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A Proof of Lemma 1

We show that ζL(s, a;Ds,a, k) defined in Eq. (7) decays to 0 at a rate of 1/n2s,a. We present the
proof for k = 1. The extension to k > 1 is straightforward.

In finite MDPs, we have to learn separate transition probability tables T (s′ | s, a) for each s, a.
For simplicity, we focus on one fixed (s, a) and investigate how to estimate the distribution T (s′).
We consider a Dirichlet learner where α denotes the Dirichlet posterior based on the data Ds,a =
{s′i}

ns,a

i=1 and α′ be the posterior based on the reduced data set Dk=−1
s,a , that is, α′c + 1 = αc where

c is the outcome of the missing experience in Dk=−1
s,a , and α′j = αj for all j 6= c. Given Dirichlet

parameters α, the MAP model T̂α(s′) is given by the vector α/ᾱ, ᾱ =
∑
i αi, and we estimate ζ

using Eq. (7). The log-likelihood of the data Ds,a under T̂α is

L+ := logP (Ds,a|T̂α)

= log

ns,a∏
i=1

αs′i
ᾱ

=

ns,a∑
i=1

logαs′i − ns,a log ᾱ (14)

The likelihood of the data Ds,a under T̂α′ is

L− := logP (Ds,a|T̂α′)

= log(

ns,a∏
i=1,s′i 6=c

αs′i
ᾱ− 1

)(

ns,a∏
i=1,s′i=c

αc − 1

ᾱ− 1
)

=

ns,a∑
i=1,s′i 6=c

logαs′i +

ns,a∑
i=1,s′i=c

log(αc − 1)− ns,a log(ᾱ− 1) (15)

The average difference is

ζL(s, a; k = 1) =
1

ns,a
|L+ − L−|

=
1

ns,a

ns,a∑
i=1,s′i=c

(logαc − log(αc − 1))− log ᾱ+ log(ᾱ− 1)

=
ns,a,c
ns,a

log
1

1− 1
αc

+ log(1− 1

ᾱ
) . (16)

Since ᾱ∝ns,a, by taking the derivative of the expected value of ζL(s, a; k= 1) we can verify that

EDs,a
(ζ(s, a;Ds,a, k = 1)) = O

(
1

n2
s,a

)
. �
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