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Abstract

Finding maximum a posteriori (MAP) assignments in graphical models is an im-
portant task in many applications. Since the problem is generally hard, linear pro-
gramming (LP) relaxations are often used. Solving these relaxations efficiently
is thus an important practical problem. In recent years, several authors have pro-
posed message passing updates corresponding to coordinate descent in the dual
LP. However, these are generally not guaranteed to converge to a global optimum.
One approach to remedy this is to smooth the LP, and perform coordinate descent
on the smoothed dual. However, little is known about the convergence rate of this
procedure. Here we perform a thorough rate analysis of such schemes and derive
primal and dual convergence rates. We also provide a simple dual to primal map-
ping that yields feasible primal solutions with a guaranteed rate of convergence.
Empirical evaluation supports our theoretical claims and shows that the method is
highly competitive with state of the art approaches that yield global optima.

1 Introduction

Many applications involve simultaneous prediction of multiple variables. For example, we may seek
to label pixels in an image, infer amino acid residues in protein design, or find the semantic role of
words in a sentence. These problems can be cast as maximizing a function over a set of labels (or
minimizing an energy function). The function typically decomposes into a sum of local functions
over overlapping subsets of variables.

Such maximization problems are nevertheless typically hard. Even for simple decompositions (e.g.,
subsets correspond to pairs of variables), maximizing over the set of labels is often provably NP-
hard. One approach would be to reduce the problem to a tractable one, e.g., by constraining the
model to a low tree-width graph. However, empirically, using more complex interactions together
with approximate inference methods is often advantageous. One popular family of approximate
methods is the linear programming (LP) relaxation approach. Although these LPs are generally
tractable, general purpose LP solvers typically do not exploit the problem structure [28]. Therefore
a great deal of effort has gone into designing solvers that are specifically tailored to typical MAP-
LP relaxations. These include, for example, cut based algorithms [2], accelerated gradient methods
[8], and augmented Lagrangian methods [10, 12]. One class of particularly simple algorithms,
which we will focus on here, are coordinate minimization based approaches. Examples include
max-sum-diffusion [25], MPLP [5] and TRW-S [9]. These work by first taking the dual of the LP
and then optimizing the dual in a block coordinate fashion [21]. In many cases, the coordinate
block operations can be performed in closed form, resulting in updates quite similar to the max-
product message passing algorithm. By coordinate minimization we mean that at each step a set
of coordinates is chosen, all other coordinates are fixed, and the chosen coordinates are set to their
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optimal value given the rest. This is different from a coordinate descent strategy where instead a
gradient step is performed on the chosen coordinates (rather than full optimization).

A main caveat of the coordinate minimization approach is that it will not necessarily find the global
optimum of the LP (although in practice it often does). This is a direct result of the LP objective
not being strictly convex. Several authors have proposed to smooth the LP with entropy terms
and employ variants of coordinate minimization [7, 26]. However, the convergence rates of these
methods have not been analyzed. Moreover, since the algorithms work in the dual, there is no
simple procedure to map the result back into primal feasible variables. We seek to address all these
shortcomings: we present a convergence rate analysis of dual coordinate minimization algorithms,
provide a simple scheme for generating primal variables from dual ones, and analyze the resulting
primal convergence rates.

Convergence rates for coordinate minimization are not common in the literature. While asymptotic
convergence is relatively well understood [22], finite rates have been harder to obtain. Recent work
[17] provides rates for rather limited settings which do not hold in our case. On the other hand,
for coordinate descent methods, some rates have been recently obtained for greedy and stochastic
update schemes [16, 20]. These do not apply directly to the full coordinate minimization case which
we study. A related analysis of MAP-LP using smoothing appeared in [3]. However, their approach
is specific to LDPC codes, and does not apply to general MAP problems as we analyze here.

2 MAP and LP relaxations

Consider a set of n discrete variables x1, . . . , xn, and a setC of subsets of these variables (i.e., c ∈ C
is a subset of {1, . . . , n}). We consider maximization problems over functions that decompose
according to these subsets. In particular, each subset c is associated with a local function or factor
θc(xc) and we also include factors θi(xi) for each individual variable.1 The MAP problem is to find
an assignment x = (x1, . . . , xn) to all the variables which maximizes the sum of these factors:

MAP(θ) = max
x

∑
c∈C

θc(xc) +

n∑
i=1

θi(xi) (1)

Linear programming relaxations are a popular approach to approximating combinatorial optimiza-
tion problems [6, 23, 25]. For example, we obtain a relaxation of the discrete optimization problem
given in Eq. (1) by replacing it with the following linear program:2

PMAP : max
µ∈ML

P (µ) = max
µ∈ML

{∑
c

∑
xc

θc(xc)µc(xc) +
∑
i

∑
xi

θi(xi)µi(xi)

}
= max
µ∈ML

µ · θ (2)

where P (µ) is the primal (linear) objective and the local marginal polytope ML enforces basic
consistency constraints on the marginals {µi(xi),∀xi} and {µc(xc),∀xc}. Specifically,

ML =

{
µ ≥ 0 :

∑
xc\i

µc(xc) = µi(xi) ∀c, i ∈ c, xi∑
xi
µi(xi) = 1 ∀i

}
(3)

If the maximizer of PMAP has only integral values (i.e., 0 or 1) it can be used to find the MAP
assignment (e.g., by taking the xi that maximizes µi(xi)). However, in the general case the solution
may be fractional [24] and the maximum of PMAP is an upper bound on MAP(θ).

2.1 Smoothing the LP

As mentioned earlier, several authors have considered a smoothed version of the LP in Eq. (2).
As we shall see, this offers several advantages over solving the LP directly. Given a smoothing
parameter τ > 0, we consider the following smoothed primal problem:

PMAPτ : max
µ∈ML

Pτ (µ) = max
µ∈ML

{
µ · θ +

1

τ

∑
c

H(µc) +
1

τ

∑
i

H(µi)

}
(4)

1Although singleton factors are not needed for generality, we keep them for notational convenience.
2We use µ and θ to denote vectors consisting of all µ and θ values respectively.
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where H(µc) and H(µi) are local entropy terms. Note that as τ →∞ we obtain the original primal
problem. In fact, a stronger result can be shown. Namely, that the optimal value of PMAP is O( 1

τ )
close to the optimal value of PMAPτ . This justifies using the smoothed objective Pτ as a proxy to
P in Eq. (2). We express this in the following lemma (which appears in similar forms in [7, 15]).
Lemma 2.1. Denote by µ∗ the optimum of problem PMAP in Eq. (2) and by µ̂∗ the optimum of
problem PMAPτ in Eq. (4). Then:

µ̂∗ · θ ≤ µ∗ · θ ≤ µ̂∗ · θ +
Hmax

τ
(5)

whereHmax =
∑
c log |xc|+

∑
i log |xi|. In other words, the smoothed optimum is anO( 1

τ )-optimal
solution of the original non-smoothed problem.

We shall be particularly interested in the dual of PMAPτ since it facilitates simple coordinate
minimization updates. Our dual variables will be denoted by δci(xi), which can be interpreted as
the messages from subset c to node i about the value of variable xi. The dual variables are therefore
indexed by (c, i, xi) and written as δci(xi). The dual objective can be shown to be:

F (δ) =
∑
c

1

τ
log
∑
xc

exp

(
τθc(xc)− τ

∑
i:i∈c

δci(xi)

)
+
∑
i

1

τ
log
∑
xi

exp

(
τθi(xi) + τ

∑
c:i∈c

δci(xi)

)
(6)

The dual problem is an unconstrained smooth minimization problem:
DMAPτ : min

δ
F (δ) (7)

Convex duality implies that the optima of DMAPτ and PMAPτ coincide.

Finally, we shall be interested in transformations between dual variables δ and primal variables µ
(see Section 5). The following are the transformations obtained from the Lagrangian derivation (i.e.,
they can be used to switch from optimal dual variables to optimal primal variables).

µc(xc; δ) ∝ exp

(
τθc(xc)− τ

∑
i:i∈c

δci(xi)

)
, µi(xi; δ) ∝ exp

(
τθi(xi) + τ

∑
c:i∈c

δci(xi)

)
(8)

We denote the vector of all such marginals by µ(δ). For the dual variables δ that minimize F (δ)
it holds that µ(δ) are feasible (i.e., µ(δ) ∈ ML). However, we will also consider µ(δ) for non
optimal δ, and show how to obtain primal feasible approximations from µ(δ). These will be helpful
in obtaining primal convergence rates.

It is easy to see that: (∇F (δt))c,i,xi
= µi(xi; δ

t)− µc(xi; δt), where (with some abuse of notation)
we denote: µc(xi) =

∑
xc\i

µc(xc\i, xi). The elements of the gradient thus correspond to inconsis-
tency between the marginals µ(δt) (i.e., the degree to which they violate the constraints in Eq. (3)).
We shall make repeated use of this fact to link primal and dual variables.

3 Coordinate Minimization Algorithms

In this section we propose several coordinate minimization procedures for solving DMAPτ (Eq.
(7)). We first set some notation to define block coordinate minimization algorithms. Denote the
objective we want to minimize by F (δ) where δ corresponds to a set of N variables. Now define
S = {S1, . . . , SM} as a set of subsets, where each subset Si ⊆ {1, . . . , N} describes a coordinate
block. We will assume that Si ∩ Sj = ∅ for all i, j and that ∪iSi = {1, . . . , N}.

Block coordinate minimization algorithms work as follows: at each iteration, first set δt+1 = δt.
Next choose a block Si and set:

δt+1
Si

= arg min
δSi

Fi(δSi
; δt) (9)

where we use Fi(δSi
; δt) to denote the function F restricted to the variables δSi

and where all other
variables are set to their value in δt. In other words, at each iteration we fully optimize only over the
variables δSi

while fixing all other variables. We assume that the minimization step in Eq. (9) can
be solved in closed form, which is indeed the case for the updates we consider.

Regarding the choice of an update schedule, several options are available:
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• Cyclic: Decide on a fixed order (e.g., S1, . . . , SM ) and cycle through it.
• Stochastic: Draw an index i uniformly at random3 at each iteration and use the block Si.
• Greedy: Denote by ∇Si

F (δt) the gradient ∇F (δt) evaluated at coordinates Si only. The
greedy scheme is to choose Si that maximizes ‖∇Si

F (δt)‖∞. In other words, choose the
set of coordinates that correspond to maximum gradient of the function F . Intuitively this
corresponds to choosing the block that promises the maximal (local) decrease in objective.
Note that to find the best coordinate we presumably must process all sets Si to find the best
one. We will show later that this can be done rather efficiently in our case.

In our analysis, we shall focus on the Stochastic and Greedy cases, and analyze their rate of con-
vergence. The cyclic case is typically hard to analyze, with results only under multiple conditions
which do not hold here (e.g., see [17]).

Another consideration when designing coordinate minimization algorithms is the choice of block
size. One possible choice is all variables δci(·) (for a specific pair ci). This is the block chosen in the
max-sum-diffusion (MSD) algorithm (see [25] and [26] for non-smooth and smooth MSD). A larger
block that also facilitates closed form updates is the set of variables δ·i(·). Namely, all messages
into a variable i from c such that i ∈ c. We call this a star update. The update is used in [13] for the
non-smoothed dual (but the possibility of applying it to the smoothed version is mentioned).

For simplicity, we focus here only on the star update, but the derivation is similar for other choices.
To derive the star update around variable i, one needs to fix all variables except δ·i(·) and then set
the latter to minimize F (δ). Since F (δ) is differentiable this is pretty straightforward. The update
turns out to be:4

δt+1
ci (xi) = δtci(xi) +

1

τ
logµtc(xi)−

1

Ni + 1
· 1

τ
log

(
µti(xi) ·

∏
c′:i∈c′

µtc′(xi)

)
(10)

where Ni = |{c : i ∈ c}|. It is interesting to consider the improvement in F (δ) as a result of the
star update. It can be shown to be exactly:

F (δt)− F (δt+1) = −1

τ
log

∑
xi

(
µti(xi) ·

∏
c:i∈c

µtc(xi)

) 1
Ni+1

Ni+1

The RHS is known as Matusita’s divergence measure [11], and is a generalization of the Bhat-
tacharyya divergence to several distributions. Thus the improvement can be easily computed be-
fore actually applying the update and is directly related to how consistent the Ni + 1 distributions
µtc(xi), µ

t
i(xi) are. Recall that at the optimum they all agree as µ ∈ ML, and thus the expected

improvement is zero.

4 Dual Convergence Rate Analysis

We begin with the convergence rates of the dual F using greedy and random schemes described in
Section 3. In Section 5 we subsequently show how to obtain a primal feasible solution and how
the dual rates give rise to primal rates. Our analysis builds on the fact that we can lower bound the
improvement at each step, as a function of some norm of the block gradient.

4.1 Greedy block minimization

Theorem 4.1. Define B1 to be a constant such that ‖δt − δ∗‖1 ≤ B1 for all t. If coordinate
minimization of each block Si satisfies:

F (δt)− F (δt+1) ≥ 1

k
‖∇Si

F (δt)‖2∞ (11)

for all t, then for any ε > 0 after T =
kB2

1

ε iterations of the greedy algorithm, F (δT )− F (δ∗) ≤ ε.
3Non uniform schedules are also possible. We consider the uniform for simplicity.
4The update is presented here in additive form, there is an equivalent absolute form [21].
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Proof. Using Hölder’s inequality we obtain the bound:

F (δt)− F (δ∗) ≤ ∇F (δt)>(δt − δ∗) ≤ ‖∇F (δt)‖∞ · ‖δt − δ∗‖1
(12)

Implying: ‖∇F (δt)‖∞ ≥ 1
B1

(F (δt)− F (δ∗)). Now, using the condition on the improvement and
the greedy nature of the update, we obtain a bound on the improvement:

F (δt)− F (δt+1) ≥ 1

k
‖∇Si

F (δt)‖2∞ =
1

k
‖∇F (δt)‖2∞

≥ 1

kB2
1

(
F (δt)− F (δ∗)

)2 ≥ 1

kB2
1

(
F (δt)− F (δ∗)

) (
F (δt+1)− F (δ∗)

)
Hence,

1

kB2
1

≤
F (δt)− F (δ∗)−

(
F (δt+1)− F (δ∗)

)
(F (δt)− F (δ∗)) (F (δt+1)− F (δ∗))

=
1

F (δt+1)− F (δ∗)
− 1

F (δt)− F (δ∗)
(13)

Summing over t we obtain:
T

kB2
1

≤ 1

F (δT )− F (δ∗)
− 1

F (δ0)− F (δ∗)
≤ 1

F (δT )− F (δ∗)
(14)

and the desired result follows.

4.2 Stochastic block minimization

Theorem 4.2. Define B2 to be a constant such that ‖δt − δ∗‖2 ≤ B2 for all t. If coordinate
minimization of each block Si satisfies:

F (δt)− F (δt+1) ≥ 1

k
‖∇Si

F (δt)‖22 (15)

for all t, then for any ε > 0 after T =
k|S|B2

2

ε iterations of the stochastic algorithm we have that
E[F (δT )]− F (δ∗) ≤ ε.5

The proof is similar to Nesterov’s analysis (see Theorem 1 in [16]). The proof in [16] relies on the
improvement condition in Eq. (15) and not on the precise nature of the update. Note that since the
cost of the update is roughly linear in the size of the block then this bound does not tell us which
block size is better (the cost of an update times the number of blocks is roughly constant).

4.3 Analysis of DMAPτ block minimization

We can now obtain rates for our coordinate minimization scheme for optimizingDMAPτ by finding
the k to be used in conditions Eq. (15) and Eq. (11). The result for the star update is given below.
Proposition 4.3. The star update for xi satisfies the conditions in Eqs. 15 and 11 with k = 4τNi.

This can be shown using Equation 2.4 in [14], which states that if Fi(δSi ; δ) (see Eq. (9)) has
Lipschitz constant Li then Eq. (15) is satisfied with k = 2Li. We can then use the fact that the
Lipschitz constant of a star block is at most 2τNi (this can be calculated as in [18]) to obtain the
result.6 To complete the analysis, it turns out that B1 and B2 can be bounded via a function of θ by
bounding ‖δ‖1 (see supplementary, Lemma 1.2). We proceed to discuss the implications of these
bounds.

4.4 Comparing the different schemes

The results we derived have several implications. First, we see that both stochastic and greedy
schemes achieve a rate of O( τε ). This matches the known rates for regular (non-accelerated) gra-
dient descent on functions with Lipschitz continuous gradient (e.g., see [14]), although in practice
coordinate minimization is often much faster.

5Expectation is taken with respect to the randomization of blocks.
6We also provide a direct proof in the supplementary, Section 2.
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The main difference between the greedy and stochastic rates is that the factor |S| (the number of
blocks) does not appear in the greedy rate, and does appear in the stochastic one. This can have a
considerable effect since |S| is either the number of variables n (in the star update) or the number
of factors |C| (in MPLP). Both can be significant (e.g., |C| is the number of edges in a pairwise
MRF model). The greedy algorithm does pay a price for this advantage, since it has to find the
optimal block to update at each iteration. However, for the problem we study here this can be
done much more efficiently using a priority queue. To see this, consider the star update. A change
in the variables δ·i(·) will only affect the blocks that correspond to variables j that are in c such
that i ∈ c. In many cases this is small (e.g., low degree pairwise MRFs) and thus we will only
have to change the priority queue a small number of times, and this cost would be negligible when
using a Fibonacci heap for example.7 Indeed, our empirical results show that the greedy algorithm
consistently outperforms the stochastic one (see Section 6).

5 Primal convergence

Thus far we have considered only dual variables. However, it is often important to recover the primal
variables. We therefore focus on extracting primal feasible solutions from current δ, and characterize
the degree of primal optimality and associated rates. The primal variables µ(δ) (see Eq. (8)) need
not be feasible in the sense that the consistency constraints in Eq. (3) are not necessarily satisfied.
This is true also for other approaches to recovering primal variables from the dual, such as averaging
subgradients when using subgradient descent (see, e.g., [21]).

We propose a simple two-step algorithm for transforming any dual variables δ into primal feasible
variables µ̃(δ) ∈ ML. The resulting µ̃(δ) will also be shown to converge to the optimal primal
solution in Section 5.1. The procedure is described in Algorithm 1 below.

Algorithm 1 Mapping to feasible primal solution

Step 1: Make marginals consistent.

For all i do: µ̄i(xi) = 1
1+

∑
c:i∈c

1
|Xc\i|

(
µi(xi) +

∑
c:i∈c

1
|Xc\i|

µc(xi)
)

For all c do: µ̄c(xc) = µc(xc)−
∑
i:i∈c

1
|Xc\i|

(µc(xi)− µ̄i(xi))
Step 2: Make marginals non-negative.
λ = 0
for c ∈ C, xc do

if µ̄c(xc) < 0 then

λ = max

{
λ, −µ̄c(xc)

−µ̄c(xc)+ 1
|Xc|

}
else if µ̄c(xc) > 1 then

λ = max

{
λ, µ̄c(xc)−1

µ̄c(xc)− 1
|Xc|

}
end if

end for
for ` = 1, . . . , n; c ∈ C do

µ̃`(x`) = (1− λ)µ̄`(x`) + λ 1
|X`|

end for

Importantly, all steps consist of cheap elementary local calculations in contrast to other methods pre-
viously proposed for this task (compare to [18, 27]). The first step performs a Euclidian projection
of µ(δ) to consistent marginals µ̄. Specifically, it solves:

min
µ̄

1

2
‖µ(δ)− µ̄‖2 , s.t. µ̄c(xi) = µ̄i(xi), for all c, i ∈ c, xi ,

∑
i

µ̄i(xi) = 1, for all i

Note that we did not include non-negativity constraints above, so the projection might result in neg-
ative µ̄. In the second step we “pull” µ̄ back into the feasible regime by taking a convex combination

7This was also used in the residual belief propagation approach [4], which however is less theoretically
justified than what we propose here.
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with the uniform distribution u (see [3] for a related approach). In particular, this step solves the
simple problem of finding the smallest λ ∈ [0, 1] such that 0 ≤ µ̃ ≤ 1 (where µ̃ = (1− λ)µ̄+ λu).
Since this step interpolates between two distributions that satisfy consistency and normalization
constraints, µ̃ will be in the local polytopeML.

5.1 Primal convergence rate

Now that we have a procedure for obtaining a primal solution we analyze the corresponding conver-
gence rate. First, we show that if we have δ for which ‖∇F (δ)‖∞ ≤ ε then µ̃(δ) (after Algorithm
1) is an O(ε) primal optimal solution.
Theorem 5.1. Denote by P ∗τ the optimum of the smoothed primal PMAPτ . For any set of dual
variables δ, and any ε ∈ R(τ) (see supp. for definition of R(τ)) it holds that if ‖∇F (δ)‖∞ ≤ ε then
P ∗τ − Pτ (µ̃(δ)) ≤ C0ε. The constant C0 depends only on the parameters θ and is independent of τ .

The proof is given in the supplementary file (Section 1). The key idea is to break F (δ)− Pτ (µ̃(δ))
into components, and show that each component is upper bounded byO(ε). The rangeR(τ) consists
of ε ≥ O( 1

τ ) and ε ≤ O(e−τ ). As we show in the supplementary this range is large enough to
guarantee any desired accuracy in the non-smoothed primal. We can now translate dual rates into
primal rates. This can be done via the following well known lemma:
Lemma 5.2. Any convex function F with Lipschitz continuous gradient and Lipschitz constant L
satisfies ‖∇F (δ)‖22 ≤ 2L (F (δ)− F (δ∗)).

These results together with the fact that ‖∇F (δ)‖22 ≥ ‖∇F (δ)‖2∞, and the Lipschitz constant of
F (δ) is O(τ), lead to the following theorem.
Theorem 5.3. Given any algorithm for optimizing DMAPτ and ε ∈ R(τ), if the algorithn is
guaranteed to achieve F (δt) − F (δ∗) ≤ ε after O(g(ε)) iterations, then it is guaranteed to be ε
primal optimal, i.e., P ∗τ − Pτ (µ̃(δt)) ≤ ε after O(g( ε

2

τ )) iterations.8

The theorem lets us directly translate dual convergence rates into primal ones. Note that it applies
to any algorithm for DMAPτ (not only coordinate minimization), and the only property of the
algorithm used in the proof is F (δt) ≤ F (0) for all t. Put in the context of our previous results, any
algorithm that achieves F (δt)−F (δ∗) ≤ ε in t = O(τ/ε) iterations, then it is guaranteed to achieve
P ∗τ − Pτ (µ̃(δt

′
)) ≤ ε in t′ = O(τ2/ε2) iterations.

6 Experiments

In this section we evaluate coordinate minimization algorithms on a MAP problem, and compare
them to state-of-the-art baselines. Specifically, we compare the running time of greedy coordinate
minimization, stochastic coordinate minimization, full gradient descent, and FISTA – an accelerated
gradient method [1] (details on the gradient-based algorithms are provided in the supplementary,
Section 3). Gradient descent is known to converge in O

(
1
ε

)
iterations while FISTA converges

in O
(

1√
ε

)
iterations [1]. We compare the performance of the algorithms on protein side-chain

prediction problems from the dataset of Yanover et al. [28]. These problems involve finding the 3D
configuration of rotamers given the backbone structure of a protein. The problems are modeled by
singleton and pairwise factors and can be posed as finding a MAP assignment for the given model.

Figure 1(a) shows the objective value for each algorithm over time. We first notice that the greedy
algorithm converges faster than the stochastic one. This is in agreement with our theoretical analysis.
Second, we observe that the coordinate minimization algorithms are competitive with the acceler-
ated gradient method FISTA and are much faster than the gradient method. Third, as Theorem 5.3
predicts, primal convergence is slower than dual convergence (notice the logarithmic timescale).
Finally, we can see that better convergence of the dual objective corresponds to better convergence
of the primal objective, in both fractional and integral domains. In our experiments the quality of
the decoded integral solution (dashed lines) significantly exceeds that of the fractional solution. Al-
though sometimes a fractional solution can be useful in itself, this suggests that if only an integral
solution is sought then it could be enough to decode directly from the dual variables.

8We omit constants not depending on τ and ε.
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Figure 1: Comparison of coordinate minimization, gradient descent, and the accelerated gradient
algorithms on protein side-chain prediction task. Figure (a) shows a typical run of the algorithms.
For each algorithm the dual objective of Eq. (6) is plotted as a function of execution time. The value
(Eq. (4)) of the feasible primal solution of Algorithm 1 is also shown (lower solid line), as well as
the objective (Eq. (1)) of the best decoded integer solution (dashed line; those are decoded directly
from the dual variables δ). Table (b) shows the ratio of runtime of each algorithm w.r.t. the greedy
algorithm. The mean ratio over the proteins in the dataset is shown followed by standard error.

The table in Figure 1(b) shows overall statistics for the proteins in the dataset. Here we run each
algorithm until the duality gap drops bellow a fixed desired precision (ε = 0.1) and compare the
total runtime. The table presents the ratio of runtime of each algorithm w.r.t. the greedy algorithm
(talg/tgreedy). These results are consistent with the example in Figure 1(a).

7 Discussion

We presented the first convergence rate analysis of dual coordinate minimization algorithms on
MAP-LP relaxations. We also showed how such dual iterates can be turned into primal feasible
iterates and analyzed the rate with which these primal iterates converge to the primal optimum. The
primal mapping is of considerable practical value, as it allows us to monitor the distance between the
upper (dual) and lower (primal) bounds on the optimum and use this as a stopping criterion. Note
that this cannot be done without a primal feasible solution.9

The overall rates we obtain are of the order O( τε ) for the DMAPτ problem. If one requires an ε
accurate solution for PMAP , then τ needs to be set to O( 1

ε ) (see Eq. (5)) and the overall rate is
O( 1

ε2 ) in the dual. As noted in [8, 18], a faster rate of O( 1
ε ) may be obtained using accelerated

methods such as Nesterov’s [15] or FISTA [1]. However, these also have an extra factor of N which
does not appear in the greedy rate. This could partially explain the excellent performance of the
greedy scheme when compared to FISTA (see Section 6).

Our analysis also highlights the advantage of using greedy block choice for MAP problems. The
advantage comes from the fact that the choice of block to update is quite efficient since its cost is of
the order of the other computations required by the algorithm. This can be viewed as a theoretical
reinforcement of selective scheduling algorithms such as Residual Belief Propagation [4].

Many interesting questions still remain to be answered. How should one choose between different
block updates (e.g., MSD vs star)? What are lower bounds on rates? Can we use acceleration as in
[15] to obtain better rates? What is the effect of adaptive smoothing (see [19]) on rates? We plan to
address these in future work.

Acknowledgments: This work was supported by BSF grant 2008303. Ofer Meshi is a recipient of the Google
Europe Fellowship in Machine Learning, and this research is supported in part by this Google Fellowship.

9An alternative commonly used progress criterion is to decode an integral solution from the dual variables,
and see if its value is close to the dual upper bound. However, this will only work if PMAP has an integral
solution and we have managed to decode it.
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