1 + 1, k2)e
+
k1
e−k2]− log[

γ+
j/i∑

k1=0

γ−
j/i∑

k2=0

ψ(k1, k2)e
+
k1
e−k2], if Lij = +1

log[

γ+
j\i∑

k1=0

γ−
j\i∑

k2=0

ψ(k1, k2 + 1)e+k1e
−
k2
]− log[

γ+
j/i∑

k1=0

γ−
j/i∑

k2=0

ψ(k1, k2)e
+
k1
e−k2], if Lij = −1

where γ+j/i =
∑
i′∈Nj\i I[Li′j = 1] and γ−j/i =

∑
i′∈Nj\i I[Li′j = −1]; and {e+k } and {e−k } are the

symmetric polynomials of the {exp(Li′jxi′→j) : i′ ∈ Nj\i, Li′j = 1} and {exp(Li′jxi′→j) : i′ ∈
Nj\i, Li′j = −1}, respectively. Each step of the above update requires a running time ofO(γ−j γ

+
j +

γ+j (log γ
+)2 + γ−j (log γ

−)2). The update for xi→j and the decoding step remain the same as in
Theroem 3.1.

B.2 Learning the hyper-parameters via EM

The optimal choice of the algorithmic prior p(qj |θ) in BP (15) should match the true data prior.
One can adopt an empirical Bayesian approach to estimate the hyper-parameters θ from the data.
Here we present an EM algorithm for estimating the hyper-parameters θ, that alternates between
performing the belief propagation (15) (E-step) and adjusting the parameters via maximizing the
expected marginal likelihood (M-step).

The EM algorithm, in its general form, is

E-step: Q(θ|θold) = Ez[log p(z|L, θ)|θold], M-step: θnew = argmax
θ

Q(θ|θold).

The E-step in our case is performed by running the belief propagation algorithm. First, we approx-
imate the posterior distribution p(zNj |L, θold) with belief boldj (zNj) on the factor nodes, defined
by

boldj (zNj) ∝ ψ(zNj)
∏
i∈Nj

mold
i→j(zi),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where mold
i→j are the messages of belief propagation when θ = θold. The E-step becomes

Q(θ|θt) = Ez[log p(z|L, θ)|θt] =
∑
j

∑
zNj

boldj (zNj) logψj(zNj |L, θ). (13)

Similar to Theorem 3.1, one can calculate (13) in terms of the elementary symmetric polynomials
ek; one can show that

Q(θ|θt) =
∑
j

γj∑
k=0

ỹoldk logψj(k, γj |L, θ), (14)

where ỹoldk = ψj(k, γj |L, θold)eoldk , where eoldk are the elementary symmetric polynomials of
{exp(Lijxoldi→j) : i ∈ Nj}.
The M-step in our case can be efficiently solved using standard numerical methods. For example,
when the algorithmic priors of qj is Beta(α, β) where θ = [α, β], one can show that Q(θ|θold)
equals (up to a constant) the log-likelihood of Beta-binomial distribution, and can be efficiently
maximized using standard numerical methods.

The E-step above takes a soft combination of the posterior evidence. An alternative is to use hard-
EM, which replaces the E-step with

E-step (hard-EM): Q(θ|θold) = log p(ẑold|L, θ),
where ẑold are the estimated labels via belief propagation on θ = θold. The hard-EM form is very
intuitive; it iteratively estimates the labels with belief propagation, and fits the hyper-parameters
imputed with the labels found by the last estimation.

Note that this form of EM (in the outer loop) for estimating the hyper-parameters is different from
EM (in the inner loop) of Dawid and Skene [1979], Smyth et al. [1995], Raykar et al. [2010], which
maximizes qj with fixed hyper-parameter θ; it is closer to the SpEM of Raykar and Yu [2012],
which also estimates a hyper-parameter with qj marginalized, but uses a different EM and Laplacian
approximation in the inner loop.

B.3 Incorporating Task Features

In some cases the tasks are associated with known features that provide additional information about
the true labels, and the problem is formulated as a supervised learning task with crowdsourced
(redundant but noisy) labels [Raykar et al., 2010]. Our method can be easily extended to these cases
by representing the task features as singleton potentials on the variables nodes in the factor graph,
that is, the posterior distribution (4) is modified to

p(z|F,L, θ, ω) =
∏
i

p(zi|fi;ω)
∏
j

ψ(zNj),

where F = {fj : j ∈ [N]} are the features of the tasks, and ω are the regression coefficients. Our
belief propagation works here with only minor modification. The regression coefficient ω, together
with the hyper-parameter θ, can be estimated using the EM algorithm we discussed above.

B.4 Incorporating Partially Known Ground Truth

In case the ground truth labels of some tasks are known, these labels can help the prediction of the
other tasks via a “wave effect”, propagating information about the reliabilities of their associated
workers. Our algorithm can also be easily extended to this case.

Specifically, assume the ground truth labels of a subset of tasks G ∈ [N] are known, e.g., zG = z0G.
Let α̂j be the number of tasks in G that worker j labels correctly. To predict the remaining labels,
one can simply modify the BP algorithm (15) into

xt+1
i→j =

∑
j′∈Mi\j

Lijy
t
i→j′ , yj→i = log

∑γj−1
k=0 ψj(k + α̂j + 1, γj)ek∑γj−1
k=0 ψj(k + α̂j , γj)ek

, (15)

where the messages are passed only between the workers and the tasks with unknown labels. In-
tuitively, the known ground truth provides scores (in term of α̂j) of the workers who have labeled
them, which are used as “prior” information for predicting the remaining labels.

4

	Derivation of the Belief Propagation Algorithm
	Sum-product Belief Propagation
	Max-product Belief Propagation

	Extensions of Belief Propagation
	Extending to the Two-Coin Model
	Learning the hyper-parameters via EM
	Incorporating Task Features
	Incorporating Partially Known Ground Truth

