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Abstract

Hypothesis testing on signals defined on surfaces (such as the cortical surface) is
a fundamental component of a variety of studies in Neuroscience. The goal here
is to identify regions that exhibit changes as a function of the clinical condition
under study. As the clinical questions of interest move towards identifying very
early signs of diseases, the corresponding statistical differences at the group level
invariably become weaker and increasingly hard to identify. Indeed, after a mul-
tiple comparisons correction is adopted (to account for correlated statistical tests
over all surface points), very few regions may survive. In contrast to hypothesis
tests on point-wise measurements, in this paper, we make the case for perform-
ing statistical analysis on multi-scale shape descriptors that characterize the local
topological context of the signal around each surface vertex. Our descriptors are
based on recent results from harmonic analysis, that show how wavelet theory
extends to non-Euclidean settings (i.e., irregular weighted graphs). We provide
strong evidence that these descriptors successfully pick up group-wise differences,
where traditional methods either fail or yield unsatisfactory results. Other than
this primary application, we show how the framework allows performing cortical
surface smoothing in the native space without mappint to a unit sphere.

1 Introduction

Cortical thickness measures the distance between the outer and inner cortical surfaces (see Fig.
1). It is an important biomarker implicated in brain development and disorders [3]. Since 2011,
more than 1000 articles (from a search on Google Scholar and/or Pubmed) tie cortical thickness to
conditions ranging from Alzheimer’s disease (AD), to Schizophrenia and Traumatic Brain injury
(TBI) [9, 14, 13]. Many of these results show how cortical thickness also correlates with brain
growth (and atrophy) during adolescence (and aging) respectively [22, 20, 7]. Given that brain
function and pathology manifest strongly as changes in the cortical thickness, the statistical analysis
of such data (to find group level differences in clinically disparate populations) plays a central role
in structural neuroimaging studies.

In typical cortical thickness studies, magnetic resonance images (MRI) are acquired for two popu-
lations: clinical and normal. A sequence of image processing steps are performed to segment the
cortical surfaces and establish vertex-to-vertex correspondence across surface meshes [15]. Then, a
group-level analysis is performed at each vertex. That is, we can ask if there are statistically signifi-
cant differences in the signal between the two groups. Since there are multiple correlated statistical

1



tests over all voxels, a Bonferroni type multiple comparisons correction is required [4]. If many
vertices survive the correction (i.e., differences are strong enough), the analysis will reveal a set of
discriminative cortical surface regions, which may be positively or negatively correlated with the
clinical condition of interest. This procedure is well understood and routinely used in practice.

Figure 1: Cortical thickness illus-
tration: the outer cortical surface (in
yellow) and the inner cortical sur-
face (in blue). The distance between
the two surfaces is the cortical thick-
ness.

In the last five years, a significant majority of research has shifted
towards investigations focused on the pre-clinical stages of dis-
eases [16, 23, 17]. For instance, we may be interested in iden-
tifying early signs of dementia by analyzing cortical surfaces
(e.g., by comparing subjects that carry a certain gene versus
those who do not). In this regime, the differences are weaker,
and the cortical differences may be too subtle to be detected.
In a statistically under-powered cortical thickness analysis, few
vertices may survive the multiple comparisons correction. An-
other aspect that makes this task challenging is that the cortical
thickness data (obtained from state of the art tools) is still in-
herently noisy. The standard approach for filtering cortical sur-
face noise is to adopt an appropriate parameterization to model
the signal followed by a diffusion-type smoothing [6]. The pri-
mary difficulty is that most (if not all) widely used parameteri-
zations operate in a spherical coordinate system using spherical
harmonic (SPHARM) basis functions [6]. As a result, one must
first project the signal on the surface to a unit sphere. This “ballooning” process introduces serious
metric distortions. Second, SPHARM parameterization usually suffers from ringing artifacts (i.e.,
Gibbs phenomena) when used to fit rapidly changing localized cortical measurements [10]. Third,
SPHARM uses global basis functions which typically requires a large number of terms in the ex-
pansion to model cortical surface signals to high fidelity. Subsequently, even if the globally-based
coefficients exhibit statistical differences, interpreting which brain regions contribute to these vari-
ations is difficult. As a result, the coefficients of the model cannot be used directly in localizing
variations in the cortical signal.

This paper is motivated by the simple observation that statistical inference on surface based signals
should be based not on a single scalar measurement but on multivariate descriptors that characterize
the topologically localized context around each point sample. This view insures against signal noise
at individual vertices, and should offer the tools to meaningfully compare the behavior of the signal
at multiple resolutions of the topological feature, across multiple subjects. The ability to perform
the analysis in a multi-resolution manner, it seems, is addressable if one makes use of Wavelets
based methods (e.g., scaleograms [19]). Unfortunately, the non-regular structure of the topology
makes this problematic. In our neuroimaging application, samples are not drawn on a regular grid,
instead governed entirely by the underlying cortical surface mesh of the participant. To get around
this difficulty, we make use of some recent results from the harmonic analysis literature [8] – which
suggests how wavelet analysis can be extended to arbitrary weighted graphs with irregular topol-
ogy. We show how these ideas can be used to derive a wavelet multi-scale descriptor for statistical
analysis of signals defined on surfaces. This framework yields rather surprising improvements in
discrimination power and promises immediate benefits for structural neuroimaging studies.

Contributions. We derive wavelet based multi-scale representations of surface based signals. Our
representation has varying levels of local support, and as a result can characterize the local context
around a vertex to varying levels of granularity. We show how this facilitates statistical analysis of
signals defined on arbitrary topologies (instead of the lattice setup used in image processing).

(i) We show how the new model significantly extends the operating range of analysis of cortical
surface signals (such as cortical thickness). At a pre-specified significance level, we can detect
a much stronger signal showing group differences that are barely detectable using existing
approaches. This is the main experimental result of this paper.

(ii) We illustrate how the procedure of smoothing of cortical surfaces (and shapes) can completely
bypass the mapping on to a sphere, since smoothing can now be performed in the native space.
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2 A Brief Review of Wavelets in Signal Processing

Recall that the celebrated Fourier series representation of a periodic function is expressed via a su-
perposition of sines and cosines, which is widely used in signal processing for representing a signal
in the frequency domain and obtaining meaningful information from it. Wavelets are conceptually
similar to the Fourier series transform, in that they can be used to extract information from many
different kinds of data, however unlike the Fourier transform which is localized in frequency only,
wavelets can be localized in both time and frequency [12] and extend frequency analysis to the no-
tion of scale. The construction of wavelets is defined by a wavelet function ψ (called an analyzing
wavelet or a mother wavelet) and a scaling function φ. Here, ψ serves as a band-pass filter and
φ operates as a low-pass filter covering the low frequency components of the signal which cannot
be tackled by the band-pass filters. When the band-pass filter is transformed back by the inverse
transform and translated, it becomes a localized oscillating function with finite duration, providing
very compact (local) support in the original domain [21]. This indicates that points in the original
domain which are far apart have negligable impact on one another. Note the contrast with Fourier
series representation of a short pulse which suffers from issues due to nonlocal support of sin(·)
with infinite duration.

Formally, the wavelet function ψ on x is a function of two parameters, the scale and translation
parameters, s and a

ψs,a(x) =
1

a
ψ(
x− a
s

) (1)

Varying scales control the dilation of the wavelet, and together with a translation parameter, con-
stitute the key building blocks for approximating a signal using a wavelet expansion. The function
ψs,a(x) forms a basis for the signal and can be used with other bases at different scales to decom-
pose a signal, similar to Fourier transform. The wavelet transform of a signal f(x) is defined as the
inner product of the wavelet and signal and can be represented as

Wf (s, a) = 〈f, ψ〉 =
1

a

∫
f(x)ψ∗(

x− a
s

)dx (2)

where Wf (s, a) is the wavelet coefficient at scale s and at location a. The function ψ∗ represents
the complex conjugate of ψ. Such a transform is invertible, that is

f(x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)dads (3)

where Cψ =
∫ |Ψ(jω)|2

|ω| dω is called the admissibility condition constant, and Ψ is the Fourier
transform of the wavelet [21], and the ω is the domain of frequency.

As mentioned earlier, the scale parameter s controls the dilation of the basis and can be used to pro-
duce both short and long basis functions. While short basis functions correspond to high frequency
components and are useful to isolate signal discontinuities, longer basis functions corresponding to
lower frequencies, are also required to to obtain detailed frequency analysis. Indeed, wavelets trans-
forms have an infinite set of possible basis functions, unlike the single set of basis functions (sine
and cosine) in the Fourier transform. Before concluding this section, we note that while wavelets
based analysis for image processing is a mature field, most of these results are not directly applicable
to non-uniform topologies such as those encountered in shape meshes and surfaces in Fig. 1.

3 Defining Wavelets on Arbitrary Graphs

Note that the topology of a brain surface is naturally modeled as a weighted graph. However, the
application of wavelets to this setting is not straightforward, as wavelets have traditionally been
limited to the Euclidean space setting. Extending the notion of wavelets to a non-Euclidean setting,
particularly to weighted graphs, requires deriving a multi-scale representation of a function defined
on the vertices. The first bottleneck here is to come up with analogs of dilation and translation on the
graph. To address this problem, in [8], the authors introduce Diffusion Wavelets on manifolds. The
basic idea is related to some well known results from machine learning, especially the eigenmaps
framework by Belkin and Niyogi [1]. It also has a strong relationship with random walks on a
weighted graph. Briefly, a graph G = (V,E,w) with vertex set V , edge set E and symmetric edge
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weightsw has an associated random walkR. The walkR, when represented as a matrix, is conjugate
to a self adjoint matrix T , which can be interpreted as an operator associated with a diffusion process,
explaining how the random walk propagates from one node to another. Higher powers of T (given
as T t) induce a dilation (or scaling) process on the function to which it is applied, and describes
the behavior of the diffusion at varying time scales (t). This is equivalent to iteratively performing a
random walk for a certain number of steps and collecting together random walks into representatives
[8]. Note that the orthonormalization of the columns of T induces the effect of “compression”, and
corresponds to downsampling in the function space [5]. In fact, the powers of T are low rank (since
the spectrum of T decays), and this ties back to the compressibility behavior of classical wavelets
used in image processing applications (e.g., JPEG standard). In this way, the formalization in [8]
obtains all wavelet-specific properties including dilations, translations, and downsampling.

3.1 Constructing Wavelet Multiscale Descriptors (WMD)

Very recently, [11] showed that while the orthonormalization above is useful for iteratively obtain-
ing compression (i.e., coarser subspaces), it complicates the construction of the transform and only
provides limited control on scale selection. These issues are critical in practice, especially when
adopting this framework for analysis of surface meshes with ∼ 200, 000 vertices with a wide spec-
tum of frequencies (which can benefit from finer control over scale). The solution proposed in [11]
discards repeated application of the diffusion operator T , and instead relies on the graph Laplacian
to derive a spectral graph wavelet transform (SGWT). To do this, [11] uses a form of the wavelet
operator in the Fourier domain, and generalizes it to graphs. Particularly, SGWT takes the Fourier
transform of the graph by using the properties of the Laplacian L (since the eigenvectors of L are
analogous to the Fourier basis elements). The formalization is shown to preserve the localization
properties at fine scales as well as other wavelets specific properties. But beyond constructing the
transform, the operator-valued functions of the Laplacian are very useful to derive a powerful multi-
scale shape descriptor localized at different frequencies which performs very well in experiments.

For a function f(m) defined on a vertex m of a graph, interpreting f(sm) for a scaling constant s,
is not meaningful on its own. SGWT gets around this problem by operating in the dual domain – by
taking the graph Fourier transformation. In this scenario, the spectrum of the Laplacian is analogous
to the frequency domain, where scales can be defined (seen in (6) later). This provides a multi-
resolution view of the signal localized at m. By analyzing the entire spectra at once, we can obtain
a handle on which scale best characterizes the signal of interest. Indeed, for graphs, this provides
a mechanism for simultaneously analyzing various local topologically-based contexts around each
vertex. And for a specific scale s, we can now construct band-pass filters g in the frequency domain
which suppresses the influence of scales s′ 6= s. When transformed back to the original domain, we
directly obtain a representation of the signal for that scale. Repeating this process for multiple scales,
the set of coefficients obtained for S scales comprises our multiscale descriptor for that vertex.

Given a mesh with N vertices, we first obtain the complete orthonormal basis χl and eigenvalues
λl, l ∈ {0, 1, · · · , N − 1} for the graph Laplacian. Using these bases, the forward and inverse graph
Fourier transformation are defined using eigenvalues and eigenvectors of L as,

f̂(l) = 〈χl, f〉 =

N∑
n=1

χ∗l (n)f(n), and f(n) =

N−1∑
l=0

f̂(l)χl(n) (4)

Using the transforms above, we construct spectral graph wavelets by applying band-pass filters at
multiple scales and localizing it with an impulse function. Since the transformed impulse function in
the frequency domain is equivalent to a unit function, the wavelet ψ localized at vertex n is defined
as,

ψs,n(m) =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (5)

where m is a vertex index on the graph. The wavelet coefficients of a given function f(n) can be
easily generated from the inner product of the wavelets and the given function,

Wf (s, n) = 〈ψs,n, f〉 =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (6)
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The coefficients obtained from the transformation yield the Wavelet Multiscale Descriptor (WMD)
as a set of wavelet coefficients at each vertex n for each scale s.

WMDf (n) = {Wf (s, n)|s ∈ S} (7)
In the following sections, we make use of the multi-scale descriptor for the statistical analysis of

signals defined on surfaces(i.e., standard structured meshes). We will discuss shortly how many of
the low-level processes in obtaining wavelet coefficients can be expressed as linear algebra primi-
tives that can be translated on to the CUDA architecture.

4 Applications of Multiscale Shape Features

In this section, we present extensive experimental results demonstrating the applicability of the
descriptors described above. Our core application domain is Neuroimaging. In this context, we first
test if the multi-scale shape descriptors can drive significant improvements in the statistical analysis
of cortical surface measurements. Then, we use these ideas to perform smoothing of cortical surface
meshes without first projecting them onto a spherical coordinate system (the conventional approach).

4.1 Cortical Thickness Discrimination: Group Analysis for Alzheimer’s disease (AD) studies

As we briefly discussed in Section 1, the identification of group differences between cortical surface
signals is based on comparing the distribution of the signal across the two groups at each vertex. This
can be done either by using the signal (cortical thickness) obtained from the segmentation directly,
or by using a spherical harmonic (SPHARM) or spherical wavelet approach to first parameterize and
then smooth the signal, followed by a vertex-wise T−test on the smoothed signal. These spherical
approaches change the domain of the data from manifolds to a sphere, introducing distortion. In
contrast, our multi-scale descriptor is well defined for characterizing the shape (and the signal) on
the native graph domain itself. We employ hypothesis testing using the original cortical thickness
and SPHARM as the two baselines for comparison when presenting our experiments below.

Data and Pre-processing. We used Magnetic Resonance (MR) images acquired as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our data included brain images from 356
participants: 160 Alzheimer’s disease subjects (AD) and 196 healthy controls (CN). Details of the
dataset are given in Table1.

Table 1: Demographic details and baseline cognitive sta-
tus measure of the ADNI dataset

ADNI data
Category AD (mean) AD (s.d.) Ctrl (mean) Ctrl (s.d.)
# of Subjects 160 - 196 -
Age 75.53 7.41 76.09 5.13
Gender (M/F) 86 / 74 - 101 / 95 -
MMSE at Baseline 21.83 5.98 28.87 3.09
Years of Education 13.81 4.61 15.87 3.23

This dataset was pre-processed using a stan-
dard image processing pipeline, and the
Freesurfer algorithm [18] was used to seg-
ment the cortical surfaces, calculate the cor-
tical thickness values, and provide vertex to
vertex correspondences across brain surfaces.
The data was then analyzed using our algo-
rithm and the two baselines algorithms men-
tioned above. We constructed WMDs for each vertex on the template cortical surface at 6 different
scales, and used Hotelling’s T 2−test for group analysis. The same procedure was repeated us-
ing the cortical thickness measurements (from Freesurfer) and the smoothed signal obtained from
SPHARM. The resulting p-value map was corrected for multiple comparisons over all vertices using
the false discovery rate (FDR) method [2].

Fig. 2 summarizes the results of our analysis. The first row corresponds to group analysis using the
original cortical thickness values (CT). Here, while we see some discriminative regions, group dif-
ferences are weak and statistically significant in only a small region. The second row shows results
pertaining to SPHARM, which indicate a significant improvement over the baseline, partly due to
the effect of noise filtering. Finally, the bottom row in Fig. 2 shows that performing the statistical
tests using our multi-scale descriptor gives substantially larger regions with much lower p-values.
To further investigate this behavior, we repeated these experiments by making the significance level
more conservative. These results (after FDR correction) are shown in Fig. 4. Again, we can directly
compare CT, SPHARM and WMD for a different FDR. A very conservative FDR q = 10−7 was
used on the uncorrected p-values from the hypothesis test, and the q-values after the correction were
projected back on the template mesh. Similar to Fig. 2, we see that relative to CT and SPHARM,
several more regions (with substantially improved q-values) are recovered using the multi-scale de-
scriptor.
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To quantitatively compare the behavior above, we evaluated the uncorrected p-values over all ver-
tices and sorted them in increasing order. Recall that any p-value below the FDR threshold is con-
sidered significant, and gives q-values. Fig. 3 shows the sorted p-values, where blue/black dotted
lines are the FDR thresholds identifying significant vertices.

Figure 2: Normalized log scale p-values after FDR correction at q = 10−5, projected back on a brain mesh
and displayed. Row 1: Original cortical thickness, Row 2: SPHARM, Row 3: Wavelet Multiscale descriptor.

Figure 3: Sorted p-values from statisti-
cal analysis of sampled vertices from left
hemisphere using cortical thickness (CT),
SPHARM, WMD for FDR q = 10−3

(black) and q = 10−4 (blue).

As seen in Figs. 2, 3 and 5, the number of signifi-
cant vertices is far larger in WMD compared to CT and
SPHARM. At FDR 10−4 level, there are total 6943 (CT),
28789 (SPHARM) and 40548 (WMD) vertices, showing
that WMD finds 51.3% and 17.9% more discriminative
vertices over CT and SPHARM methods. In Fig. 5, we
can see the effect of FDR correction. With FDR set to
10−3, 10−5 and 10−7, the number of vertices that sur-
vives the correction threshold decreases to 51929, 28606
and 13226 respectively.

Finally, we evaluated the regions identified by these tests
in the context of their relevance to Alzheimer’s disease.
We found that the identified regions are those that might
be expected to be atrophic in AD. All three methods iden-
tified the anterior entorhinal cortex in the mesial temporal
lobe, but at the prespecified threshold, the WMD method
was more sensitive to changes in this location as well as
in the posterior cingulate, precuneus, lateral parietal lobe,
and dorsolateral frontal lobe. These are regions that are commonly implicated in AD, and strongly
tie to known results from neuroscience.

Remarks. When we compare two clinically different groups of brain subjects at the opposite ends of
the disease spectrum (AD versus controls), the tests help identify which brain regions are severely
affected. Then, if the analysis of mild AD versus controls reveals the same regions, we know that the
new method is indeed picking up the legitimate regions. The ADNI dataset comprises of mild (and
relatively younger) AD subjects, and the result from our method identifies regions which are known
to be affected by AD. Our experiments suggest that for a study where group differences are expected
to be weak, WMDs can facilitate identification of important variations which may be missed by the
current state of the art, and can improve the statistical power of the experiment.
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Figure 4: Normalized log scale p-values after FDR correction on the left hemisphere with q = 10−7 on
cortical thickness (left column) , SPHARM (middle column), WMD (right column) repectively, showing both
inner and outer sides of the hemisphere.

Figure 5: Normalized log scale p-values showing the effect of FDR correction on the template left hemisphere
using WMD with FDR q = 10−3 (left column), q = 10−5 (middle column) and q = 10−7 (right column)
repectively, showing both inner and outer sides of the hemisphere.

4.2 Cortical Surface Smoothing without Sphere Mapping

Existing methods for smoothing cortical surfaces and the signal defined on it, such as spherical
harmonics, explicitly represent the cortical surface as a combination of basis functions defined over
regular Euclidean spaces. Such methods have been shown to be quite powerful, but invariably cause
information loss due to the spherical mapping. Our goal was to evaluate whether the ideas introduced
here can avoid this compromise by being able to represent (and smooth) the signal defined on any
arbitrarily shaped mesh using the basis in Section 3.1 .

A small set of experiments were performed to evaluate this idea. We used wavelets of varying
scales to localize the structure of the brain mesh. An inverse wavelet transformation of the resultant
function provides the smooth estimate of the cortical surface at various scales. The same process can
be applied to the signal defined on the surface as well. Let us rewrite (3) in terms of the graph Fourier
basis, 1

Cg

∑
l

(∫∞
0

g2(sλl)
s ds

)
f̂(l)χl(m) which sums over the entire scale s. Interestingly, in our

case, the set of scales directly control the spatial smoothness of the surface. In contrast, existing
methods introduce an additional smoothness parameter (e.g., σ in case of heat kernel). Coarser
spectral scales overlap less and smooth higher frequencies. At finer scale, the complete spectrum is
used and recovers the original surface to high fidelity. An optimal choice of scale removes noisy high
frequency variations and provide the true underlying signal. Representative examples are shown in
Fig. 6 where we illustrate the process of reconstructing the surface of a brain mesh (and the cortical
thickness signal) from a coarse to finer scales.
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The final reconstruction of the sample brain surface from inverse transformation using five scales
of wavelets and one scaling function returns total error of 2.5855 on x coordinate, 2.2407 in y
coordinate and 2.4594 in z coordinate repectively over entire 136228 vertices. The combined error
of all three coordinates per vertex is 5.346× 10−5, which is small. Qualitatively, we found that the
results compare favorably with [6, 24] but does not need a transformation to a spherical coordinate
system.

Figure 6: Structural smoothing on a brain mesh. Top row: Structural smoothing from coarse to finer scales,
Bottom row: Smoothed cortical thickness displayed on the surface.

Implementation. Processing large surface meshes with ∼ 200000 vertices is computationally in-
tensive. A key bottleneck is the diagonalization of the Laplacian, which can be avoided by a clever
use of a Chebyshev polynomial approximation method, as suggested by [11]. It turns out that this
procedure basically consists of n iterative sparse matrix-vector multiplications and scalar-vector
multiplications, where n is the degree of the polynomial.

Figure 7: Running times to process a single
brain dataset using native MATLAB code,
Jacket, and our own implementation

With some manipulations (details in the code release),
the processes above translate nicely on to the GPU ar-
chitecture. Using the cusparse and cublas libraries,
we derived a specialized procedure for computing the
wavelet transform, which makes heavy use of commod-
ity graphics-card hardware. Fig. 7 provides a comparison
of our results to the serial MATLAB implementation and
code using the commercial Jacket toolbox, for processing
one brain with 166367 vertices over 6 wavelet scales as
a function of polynomial degree. We see that a dataset
can be processed in less than 10 seconds (even with high
polynomial order) using our implementation.

5 Conclusions

We showed that shape descriptors based on multi-scale representations of surface based signals are
a powerful tool for performing multivariate analysis of such data at various resolutions. Using a
large and well characterized neuroimaging dataset, we showed how the framework improves statis-
tical power in hypothesis testing of cortical thickness signals. We expect that in many cases, this
form of analysis can detect group differences where traditional methods fail. This is the primary
experimental result of the paper. We also demonstrated how the idea is applicable to cortical sur-
face smoothing and yield competitive results without a spherical coordinate transformation. The
implementation will be publicly distributed as a supplement to our paper.
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