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1 Slice sampler

In this section we provide an unabridged derivation of the slice sampler for normalized kernel CRMs.
We also present the Rao-Blackwellized estimator for the predictive density.

1.1 Derivation

Analogously to [1] we introduce a set of auxiliary slice variables – one for each data point. Each
data point can only belong to clusters corresponding to atoms larger than its slice variable. The set of
slice variables thus defines a minimum atom size that need be represented, ensuring a finite number
of instantiated atoms.

We extend this idea to the KNRM framework. Note that, in this case, an atom will exhibit different
sizes at different covariate locations. We refer to these sizes as the kernelized atom sizes,K(x∗g, µ)π,
obtained by applying a kernel K, evaluated at location x∗g , to the raw atom π. Following [1], we
introduce a local slice variable ug,i. This allows us to write the joint distribution over a single data
point yg,i, its cluster allocation sg,i and its slice variable ug,i as

f(yg,i, ug,i, sg,i|π, µ, θ, φ) = B−1
Tg1

(
ug,i < K(x∗g, µsg,i)πsg,i

)
q(yg,i|θsg,i , φsg,i) (1)

where we have introduced the notation BTg = Bx∗
g
(Θ). From Eq. 1 we write the density of all

points with covariate x∗g as

f(yg,ug, sg|π, µ, θ, φ) = B
−ng

Tg

ng∏
i=1

1
(
ug,i < K(x∗g, µsg,i)πsg,i

)
q(yg,i|θsg,i , φsg,i). (2)

Following [1, 2, 3] we can replaceB−ng

Tg , which involves an infinite sum, by relating it to the gamma
distribution yielding

f(yg,ug, sg|π, µ, θ, φ) = V ng−1
g exp (−VgBTg)

ng∏
i=1

1
(
ug,i < K(x∗g, µsg,i)πsg,i

)
q(yg,i|θsg,i , φsg,i)

(3)
where Vg ∼ Ga(ng, BTg). The joint distribution for all data, f(y,u, s|π, µ, θ, φ), is then the product
of Eq. 3 for each unique covariate x∗g

f(y,u, s|π, µ, θ, φ) =

G∏
g=1

V ng−1
g exp (−VgBTg)

ng∏
i=1

1
(
ug,i < K(x∗g, µsg,i)πsg,i

)
q(yg,i|θsg,i , φsg,i).

(4)

1



A MCMC sampler is still hard to construct for Eq. 3, since the infinite sum BTg still makes an
appearance. To alleviate this difficulty we define a truncation level according to the auxiliary ug,i
variables introduced earlier [4]. Specifically, let 0 < L = min {usg,i} and assume that there are
Mg atoms such that K(x∗g, µm)πm ≥ L for some g, and M =

∑G
g=1Mg . We can then rewrite

BTg = B+g + B∗g , where B+g =
∑Mg

m=1K(x∗g, µm)πm and B∗g =
∑∞
m=Mg+1K(x∗g, µm)πm.

B∗g is therefore the portion of the total mass of Bg from kernelized atoms with mass less than L.
With this new notation we rewrite Eq. 4 as

f(y,u, s|π, µ, θ, φ) =

G∏
g=1

V ng−1
g

ng∏
i=1

1
(
ug,i < K(x∗g, µsg,i)πsg,i

)
q(yg,i|θsg,i , φsg,i)

× exp (−V TB+) exp (−V TB∗)

(5)

where V = [V1, . . . , VG]T , B+ = [B+1, . . . , B+G]T , and B∗ = [B∗1, . . . , B∗G]T . We then
marginalize out all kernelized atoms with mass less than L which allows us to write the joint distri-
bution of the model as
p(y,u, s, V,M, π, µ, θ, φ, α) = p(α)p(M |α)p(θ1:M )p(π1:M )p(µ1:M )

×
G∏
g=1

V ng−1
g

ng∏
i=1

1
(
ug,i < K(x∗g, µsg,i)πsg,i

)
q(yg,i|θsg,i , φsg,i)

× exp (−V TB+)E[exp (−V TB∗)]
(6)

We recognize the expectation in Eq. 6 as the characteristic function of the Lévy process underlying
the kernel-weighted CRM (see Section 2.1 of the main text). We can use the Lévy-Khintchine
representation [5] of a Lévy process to simplify the expectation as

E[exp (−V TB∗)] = exp

(
−α

∫
A

(1− exp (−V TKµπ))ν0(dπ)R0(dµ)

)
(7)

where Kµ = [K(x∗1, µ), . . . ,K(x∗G, µ)]T and A = {(µ, π) : K(x∗g, µ)π < L}. Since we have a
fixed kernel function (K(·, ·) ∈ [0, 1]) and have assumed a finite dictionary of atom locations {µ∗},
the integral in Eq. 7 decomposes into two parts. The first part corresponds to atoms (π, µ) where
π < L which can be written as

∑
µ∗∈X

(
R0(µ∗)

∫ L

0

(1− exp (−V TKµ∗π))ν0(dπ)

)
(8)

and can be evaluated numerically for many CRMs including gamma and generalized gamma pro-
cesses [1] by using the identity∫ L

0

(1− exp (−V TKµ∗π))ν0(dπ)) = ψ(V TKµ∗)/α−
∫ ∞
L

(1− exp (−V TKµ∗π))ν0(dπ). (9)

For the first term in Eq. 9, ψ(·) is given by the exponent on the right side of Eq. 7. Both terms of
Eq. 9 can be evaluated by numerical methods since they are one-dimensional integrals.

The second part of the integral in Eq. 7 consists of realized atoms {(πm, µm)} such that
K(x∗g, µm)πm < L at covariate x∗g . We evaluate this term with a Monte Carlo estimate

1

Z

G∑
g=1

M∑
m=1

1
(
K(x∗g, µm)πm < L

)
exp(−VgK(x∗g, µm)πm) (10)

where Z =
∑G
g=1

∑M
m=1 1

(
K(x∗g, µm)πm < L

)
. Recall that M is the number of instantiated

atoms. In very simple cases the term in Eq. 10 can be solved for analytically; in the case of a
box kernel, it doesn’t arise at all. In our experiments we consider both a box kernel and a square
exponential kernel and we have found that the term contributes little to the accuracy of the sampler
and very good results can be obtained by simply ignoring this term. However, for kernels that decay
more slowly than the square exponential kernels we use this term will likely be more significant.
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1.2 Prediction

For a new observation y∗ with covariate x∗, using the slice sampler described above we can simulate
from the predictive distribution p(y∗|y) and propose a Rao-Blackwellized estimate of it without any
truncation error. Analogously to [1], we introduce a new auxiliary variable u∗ and allocation variable
s∗ for the new observation which we describe how to sample below. Then, the predictive density
estimate is defined as

f̂(y∗) =
1

T

T∑
i=1

∑M(i)

m=1 1
(
K(x∗, µ

(i)
m )π

(i)
m > u

(i)
∗

)
q
(
y∗|θ(i)

m , φ
(i)
m

)
∑M(i)

m=1 1
(
K(x∗, µ

(i)
m )π

(i)
m > u

(i)
∗

) (11)

where M (i) is the number of used clusters in sample i and u(i)
∗ and s(i)

∗ are the i’th sample of u∗ and
s∗ respectively. We sample s∗ from a discrete distribution with

p(s∗ = m) ∝ 1 (u∗ < K(x∗, µm)πm) (12)

The only other changes to the sampler is that when sampling Vg , {ug,i}, M and {πm} with data
allocated to them, a sample size of ng is used, rather than ng − 1. The same sampling methods
can be used for each of these variables. We use this estimator in the experiments to estimate the
predictive density on a fine grid of values.

2 Finite normalized KGaP

In this section, we describe the finite normalized KGaP model used in the Experiments section of
the main paper.

A gamma process (GaP) on a measurable space Θ, denoted GaP(H0, β), is a CRM with Lévy
measure ν(dθ, dπ) = π−1e−βπB0(dθ), where we have included the scale parameter for generality.
Considered as a Poisson process on Θ×R+, a random measure drawn from a GaP,X ∼ GaP(H0, β),
is a discrete measure with an infinite number of atoms [6] where

X =

∞∑
m=1

πmδθ∗m (13)

We can approximate the countably infinite random measure X with a finite version XM , where we
restrict the measure to only have M atoms. We introduce the finite measure

νδ(dθ, dπ) = πδ−1e−βδH0(dθ) (14)

for δ > 0. As δ gets smaller more mass is placed on smaller values π and so M will need to be large
to obtain atoms with significant mass. Since νδ is proportional to the density of a Ga(δ, β) random
variable it is easy to compute νδ(Θ× R+) as∫

Θ×R+

πδ−1e−βδH0(dθ) = H0(Θ)
Γ(δ)

βδ
(15)

which for δ > 0 is finite. In fact, using 14 as the rate measure of a finite Poisson process on Θ×R+

and defining XM as in Eq. 13 one has that E[M ] = νδ(Θ× R+) [6].

It is easy to see that as δ → 0 the finite rate measure converges to that of a GaP

νδ(dθ, dπ)

ν(dθ, dπ)
=
πδ−1e−βπH0(dθ)

π−1e−βπH0(dθ)
= πδ → 1 (16)

In practice we choose the number of desired atoms, M , and then set δ = 1/M . In what follows we
only consider the case β = 1 and so we drop it from our notation.

With a finite approximation to a gamma process, we construct a finite version of a kernel GaP and
then normalize it. Let A be measurable on Θ and define similarly as the infinite version

BMx (A) =

M∑
m=1

K(x, µm)πmδθ∗m(A) (17)
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where πm ∼ Ga(1/M, 1) and θ∗m ∼ H0(dθ). We can then define the finite KNRM

PMx (A) =

M∑
m=1

K(x, µm)πm∑M
l=1K(x, µl)πl

δθ∗m(A) (18)

We can use then use PMx as a prior for the mixture model described in the main text.

2.1 Gibbs sampler

Since there are only a finite number of atoms in the approximation described in Section 2, there
is no need to perform the marginalization of small atoms required for the slice sampler. This al-
lows a simple Gibbs sampler to be derived when using the finite approximation. We describe the
sampling equations for the normalized KGaP below, the model parameters are sampled the same as
with the slice sampler. Note that one could also design reversible-jump moves [7] using the finite
approximation presented here.

• Cluster allocations sg,i: The conditional distribution for sg,i is given by (up to a constant)

p(sg,i = m | yg,i, πm, µm, θm, φm) ∝ K(x∗g, µm)πmq(yg,i|θm, φm) (19)

for 1 ≤ m ≤M . This is a finite discrete distribution and is easily sampled.
• Raw atom sizes πm: The conditional distributions for the atoms sizes up to a constant is

given by

p(πm | {s}, {µ}, {π−m}) ∝ Ga(1/M, 1)

G∏
g=1

ng∏
i=1

K(x∗g, µsg,i)πsg,i∑M
l=1K(x∗g, µl)πl

(20)

This distribution could be sampled with Metropolis-Hastings, however we have found slice
sampling [8] to be effective.
• Raw atom covariate locations µm: Since we assume a finite set of covariate locations, the

conditional distribution is give by

p(µm = µ∗p | {s}, {π}, {µ−m}) ∝ R0(µ∗p)

G∏
g=1

ng∏
i=1

K(x∗g, µsg,i)
1(sg,i 6=m)K(x∗g, µ

∗
p)

1(sg,i=m)πsg,i∑
l 6=mK(x∗g, µl)πl +K(x∗g, µ

∗
p)πm

.

(21)
This is a finite discrete distribution and is easily sampled.

3 Extra experimental results

In Table 1 we show the held-out predictive log-likelihoods obtained with the Rao-Blackwellized
estimator for the slice sampler using both the box and square exponential (SE) kernels. The Rao-
Blackwellized estimator results in substantially larger predictive log-likelihoods than the estimator
in the main paper.

Table 1: Rao-Blackwellized estimates of held-out predictive log-likelihood.
Synthetic CMB Motorcycle

Box -2.58 (0.66) -0.06 (0.04) -0.40 (0.11)
SE NA -0.14 (0.03) -0.42 (0.12)
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