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Abstract

Probabilistic planning captures the uncertainty of plaaceion by probabilisti-
cally modeling the effects of actions in the environment] trerefore the proba-
bility of reaching different states from a given state antibexc In order to compute
a solution for a probabilistic planning problem, planneega to manage the un-
certainty associated with the different paths from theahgtate to a goal state.
Several approaches to manage uncertainty were propoged;aisider all paths
at once, perform determinization of actions, and samplinghis paper, we in-
troduce trajectory-based short-sighted Stochastic 8sioftath Problems (SSPs),
a novel approach to manage uncertainty for probabilis@nping problems in
which states reachable with low probability are substituig artificial goals that
heuristically estimate their cost to reach a goal state. l[é¢eextend the theoretical
results of Short-Sighted Probabilistic Planner (SSiPPpylproving that SSiPP
always finishes and is asymptotically optimal under sufficionditions on the
structure of short-sighted SSPs. We empirically compaiiB8sing trajectory-
based short-sighted SSPs with the winners of the previasapilistic planning
competitions and other state-of-the-art planners in faagte tireworld problems.
Trajectory-based SSiPP outperforms all the competitodsiguthe only planner
able to scale up to problem number 60, a problem in which thienap solution
contains approximately0™ states.

1 Introduction

The uncertainty of plan execution can be modeled by usinpaghitistic effects in actions, and
therefore the probability of reaching different statesrfra given state and action. This search space,
defined by the probabilistic paths from the initial state tgoal state, challenges the scalability of
planners. Planners manage the uncertainty by choosingrehs&t@ategy to explore the space. In
this work, we present a novel approach to manage uncert@ingyrobabilistic planning problems
that improves its scalability while still being optimal.

One approach to manage uncertainty while searching foralaéien of probabilistic planning prob-
lems is to consider the complete search space at once. Egsmapkuch algorithms are value
iteration and policy iteration [2]. Planners based on thagerithms return a closed policy, i.e., a
universal mapping function from every state to the optintsioa that leads to a goal state. Assum-
ing the model correctly captures the cost and uncertaintiefictions in the environment, closed
policies are extremely powerful as their execution nevailsf’ and the planner does not need to
be re-invoked ever. Unfortunately the computation of sualicies is prohibitive in complexity as
problems scale up. Value iteration based probabilistinqeas can be improved by combining asyn-
chronous updates and heuristic search [3—7]. Althougletteehniques allow planners to compute
compact policies, in the worst case, these policies atdisghr in the size of the state space, which
itself can be exponential in the size of the state or goals.



Another approach to manage uncertainty is basically torgyonocertainty during planning, i.e., to
approximate the probabilistic actions as deterministitoas. Examples of replanners based on
determinization are FF-Replan [8], the winner of the firsefnational Probabilistic Planning Com-
petition (IPPC) [9], Robust FF [10], the winner of the thifdRC [11] and FF-Hindsight [12, 13].
Despite the major success of determinization, this singglifdn in the action space results in algo-
rithms oblivious to probabilities and dead-ends, leadmgdor performance in specific problems,
e.g., the triangle tireworld [14].

Besides the action space simplification, uncertainty mamamt can be performed by simplifying
the problem horizon, i.e., look-ahead search [15]. Baseshompling, the Upper Confidence bound
for Trees (UCT) algorithm [16] approximates the look-ahsadrch by focusing the search in the
most promising nodes.

The state space can also be simplified to manage uncertaiptgbabilistic planning. One example

of such approach is Envelope Propagation (EP) [17]. EP ctesmn initial partial policyr and

then prunes all the states not consideredrbyrhe pruned states are represented by a special meta
state. Then EP iteratively improves its approximation ef skate space. Previously, we introduced
short-sighted planning [1], a new approach to manage wxngytin planning problems: given a
states, only the uncertainty structure of the problem in the ne@hbod ofs is taken into account
and the remaining states are approximated by artificialsgibait heuristically estimate their cost to
reach a goal state.

In this paper, we introduced trajectory-based short-sighbtochastic Shortest Path Problems
(SSPs), a novel model to manage uncertainty in probabilgéinning problems. Trajectory-based
short-sighted SSPs manage uncertainty by pruning thesgtate based on the most likely trajectory
between states and defining artificial goal states that dh&solution towards the original goal. We
also contribute by defining a class of short-sighted modedspaoving that the Short-Sighted Proba-
bilistic Planner (SSiPP) [1] always terminates and is aggtigally optimal for models in this class
of short-sighted models.

The remainder of this paper is organized as follows: SeQiamroduces the basic concepts and
notation. Section 3 defines formally trajectory-based tskighted SSPs. Section 4 presents our
new theoretical results for SSiPP. Section 5 empiricall#ates SSiPP using trajectory-based short-
sighted SSPs with the winners of the previous IPPCs and sth&-of-the-art planner. Section 6
concludes the paper.

2 Background

A Stochastic Shortest Path Problem (SSP) is defined by the$up (S, sq, G, A, P,C), in which
[1,18]: S is the finite set of statesy € S is the initial stateG C S is the set of goal state# is
the finite set of actionsP(s’|s, a) represents the probability that € S is reached after applying
actiona € Alin states € S; C(s,a,s’) € (0,+00) is the cost incurred when stateis reached after
applying actioru in states and this function is required to be defined forak S,a € A, s’ € S
such thatP(s'|s,a) > 0.

A solution to an SSP is a policy, i.e., a mapping fron% to A. If 7 is defined over the entire space

S, thenr is a closed policy. A policyr defined only for the states reachable fregrwhen following

m is a closed policy w.r.tsgp andS(w, sg) denotes this set of reachable states. For instance, in the
SSP depicted in Figure 1(a), the policy = {(so0, a0), (51, ao), (s5, ao), (s5, ap)} is a closed policy
w.r.t. s andS(mo, so) = {so, 1, 85, S5, S6 }-

Given a policyw, we define trajectory as a sequerite = (s(),...,5)) such that, for all
i€{0,---,k—1}, n(s(;) is defined andP(s(;41)|5(:), 7(s¢;))) > 0. The probability of a tra-
jectory T, is defined asP(7;) = Hji‘(JT”‘ P(s(i+1)]50), 7(5¢;y)) and maximum probability of a
trajectory between two statés, .. (s, s’) is defined asnax, P(T, = (s,...,s’)).

An optimal policy7™* for an SSP is any policy that always reaches a goal state vatlewéd from
s and also minimizes the expected cosf/pf. For a given SSPr* might not be unique, however
the optimal value functiov*, i.e., the mapping from states to the minimum expected castach
a goal state, is uniqué/* is the fixed point of the set of equations defined by (1) fosad S \ G
andV*(s) = 0 for all s € G. Notice that under the optimality criterion given by (1), &Sare



Figure 1: (a) Example of an SSP. The initial statejisthe goal state isg, C(s,a,s’) =1,Vs € S,

a € A ands’ € S. (b) State-space partition of (a) according to the depdetahort-sighted SSPs:
G,,.: contains all the states in dotted regions which their comusthold for the given value af (c)
State-space partition of (a) according to the trajectayell short-sighted SSRS;, , contains all
the states in dotted regions which their conditions holdtergiven value op.

more general than Markov Decision Processes (MDPs) [18fetbre all the work presented here
is directly applicable to MDPs.

V*(s) = miR {C’(s, a,s') + P(s'|s,a)V*(s") (@D)]
ac
s’eS
Definition 1 (reachability assumption)An SSP satisfies the reachability assumption if, fos @l S,
there exists € G such thatP,.« (s, s¢) > 0.

Given an SSFS, if a goal state can be reached with positive probabilityrfrevery states € S,
then the reachability assumption (Definition 1) holdsSand0 < V*(s) < oo [19]. OnceV* is
known, any optimal policyr* can be extracted froii* by substituting the operatatin by argmin
in equation (1).

A possible approach to computé* is the value iteration algorithm: defingi*!(s) as in (1)

with V? in the right hand side instead &f* and the sequenc&/°, V! ... V*) converges to
V* ask — oo [19]. The process of computing**! from V* is known as Bellman up-
date andV’(s) can be initialized with an admissible heuristié(s), i.e., a lower bound for
V*. In practice we are interested in reachingonvergence, that is, given find V' such that
max, |V (s) —min, Y, [C(s,a,s") + P(s'|s,a)V(s')]| < e. The following well-known result is
necessary in most of our proofs [2, Assumption 2.2 and Lemutja 2

Theorem 1. Given an SSIB, if the reachability assumption holds f8f then the admissibility and
monotonicity ofl” are preserved through the Bellman updates.

3 Trajectory-Based Short-Sighted Stochastic SSPs

Short-sighted Stochastic Path Problems (short-sight&$H3] are a special case of SSPs in which
the original problem is transformed into a smaller one bypi(uning the state space; and (ii) adding
artificial goal states to heuristically guide the searchai@s the goals of the original problem.
Depth-based short-sighted SSPs are defined based on the-distiance between states [1]:
Definition 2 (action-distance) The non-symmetric action-distanégs, s’) between two statesand
s"is argming {7 = (s,501),...,5k-1),s')|I7 and T is a trajectory}.
Definition 3 (Depth-Based Short-Sighted SSEjiven an SSB = (S, s, G, A, P, ('), a states €
S,t > 0and aheuristidd, the(s, t)-depth-based short-sighted SSP, = (S, ;. s, Gs 1, A, P, Cs 1)
associated witly is defined as:

o S, ={s' €8s, ) < 1};

e G, ={s'€8S|i(s,s') =t} U(GNSs,);

/ 1 1 i 1
o Csi(s,a,8") = {C(S 0, 8") + H(s") f 5" € Gy

. Vs’ € Sgs,ac As" €8S
C(s' a,s") otherwise ’ $:t) ' st

Figure 1(b) shows, for different values ofS;, ; for the SSP in Figure 1(a); for instanceti= 2
thenS,, 2 = {so, 51,5}, s2, 55} andG,, 2 = {s2, s5}. In the example shown in Figure 1(b), we can



see that generation 8f,, ; is independent of the trajectories probabilities: ffet 2, s, € S;, 2 and
sh & Sg,.2, NOWEVerPy.x (S0, 52) = 0.16 < Prax(s0, s3) = 0.75% ~ 0.42.

Definition 4 (Trajectory-Based Short-Sighted SSR3iven an SSFS = (S,s0,G,A, P, C), a
states € S, p € [0,1] and a heuristicH, the (s, p)-trajectory-based short-sighted SSR, =
(Ss,p,5,Gs,p, A, P, Cs ) associated witl$ is defined as:

e S,,={s €S|35eSanda € As.t. Pyax(s,5) > pand P(s'|5,a) > 0};
e G, ,=(GNS;,)U(Ss,N{s" €S|Pnax(s,s") < p});

C(s',a,8")+ H(s") ifs" € G,
o (5 (s a,8") = {C(s’,a:s”) otherwis;p , Vs eSs,ach " €S,

For simplicity, whenH is not clear by context nor explicit, theii(s) = 0 for all s € S.

Our novel model, the trajectory-based short-sighted S®Rfir(ition 4), addresses the issue of
states with low trajectory probability by explicitly defirg its state spac8, , based on maxi-
mum probability of a trajectory betweenand the candidate stat@s(Pn.x(s,s’)). Figure 1(c)
shows, for all values op € [0, 1], the trajectory-base8,, , for the SSP in Figure 1(a): for in-
stance, ifp = 0.75% thenSy, o752 = {s0, 51, 81, $h, 85, s} andGy, .75 = {s1, s¢}. This example
shows how trajectory-based short-sighted SSP can managetainty efficiently: forp = 0.753,
ISs,.p| = 6 and the goal of the original SS&; is already included i1$,, , while, for the depth-
based short-sighted SSRg, € S, only for ¢ > 4 case in whichHS;, ;| = |S| = 8.

Notice that the definition 08, , cannot be simplified tds € S|Pyax(s,8) > p} since not all
the resulting states of actions would be include®ir,. For example, conside§ = {s, s’,s"},
P(s'|s,a) = 0.9 andP(s"|s,a) = 0.1, then forp € (0.1,1], {§ € S|Pmax(s,§) > p} = {s,5'},
generating an invalid SSP since not all the resulting statesvould be contained in the model.

4 Short-Sighted Probabilistic Planner

The Short-Sighted Probabilistic Planner (SSiPP) is anrilgo that solves SSPs based on short-
sighted SSPs [1]. SSiPP is reviewed in Algorithm 1 and césefsteratively generating and solving
short-sighted SSPs of the given SSP. Due to the reducedfsize short-sighted problems, SSiPP
solves each of them by computing a closed policy w.r.t. thefial state. Therefore, we obtain
a “fail-proof” solution for each short-sighted SSP, thushis solution is directly executed in the
environment, then replanning is not needed until an awdifigbal is reached. Alternatively, an
anytime behavior is obtained if the execution of the comghiesed policy for the short-sighted
SSP is simulated (Algorithm 1 line 4) until an artificial gogl is reached and this procedure is
repeated, starting,, until convergence or an interruption.

In [1], we proved that SSiPP always terminates and is asyimptly optimal for depth-based short-
sighted SSPs. We generalize the results regarding SSiP@ Ipyoviding the sufficient conditions
for the generation of short-sighted problems (Algorithniirle 1) in Definition 5; and (ii) proving
that SSiIPP always terminates (Theorem 3) and is asympgtgtmatimal (Corollary 4) when the
short-sighted SSP generator respects Definition 5. Ndtiag by definition, both depth-based and
trajectory-based short-sighted SSPs meet the sufficiemlitons presented on Definition 5.

Definition 5. Given an SSRS, s, G, A, P, C), the sufficient conditions on the short-sighted SSPs
(8',8,G',A, P',C") returned by the generator in Algorithm 1 line 1 are:

1. GNS CG;
2.5¢G—=5¢G';and

3. foralls € S,a € Aands’ € S’ \ G/, if P(s|s’,a) > 0thens € S’ and P'(s|s',a) =
P(s|s', a).

Lemma 2. SSiPP performs Bellman updates on the original SSP



SSPP(SSK = (§, s0,G, A, P,C), H a heuristic forV* andparamsthe parameters to generate
short-sighted SSPs)

begin
V <« Value function forS initialized by H
S < So
while s ¢ G do
(S',5,G',A, P,C") +- GENERATE-SHORT-SIGHTED-SSPS, 5, V, paramg
(#*,V*) + OPTIMAL-SSP-®LVER((S,s,G,A, P,C"), V)
forall s’ € §'(#*,s) do
| V() < V*(s)
while s ¢ G’ do
| s« execute-actiori(*(s))
rr-;turn Vv
end

Algorithm 1: SSiPP algorithm [1]. GNERATE-SHORT-SIGHTED-SSP represents a procedure to
generate short-sighted SSPs, either depth-based orttigjdrased. In the former caparams=t
andparams= p for the latter. @TIMAL-SSP-®LVER returns an optimal policy™* w.r.t. s for S
andV* associated ta*, i.e.,VV* needs to be defined only fere S(7*, s¢).

Proof. In order to show that SSiPP performs Bellman updates intlglicconsider the loop
in line 2 of Algorithm 1. Since ®TIMAL-SOLVER computesV*, by definition of short-
sighted SSP: (i)f/*(s(;) equalsV (sg) for all s¢ € G', therefore the value o (sg) remains
the same; and (imingea Y., cs [C(s,a,8") + P(s']s,a)V(s")] < V*(s) for s € S'\ G,
i.e., the assignmenV(s) « V* is equivalent to at least one Bellman update Wis), be-
causeV is a lower bound onV* and Theorem 1. Because ¢ G’ and Definition 5,
mingea [Y,es C(s,a,8') + P(s'|s,a)V(s')] < V*(s) is equivalent to the one Bellman update
in the original SSKS. O

Theorem 3. Given an SSB = (S, so, G, A, P, C) such that the reachability assumption holds, an
admissible heuristi¢/ and a short-sighted problem generator that respects Dafim8, then SSiPP
always terminates.

Proof. Since QPTIMAL-SOLVER always finishes and the short-sighted SSP is an SSP by dafiniti
then a goal state of the short-sighted SSP is always reached, therefore theitoline 3 of
Algorithm 1 always finishes. ¢ € G, then SSiPP terminates in this iteration. Otherwisg,

is an artificial goal ands # s (Definition 5), i.e.,sq differs from the state used as initial state
for the short-sighted SSP generation. Thus another iberati SSiPP is performed using; as

s. Suppose, for contradiction purpose, that every goal s&stehed during SSiPP execution is an
artificial goal, i.e., SSiPP does not terminate. Then irdigitnany short-sighted SSPs are solved.
SinceS is finite, then there exists € S that is updated infinitely often, therefoié(s) — oo.
However,V*(s) < oo by the reachability assumption. Since SSiPP performs Bellupdates
(Lemma 2) therV/ (s) < V*(s) by monotonicity of Bellman updates (Theorem 1) and admilétyib
of H, a contradiction. Thus every execution of SSiIPP reachesbstiates;, € G and therefore
terminates. O

Corollary 4. Under the same assumptions of Theorem 3, the sequéngé’,,--- ,V,), where
V,=H andV, = SSiPRS,t,V,_,), converges t&’* ast — oo for all s € S(7*, sg).

Proof. LetS* C S be the set of states being visited infinitely many times. @}e8&(7*, so) C S*
since a partial policy cannot be executed ad infinitum witheaching a state in which it is not
defined. Since SSiPP performs Bellman updates in the oli@8®& space (Lemma 2) and ev-
ery execution of SSiPP terminates (Theorem 3), then we cam thie sequence of lower bounds
Vo, V4, -+, V,) generated by SSiPP as asynchronous value iteration. Thergemce o/, _, (s)

to V*(s) ast — oo forall s € S(7*, s9) C S* follows by [2, Proposition 2.2, p. 27] and guarantees
the convergence of SSiPP. ]
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Figure 2: (a) Map of the triangle tireworld for the sizes 1,&8. Circles (squares) represent
locations in which there is one (no) spare tire. The shadegaf represent, for each location
max, P(car reachesand the tire is not flat when following the polieyfrom sg). (b) Log-lin plot
of the state space siz{S() and the size of the states reachable frgmvhen following the optimal
policy 7* (|S(7*, so)|) versus the number of the triangle tireworld problem.

5 Experiments

We present two sets of experiments using the triangle tidelaroblems [9, 11, 20], a series of
probabilistic interesting problems [14] in which a car hadravel between locations in order to
reach a goal location from its initial location. The roads mpresented as directed graph in a shape
of a triangle and, every time the car moves between locatmfigt tire happens with probability
0.5. Some locations have a spare tire and in these locationsatheao deterministically replace
its flat tire by new one. When the car has a flat tire, it cannohghats location, therefore the car
can get stuck in locations that do not have a spare tire (dedd). Figure 2(a) depicts the map of
the triangle tireworld problems 1, 2 and 3 and Figure 2(bghthe size ofS andS(7n*, s¢) for
problems up to size 60. For example, the problem number 3 &idscations, i.e., 28 nodes in the
corresponding graph on Figure 2(a), its state space ha®19&&s and its optimal policy reaches
8190 states.

Every triangle tireworld problem is a probabilistic intstiag problem [14]: there is only one policy
that reaches the goal with probabilityand all the other policies have probability at mosi of
reaching the goal. Also, the solution based on the shor&ghtms probability.52" ! of reaching
the goal, wheren is the problem number. This property is illustrated by thed&s of gray in
Figure 2(a) that represents, for each locatipmax, P(car reache$ and the tire is not flat when
following the policyr from sg).

For the experiments in this section, we use the zero-ha&ufistall the planners, i.e¥ (s) = 0 for

all s € S and LRTDP [4] as ®@TIMAL-SOLVER for SSiPP. For all planners, the parametéfor
e-convergence) is set tt)~*. For UCT, we disabled the random rollouts because the piiitiyab
of any policy other than the optimal policy to reach a dead-israt least).5 therefore, with high-
probability, UCT would assigmo (cost of a dead-end) as the cost of all the states includiag th
initial state.

The experiments are conducted in a Linux machine with 4 canesing at 3.07GHz using MDP-
SIM [9] as environment simulator. The following terminologs used for describing the experi-
ments:round, the computation for a solution for the given SSP; amd, a set of rounds in which
learning is allowed between rounds, i.e., the knowledgainbtl from one round can be used to
solve subsequent rounds. The solution computed duringaneris simulated by MDPSIM in a
client-server loop: MDPSIM sends a statand requests an action from the planner, then the plan-
ner replies by sending the actianto be executed is. The evaluation is done by the number of
rounds simulated by MDPSIM that reached a goal state. Theémuamt number of actions allowed
per round i2000 and rounds that exceed this limit are stopped by MDPSIM awcthded as failure,
i.e., goal not reached.



Triangle Tireworld Problem Number
[ Planner 5 1 I0 [ 157 20 [ 25 [ 30 [ 35 [ 40 ] 45 [ 50 | 55 [ 60
SSiPP depth=8 | 50.0 | 40.7 | 41.2 | 40.8 | 41.1 | 41.0| 40.9| 40.0 | 40.6 | 40.8 | 40.3| 40.4
UCT 50.0 [ 50.0 | 50.0 | 50.0| 50.0 | 43.1| 15.7| 12.1| 82| 68| 50| 4.0

[ SSiPP trajectory] 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |

Table 1: Number of rounds solved out of 50 for experiment ioti®a 5.1. Results are averaged
over 10 runs and th85% confidence interval is always less thaf. In all the problems, SSiPP
using trajectory-based short-sighted SSPs solves allGiheuid in all the 10 runs, therefore 8%
confidence interval i8.0 for all the problems. Best results shown in bold font.

Triangle Tireworld Problem Number

[ Planner 5 [ 10 15 ] 20 [ 25 ] 30 [ 35 [ 40 | 45 [ 50 [ 55 | 60
SSiPP depth=8 | 50.0 | 45.4 | 412 423 ] 41.2| 441 424] 32.7] 206 141| 99| 7.0
LRTDP 50.0| 23.0| 141| 0.3

UCT (4,100) 50.0 | 50.0 | 50.0 | 48.8 | 24.0| 123 | 65| 40| 25| 13| 10| 0.7
UCT (8, 100) 50.0 | 50.0 | 50.0 | 46.3 | 24.0| 123 | 6.7| 3.7| 22| 12| 10| 0.6
UCT (2,100) 50.0| 50.0| 50.0 | 49.5| 23.2| 120| 75| 35| 22| 12| 10| 06

SSiPPp = 1.0 50.0 | 279 29.1| 26.8 | 26.0 | 26.6 | 28.6 | 27.2 | 26.6 | 27.6 | 26.2 | 26.9
SSiPPp = 0.50 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0
SSiPPp = 0.25 50.0 | 50.0 | 50.0 | 50.0 | 47.6 | 45.0 | 41.1 | 42.7| 41.9| 40.7| 40.1 | 40.4
SSiPPp = 0.125 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 49.8 | 37.4 | 26.4 | 18.9

Table 2: Number of rounds solved out of 50 for experiment inti®a 5.2. Results are averaged
over 10 runs and the5% confidence interval is always less tha6. UCT (¢, w) represents UCT
usingc as bias parameter andsamples per decision. In all the problems, trajectory-th&SiPP
for p = 0.5 solves all the 50 round in all the 10 runs, therefor®i% confidence interval i8.0 for

all the problems. Best results shown in bold font.

5.1 Fixed number of search nodes per decision

In this experiment, we compare the performance of UCT, dbpded SSiPP, and trajectory-based
SSiPP with respect to the number of nodes explored by degtbebSSiPP. Formally, to decide what
action to apply in a given statg each planner is allowed to use at mést= |S, ;| search nodes,
i.e., the size of the search space is bounded by the equivalegfshort-sighted SSP. We choase
equals tos since it obtains the best performance in the triangle tirehproblems [1]. Given the
search nodes budg#, for UCT we sample the environment until the search treeainaf3 nodes;
and for trajectory-based SSiPP we yse argmax,{|S; ,| s.t. B > [S; [}

The methodology for this experiment is as follows: for eacbbpem, 10 runs of 50 rounds are
performed for each planner using the search nodes bugigetie results, averaged over the 10 runs,
are presented in Table 1. We set as time and memory cut-ofiBstemd 8 Gb, respectively, and
UCT for problems 35 to 60 was the only planner preempted b¥itine cut-off. Trace-based SSiPP
outperforms both depth-based SSiPP and UCT, solving ali@heunds in all the 10 runs for all the
problems.

5.2 Fixed maximum planning time

In this experiment, we compare planners by limiting the mmaxi planning time. The methodology
used in this experiment is similar to the one in IPPC’04 arfd@R6: for each problem, planners
need to solve 1 run of 50 rounds in 20 minutes. For this expartnthe planners are allowed to per-
form internal simulations, for instance, a planner can ddénminutes solving rounds using internal
simulations and then use the computed policy to solve theined) 50 rounds through MDPSIM in
the remaining 5 minutes. The memory cut-off is 3Gh.

For this experiment, we consider the following plannergqtbiédased SSiPP for= 8 [1], trajectory-
based SSiPP fop € {1.0,0.5,0.25,0.125}, LRTDP using3-look-ahead [1] and 12 different
parametrizations of UCT obtained by using the bias paramete {1,2,4,8} and the number
of samples per decisiom € {10, 100,1000}. The winners of IPPC’04, IPPC’06 and IPPC’08 are



omitted since their performance on the triangle tireworiolhyems are strictly dominated by depth-
base SSiPP far = 8. Table 2 shows the results of this experiment and due to djmaitations we
show only the top 3 parametrizations of UCT: lst= 4, w = 100); 2nd(c = 8, w = 100); and 3rd
(¢ =2,w = 100).

All the four parametrizations of trajectory-based SSiPBerform the other planners for problems
of size equal or greater than 45. Trajectory-based SSiRR) psi= 0.5 is especially noteworthy
because it achieves the perfect score in all problemsitireaches a goal state in all the 50 rounds
in all the 10 runs for all the problems. The same happeng fer 0.125 and problems up to size
40. For larger problems, trajectory-based SSiPP uging 0.125 reaches the 20 minutes time
cut-off before solving 50 rounds, however all the solvedndsisuccessfully reach the goal. This
interesting behavior of trajectory-based SSiPP for thengie tireworld can be explained by the
following theorem:

Theorem 5. For the triangle tireworld, trajectory-based SSiPP usingadmissible heuristic never
falls in a dead-end fop € (0.5°1,0.5"] fori € {1,3,5,... }.

Proof Sketch.The optimal policy for the triangle tireworld is to followéHongest path: move from
the initial locationl, to the goal locatior passing through locatiolp, wherely, [. andls are the
vertices of the triangle formed by the problem’s map. Thénfiaim /.. to I is unique, i.e., there

is only one applicable move-car action for all the locationthis path. Therefore all the decision
making to find the optimal policy happens between the looatigp andl.. Each locationl’ in the
path fromi, to /. has either two or three applicable move-car actions and Yes te the set of
locations!’ with three applicable move-car actionsMs Every location’ € N is reachable from

lp by applying an even number of move-car actions (Figure Z{@j)the three applicable move-car
actions inl’ are: (i) the optimal action., i.e., move the car towards; (ii) the actionas that moves
the car towardgg; and (jii) the actior,, that moves the car parallel to the shortest-path figho

la. The location reached hy, does not have a spare tire, therefapds never selected by a greedy
choice over any admissible heuristic since it reaches a-deddvith probability0.5. The locations
reached by applying eithet. or a have a spare tire and the greedy choice between them depends
on the admissible heuristic used, thus might be selected instead @f. However, after applying
ag, only one move-car action is available and it reaches a location that does not have re spa
tire. Therefore, the greedy choice betweerandag considering two or more move-car actions is
optimal under any admissible heuristic: every sequencetifrss (a¢, a, . .. ) reaches a dead-end
with probability at leas6.5 and at least one sequence of actions starting ayitimas probability O to
reach a dead-end, e.g., the optimal solution.

Given p, we denote at., , the set of all locations corresponding to statesir, and asl, the
location corresponding to the state Thus,L, , contains all the locations reachable frégrusing

up tom = |log, s p] + 1 move-car actions. lin is even ands € N, then every location in
L., N N represents a state either @ , or at least two move-car actions away from any state
in G, ,. Therefore the solution of thes, p)-trajectory-based short-sighted SSP only chooses the
action a. to move the car. Also, since: is even, every state used by SSiPP for generating
(s, p)-trajectory-based short-sighted SSPs has N. Therefore, for even values of, i.e., for

p € (0.5°71 0.5 andi € {1,3,5,...}, trajectory-based SSiPP always chooses the actiphs
move the car td., thus avoiding the all dead-ends. O

6 Conclusion

In this paper, we introduced trajectory-based short-sig®iSPs, a new model to manage uncertainty
in probabilistic planning problems. This approach cossiétpruning the state space based on the
most likely trajectory between states and defining artifipial states that guide the solution towards
the original goals. We also defined a class of short-sightedets that includes depth-based and
trajectory-based short-sighted SSPs and proved that SBiRlys terminates and is asymptotically
optimal for short-sighted models in this class.

We empirically compared trajectory-based SSiPP with dépatfed SSiPP and other state-of-the-art
planners in the triangle tireworld. Trajectory-based $Silatperforms all the other planners and it
is the only planner able to scale up to problem number 60, blgmin which the optimal solution
contains approximately0™ states, under the IPPC evaluation methodology.
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