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Abstract

Probabilistic planning captures the uncertainty of plan execution by probabilisti-
cally modeling the effects of actions in the environment, and therefore the proba-
bility of reaching different states from a given state and action. In order to compute
a solution for a probabilistic planning problem, planners need to manage the un-
certainty associated with the different paths from the initial state to a goal state.
Several approaches to manage uncertainty were proposed, e.g., consider all paths
at once, perform determinization of actions, and sampling.In this paper, we in-
troduce trajectory-based short-sighted Stochastic Shortest Path Problems (SSPs),
a novel approach to manage uncertainty for probabilistic planning problems in
which states reachable with low probability are substituted by artificial goals that
heuristically estimate their cost to reach a goal state. We also extend the theoretical
results of Short-Sighted Probabilistic Planner (SSiPP) [1] by proving that SSiPP
always finishes and is asymptotically optimal under sufficient conditions on the
structure of short-sighted SSPs. We empirically compare SSiPP using trajectory-
based short-sighted SSPs with the winners of the previous probabilistic planning
competitions and other state-of-the-art planners in the triangle tireworld problems.
Trajectory-based SSiPP outperforms all the competitors and is the only planner
able to scale up to problem number 60, a problem in which the optimal solution
contains approximately1070 states.

1 Introduction

The uncertainty of plan execution can be modeled by using probabilistic effects in actions, and
therefore the probability of reaching different states from a given state and action. This search space,
defined by the probabilistic paths from the initial state to agoal state, challenges the scalability of
planners. Planners manage the uncertainty by choosing a search strategy to explore the space. In
this work, we present a novel approach to manage uncertaintyfor probabilistic planning problems
that improves its scalability while still being optimal.

One approach to manage uncertainty while searching for the solution of probabilistic planning prob-
lems is to consider the complete search space at once. Examples of such algorithms are value
iteration and policy iteration [2]. Planners based on thesealgorithms return a closed policy, i.e., a
universal mapping function from every state to the optimal action that leads to a goal state. Assum-
ing the model correctly captures the cost and uncertainty ofthe actions in the environment, closed
policies are extremely powerful as their execution never “fails,” and the planner does not need to
be re-invoked ever. Unfortunately the computation of such policies is prohibitive in complexity as
problems scale up. Value iteration based probabilistic planners can be improved by combining asyn-
chronous updates and heuristic search [3–7]. Although these techniques allow planners to compute
compact policies, in the worst case, these policies are still linear in the size of the state space, which
itself can be exponential in the size of the state or goals.
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Another approach to manage uncertainty is basically to ignore uncertainty during planning, i.e., to
approximate the probabilistic actions as deterministic actions. Examples of replanners based on
determinization are FF-Replan [8], the winner of the first International Probabilistic Planning Com-
petition (IPPC) [9], Robust FF [10], the winner of the third IPPC [11] and FF-Hindsight [12, 13].
Despite the major success of determinization, this simplification in the action space results in algo-
rithms oblivious to probabilities and dead-ends, leading to poor performance in specific problems,
e.g., the triangle tireworld [14].

Besides the action space simplification, uncertainty management can be performed by simplifying
the problem horizon, i.e., look-ahead search [15]. Based onsampling, the Upper Confidence bound
for Trees (UCT) algorithm [16] approximates the look-aheadsearch by focusing the search in the
most promising nodes.

The state space can also be simplified to manage uncertainty in probabilistic planning. One example
of such approach is Envelope Propagation (EP) [17]. EP computes an initial partial policyπ and
then prunes all the states not considered byπ. The pruned states are represented by a special meta
state. Then EP iteratively improves its approximation of the state space. Previously, we introduced
short-sighted planning [1], a new approach to manage uncertainty in planning problems: given a
states, only the uncertainty structure of the problem in the neighborhood ofs is taken into account
and the remaining states are approximated by artificial goals that heuristically estimate their cost to
reach a goal state.

In this paper, we introduced trajectory-based short-sighted Stochastic Shortest Path Problems
(SSPs), a novel model to manage uncertainty in probabilistic planning problems. Trajectory-based
short-sighted SSPs manage uncertainty by pruning the statespace based on the most likely trajectory
between states and defining artificial goal states that guidethe solution towards the original goal. We
also contribute by defining a class of short-sighted models and proving that the Short-Sighted Proba-
bilistic Planner (SSiPP) [1] always terminates and is asymptotically optimal for models in this class
of short-sighted models.

The remainder of this paper is organized as follows: Section2 introduces the basic concepts and
notation. Section 3 defines formally trajectory-based short-sighted SSPs. Section 4 presents our
new theoretical results for SSiPP. Section 5 empirically evaluates SSiPP using trajectory-based short-
sighted SSPs with the winners of the previous IPPCs and otherstate-of-the-art planner. Section 6
concludes the paper.

2 Background

A Stochastic Shortest Path Problem (SSP) is defined by the tuple S = 〈S, s0,G,A, P, C〉, in which
[1, 18]: S is the finite set of state;s0 ∈ S is the initial state;G ⊆ S is the set of goal states;A is
the finite set of actions;P (s′|s, a) represents the probability thats′ ∈ S is reached after applying
actiona ∈ A in states ∈ S; C(s, a, s′) ∈ (0,+∞) is the cost incurred when states′ is reached after
applying actiona in states and this function is required to be defined for alls ∈ S, a ∈ A, s′ ∈ S

such thatP (s′|s, a) > 0.

A solution to an SSP is a policyπ, i.e., a mapping fromS to A. If π is defined over the entire space
S, thenπ is a closed policy. A policyπ defined only for the states reachable froms0 when following
π is a closed policy w.r.t.s0 andS(π, s0) denotes this set of reachable states. For instance, in the
SSP depicted in Figure 1(a), the policyπ0 = {(s0, a0), (s

′
1, a0), (s

′
2, a0), (s

′
3, a0)} is a closed policy

w.r.t. s0 andS(π0, s0) = {s0, s
′
1, s

′
2, s

′
3, sG}.

Given a policyπ, we define trajectory as a sequenceTπ = 〈s(0), . . . , s(k)〉 such that, for all
i ∈ {0, · · · , k − 1}, π(s(i)) is defined andP (s(i+1)|s(i), π(s(i))) > 0. The probability of a tra-

jectory Tπ is defined asP (Tπ) =
∏i<|Tπ|

i=0 P (s(i+1)|s(i), π(s(i))) and maximum probability of a
trajectory between two statesPmax(s, s

′) is defined asmaxπ P (Tπ = 〈s, . . . , s′〉).

An optimal policyπ∗ for an SSP is any policy that always reaches a goal state when followed from
s0 and also minimizes the expected cost ofTπ∗ . For a given SSP,π∗ might not be unique, however
the optimal value functionV ∗, i.e., the mapping from states to the minimum expected cost to reach
a goal state, is unique.V ∗ is the fixed point of the set of equations defined by (1) for alls ∈ S \ G
andV ∗(s) = 0 for all s ∈ G. Notice that under the optimality criterion given by (1), SSPs are
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Figure 1: (a) Example of an SSP. The initial state iss0, the goal state issG, C(s, a, s′) = 1, ∀s ∈ S,
a ∈ A ands′ ∈ S. (b) State-space partition of (a) according to the depth-based short-sighted SSPs:
Gs0,t contains all the states in dotted regions which their conditions hold for the given value oft. (c)
State-space partition of (a) according to the trajectory-based short-sighted SSPs:Gs0,ρ contains all
the states in dotted regions which their conditions hold forthe given value ofρ.

more general than Markov Decision Processes (MDPs) [19], therefore all the work presented here
is directly applicable to MDPs.

V ∗(s) = min
a∈A

∑

s′∈S

[

C(s, a, s′) + P (s′|s, a)V ∗(s′)
]

(1)

Definition 1 (reachability assumption). An SSP satisfies the reachability assumption if, for alls ∈ S,
there existssG ∈ G such thatPmax(s, sG) > 0.

Given an SSPS, if a goal state can be reached with positive probability from every states ∈ S,
then the reachability assumption (Definition 1) holds forS and0 ≤ V ∗(s) < ∞ [19]. OnceV ∗ is
known, any optimal policyπ∗ can be extracted fromV ∗ by substituting the operatormin by argmin
in equation (1).

A possible approach to computeV ∗ is the value iteration algorithm: defineV i+1(s) as in (1)
with V i in the right hand side instead ofV ∗ and the sequence〈V 0, V 1, . . . , V k〉 converges to
V ∗ as k → ∞ [19]. The process of computingV i+1 from V i is known as Bellman up-
date andV 0(s) can be initialized with an admissible heuristicH(s), i.e., a lower bound for
V ∗. In practice we are interested in reachingǫ-convergence, that is, givenǫ, find V such that
maxs |V (s)−mina

∑

s′ [C(s, a, s′) + P (s′|s, a)V (s′)]| ≤ ǫ. The following well-known result is
necessary in most of our proofs [2, Assumption 2.2 and Lemma 2.1]:

Theorem 1. Given an SSPS, if the reachability assumption holds forS, then the admissibility and
monotonicity ofV are preserved through the Bellman updates.

3 Trajectory-Based Short-Sighted Stochastic SSPs

Short-sighted Stochastic Path Problems (short-sighted SSPs) [1] are a special case of SSPs in which
the original problem is transformed into a smaller one by: (i) pruning the state space; and (ii) adding
artificial goal states to heuristically guide the search towards the goals of the original problem.
Depth-based short-sighted SSPs are defined based on the action-distance between states [1]:

Definition 2 (action-distance). The non-symmetric action-distanceδ(s, s′) between two statess and
s′ is argmink{Tπ = 〈s, s(1), . . . , s(k−1), s

′〉|∃π andTπ is a trajectory}.

Definition 3 (Depth-Based Short-Sighted SSP). Given an SSPS = 〈S, s0,G,A, P, C〉, a states ∈
S, t > 0 and a heuristicH, the(s, t)-depth-based short-sighted SSPSs,t = 〈Ss,t, s,Gs,t,A, P, Cs,t〉
associated withS is defined as:

• Ss,t = {s
′ ∈ S|δ(s, s′) ≤ t};

• Gs,t = {s
′ ∈ S|δ(s, s′) = t} ∪ (G ∩ Ss,t);

• Cs,t(s
′, a, s′′) =

{

C(s′, a, s′′) +H(s′′) if s′′ ∈ Gs,t

C(s′, a, s′′) otherwise
, ∀s′ ∈ Ss,t, a ∈ A, s′′ ∈ Ss,t

Figure 1(b) shows, for different values oft, Ss0,t for the SSP in Figure 1(a); for instance, ift = 2
thenSs0,2 = {s0, s1, s

′
1, s2, s

′
2} andGs0,2 = {s2, s

′
2}. In the example shown in Figure 1(b), we can
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see that generation ofSs0,t is independent of the trajectories probabilities: fort = 2, s2 ∈ Ss0,2 and
s′3 6∈ Ss0,2, howeverPmax(s0, s2) = 0.16 < Pmax(s0, s

′
3) = 0.753 ≈ 0.42.

Definition 4 (Trajectory-Based Short-Sighted SSP). Given an SSPS = 〈S, s0,G,A, P, C〉, a
states ∈ S, ρ ∈ [0, 1] and a heuristicH, the (s, ρ)-trajectory-based short-sighted SSPSs,ρ =
〈Ss,ρ, s,Gs,ρ,A, P, Cs,ρ〉 associated withS is defined as:

• Ss,ρ = {s′ ∈ S|∃ŝ ∈ S anda ∈ A s.t.Pmax(s, ŝ) ≥ ρ andP (s′|ŝ, a) > 0};

• Gs,ρ = (G ∩ Ss,ρ) ∪ (Ss,ρ ∩ {s
′ ∈ S|Pmax(s, s

′) < ρ});

• Cs,ρ(s
′, a, s′′) =

{

C(s′, a, s′′) +H(s′′) if s′′ ∈ Gs,ρ

C(s′, a, s′′) otherwise
, ∀s′ ∈ Ss,ρ, a ∈ A, s′′ ∈ Ss,ρ

For simplicity, whenH is not clear by context nor explicit, thenH(s) = 0 for all s ∈ S.

Our novel model, the trajectory-based short-sighted SSPs (Definition 4), addresses the issue of
states with low trajectory probability by explicitly defining its state spaceSs,ρ based on maxi-
mum probability of a trajectory betweens and the candidate statess′ (Pmax(s, s

′)). Figure 1(c)
shows, for all values ofρ ∈ [0, 1], the trajectory-basedSs0,ρ for the SSP in Figure 1(a): for in-
stance, ifρ = 0.753 thenSs0,0.753 = {s0, s1, s

′
1, s

′
2, s

′
3, sG} andGs0,0.75 = {s1, sG}. This example

shows how trajectory-based short-sighted SSP can manage uncertainty efficiently: forρ = 0.753,
|Ss0,ρ| = 6 and the goal of the original SSPsG is already included inSs0,ρ while, for the depth-
based short-sighted SSPs,sG ∈ Ss0,t only for t ≥ 4 case in which|Ss0,t| = |S| = 8.

Notice that the definition ofSs,ρ cannot be simplified to{ŝ ∈ S|Pmax(s, ŝ) ≥ ρ} since not all
the resulting states of actions would be included inSs,ρ. For example, considerS = {s, s′, s′′},
P (s′|s, a) = 0.9 andP (s′′|s, a) = 0.1, then forρ ∈ (0.1, 1], {ŝ ∈ S|Pmax(s, ŝ) ≥ ρ} = {s, s′},
generating an invalid SSP since not all the resulting statesof a would be contained in the model.

4 Short-Sighted Probabilistic Planner

The Short-Sighted Probabilistic Planner (SSiPP) is an algorithm that solves SSPs based on short-
sighted SSPs [1]. SSiPP is reviewed in Algorithm 1 and consists of iteratively generating and solving
short-sighted SSPs of the given SSP. Due to the reduced size of the short-sighted problems, SSiPP
solves each of them by computing a closed policy w.r.t. theirinitial state. Therefore, we obtain
a “fail-proof” solution for each short-sighted SSP, thus ifthis solution is directly executed in the
environment, then replanning is not needed until an artificial goal is reached. Alternatively, an
anytime behavior is obtained if the execution of the computed closed policy for the short-sighted
SSP is simulated (Algorithm 1 line 4) until an artificial goalsa is reached and this procedure is
repeated, startingsa, until convergence or an interruption.

In [1], we proved that SSiPP always terminates and is asymptotically optimal for depth-based short-
sighted SSPs. We generalize the results regarding SSiPP by:(i) providing the sufficient conditions
for the generation of short-sighted problems (Algorithm 1,line 1) in Definition 5; and (ii) proving
that SSiPP always terminates (Theorem 3) and is asymptotically optimal (Corollary 4) when the
short-sighted SSP generator respects Definition 5. Notice that, by definition, both depth-based and
trajectory-based short-sighted SSPs meet the sufficient conditions presented on Definition 5.

Definition 5. Given an SSP〈S, s0,G,A, P, C〉, the sufficient conditions on the short-sighted SSPs
〈S′, ŝ,G′,A, P ′, C ′〉 returned by the generator in Algorithm 1 line 1 are:

1. G ∩ S
′ ⊆ G

′;

2. ŝ 6∈ G→ ŝ 6∈ G
′; and

3. for all s ∈ S, a ∈ A and s′ ∈ S
′ \ G′, if P (s|s′, a) > 0 thens ∈ S

′ andP ′(s|s′, a) =
P (s|s′, a).

Lemma 2. SSiPP performs Bellman updates on the original SSPS.
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SSIPP(SSPS = 〈S, s0,G,A, P, C〉, H a heuristic forV ∗ andparamsthe parameters to generate
short-sighted SSPs)
begin

V ← Value function forS initialized byH
s← s0
while s 6∈ G do
〈S′, s,G′,A, P, C ′〉 ← GENERATE-SHORT-SIGHTED-SSP(S, s, V , params)1

(π̂∗, V̂ ∗)← OPTIMAL -SSP-SOLVER(〈S′, s,G′,A, P, C ′〉, V )
forall s′ ∈ S

′(π̂∗, s) do2

V (s′)← V̂ ∗(s′)

while s 6∈ G
′ do3

s← execute-action(̂π∗(s))4

return V
end
Algorithm 1 : SSiPP algorithm [1]. GENERATE-SHORT-SIGHTED-SSP represents a procedure to
generate short-sighted SSPs, either depth-based or trajectory-based. In the former caseparams= t
andparams= ρ for the latter. OPTIMAL -SSP-SOLVER returns an optimal policyπ∗ w.r.t. s0 for S
andV ∗ associated toπ∗, i.e.,V ∗ needs to be defined only fors ∈ S(π∗, s0).

Proof. In order to show that SSiPP performs Bellman updates implicitly, consider the loop
in line 2 of Algorithm 1. Since OPTIMAL -SOLVER computesV̂ ∗, by definition of short-
sighted SSP: (i)V̂ ∗(sG) equalsV (sG) for all sG ∈ G

′, therefore the value ofV (sG) remains
the same; and (ii)mina∈A

∑

s′∈S
[C(s, a, s′) + P (s′|s, a)V (s′)] ≤ V̂ ∗(s) for s ∈ S

′ \ G
′,

i.e., the assignmentV (s)← V̂ ∗ is equivalent to at least one Bellman update onV (s), be-
causeV is a lower bound onV̂ ∗ and Theorem 1. Becauses 6∈ G

′ and Definition 5,
mina∈A

[
∑

s′∈S
C(s, a, s′) + P (s′|s, a)V (s′)

]

≤ V̂ ∗(s) is equivalent to the one Bellman update
in the original SSPS.

Theorem 3. Given an SSPS = 〈S, s0,G,A, P, C〉 such that the reachability assumption holds, an
admissible heuristicH and a short-sighted problem generator that respects Definition 5, then SSiPP
always terminates.

Proof. Since OPTIMAL -SOLVER always finishes and the short-sighted SSP is an SSP by definition,
then a goal statesG of the short-sighted SSP is always reached, therefore the loop in line 3 of
Algorithm 1 always finishes. IfsG ∈ G, then SSiPP terminates in this iteration. Otherwise,sG
is an artificial goal andsG 6= s (Definition 5), i.e.,sG differs from the states used as initial state
for the short-sighted SSP generation. Thus another iteration of SSiPP is performed usingsG as
s. Suppose, for contradiction purpose, that every goal state reached during SSiPP execution is an
artificial goal, i.e., SSiPP does not terminate. Then infinitely many short-sighted SSPs are solved.
SinceS is finite, then there existss ∈ S that is updated infinitely often, thereforeV (s) → ∞.
However,V ∗(s) < ∞ by the reachability assumption. Since SSiPP performs Bellman updates
(Lemma 2) thenV (s) ≤ V ∗(s) by monotonicity of Bellman updates (Theorem 1) and admissibility
of H, a contradiction. Thus every execution of SSiPP reaches a goal states′G ∈ G and therefore
terminates.

Corollary 4. Under the same assumptions of Theorem 3, the sequence〈V 0, V 1, · · · , V t〉, where
V 0 = H andV t = SSiPP(S, t, V t−1), converges toV ∗ ast→∞ for all s ∈ S(π∗, s0).

Proof. Let S∗ ⊆ S be the set of states being visited infinitely many times. Clearly, S(π∗, s0) ⊆ S
∗

since a partial policy cannot be executed ad infinitum without reaching a state in which it is not
defined. Since SSiPP performs Bellman updates in the original SSP space (Lemma 2) and ev-
ery execution of SSiPP terminates (Theorem 3), then we can view the sequence of lower bounds
〈V 0, V 1, · · · , V t〉 generated by SSiPP as asynchronous value iteration. The convergence ofV t−1(s)
to V ∗(s) ast→∞ for all s ∈ S(π∗, s0) ⊆ S

∗ follows by [2, Proposition 2.2, p. 27] and guarantees
the convergence of SSiPP.
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Figure 2: (a) Map of the triangle tireworld for the sizes 1, 2 and 3. Circles (squares) represent
locations in which there is one (no) spare tire. The shades ofgray represent, for each locationl,
maxπ P (car reachesl and the tire is not flat when following the policyπ from s0). (b) Log-lin plot
of the state space size (|S|) and the size of the states reachable froms0 when following the optimal
policy π∗ (|S(π∗, s0)|) versus the number of the triangle tireworld problem.

5 Experiments

We present two sets of experiments using the triangle tireworld problems [9, 11, 20], a series of
probabilistic interesting problems [14] in which a car has to travel between locations in order to
reach a goal location from its initial location. The roads are represented as directed graph in a shape
of a triangle and, every time the car moves between locations, a flat tire happens with probability
0.5. Some locations have a spare tire and in these locations the car can deterministically replace
its flat tire by new one. When the car has a flat tire, it cannot change its location, therefore the car
can get stuck in locations that do not have a spare tire (dead-ends). Figure 2(a) depicts the map of
the triangle tireworld problems 1, 2 and 3 and Figure 2(b) shows the size ofS andS(π∗, s0) for
problems up to size 60. For example, the problem number 3 has 28 locations, i.e., 28 nodes in the
corresponding graph on Figure 2(a), its state space has 19562 states and its optimal policy reaches
8190 states.

Every triangle tireworld problem is a probabilistic interesting problem [14]: there is only one policy
that reaches the goal with probability1 and all the other policies have probability at most0.5 of
reaching the goal. Also, the solution based on the shortest path has probability0.52n−1 of reaching
the goal, wheren is the problem number. This property is illustrated by the shades of gray in
Figure 2(a) that represents, for each locationl, maxπ P (car reachesl and the tire is not flat when
following the policyπ from s0).

For the experiments in this section, we use the zero-heuristic for all the planners, i.e.,V (s) = 0 for
all s ∈ S and LRTDP [4] as OPTIMAL -SOLVER for SSiPP. For all planners, the parameterǫ (for
ǫ-convergence) is set to10−4. For UCT, we disabled the random rollouts because the probability
of any policy other than the optimal policy to reach a dead-end is at least0.5 therefore, with high-
probability, UCT would assign∞ (cost of a dead-end) as the cost of all the states including the
initial state.

The experiments are conducted in a Linux machine with 4 coresrunning at 3.07GHz using MDP-
SIM [9] as environment simulator. The following terminology is used for describing the experi-
ments:round, the computation for a solution for the given SSP; andrun, a set of rounds in which
learning is allowed between rounds, i.e., the knowledge obtained from one round can be used to
solve subsequent rounds. The solution computed during one round is simulated by MDPSIM in a
client-server loop: MDPSIM sends a states and requests an action from the planner, then the plan-
ner replies by sending the actiona to be executed ins. The evaluation is done by the number of
rounds simulated by MDPSIM that reached a goal state. The maximum number of actions allowed
per round is2000 and rounds that exceed this limit are stopped by MDPSIM and declared as failure,
i.e., goal not reached.
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Triangle Tireworld Problem Number
Planner 5 10 15 20 25 30 35 40 45 50 55 60

SSiPP depth=8 50.0 40.7 41.2 40.8 41.1 41.0 40.9 40.0 40.6 40.8 40.3 40.4
UCT 50.0 50.0 50.0 50.0 50.0 43.1 15.7 12.1 8.2 6.8 5.0 4.0
SSiPP trajectory 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Table 1: Number of rounds solved out of 50 for experiment in Section 5.1. Results are averaged
over 10 runs and the95% confidence interval is always less than1.0. In all the problems, SSiPP
using trajectory-based short-sighted SSPs solves all the 50 round in all the 10 runs, therefore its95%
confidence interval is0.0 for all the problems. Best results shown in bold font.

Triangle Tireworld Problem Number
Planner 5 10 15 20 25 30 35 40 45 50 55 60

SSiPP depth=8 50.0 45.4 41.2 42.3 41.2 44.1 42.4 32.7 20.6 14.1 9.9 7.0
LRTDP 50.0 23.0 14.1 0.3 - - - - - - - -
UCT (4, 100) 50.0 50.0 50.0 48.8 24.0 12.3 6.5 4.0 2.5 1.3 1.0 0.7
UCT (8, 100) 50.0 50.0 50.0 46.3 24.0 12.3 6.7 3.7 2.2 1.2 1.0 0.6
UCT (2, 100) 50.0 50.0 50.0 49.5 23.2 12.0 7.5 3.5 2.2 1.2 1.0 0.6
SSiPPρ = 1.0 50.0 27.9 29.1 26.8 26.0 26.6 28.6 27.2 26.6 27.6 26.2 26.9
SSiPPρ = 0.50 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
SSiPPρ = 0.25 50.0 50.0 50.0 50.0 47.6 45.0 41.1 42.7 41.9 40.7 40.1 40.4
SSiPPρ = 0.125 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 49.8 37.4 26.4 18.9

Table 2: Number of rounds solved out of 50 for experiment in Section 5.2. Results are averaged
over 10 runs and the95% confidence interval is always less than2.6. UCT (c, w) represents UCT
usingc as bias parameter andw samples per decision. In all the problems, trajectory-based SSiPP
for ρ = 0.5 solves all the 50 round in all the 10 runs, therefore its95% confidence interval is0.0 for
all the problems. Best results shown in bold font.

5.1 Fixed number of search nodes per decision

In this experiment, we compare the performance of UCT, depth-based SSiPP, and trajectory-based
SSiPP with respect to the number of nodes explored by depth-based SSiPP. Formally, to decide what
action to apply in a given states, each planner is allowed to use at mostB = |Ss,t| search nodes,
i.e., the size of the search space is bounded by the equivalent (s, t)-short-sighted SSP. We chooset
equals to8 since it obtains the best performance in the triangle tireworld problems [1]. Given the
search nodes budgetB, for UCT we sample the environment until the search tree containsB nodes;
and for trajectory-based SSiPP we useρ = argmaxρ{|Ss,ρ| s.t.B ≥ |Ss,ρ|}.

The methodology for this experiment is as follows: for each problem, 10 runs of 50 rounds are
performed for each planner using the search nodes budgetB. The results, averaged over the 10 runs,
are presented in Table 1. We set as time and memory cut-off 8 hours and 8 Gb, respectively, and
UCT for problems 35 to 60 was the only planner preempted by thetime cut-off. Trace-based SSiPP
outperforms both depth-based SSiPP and UCT, solving all the50 rounds in all the 10 runs for all the
problems.

5.2 Fixed maximum planning time

In this experiment, we compare planners by limiting the maximum planning time. The methodology
used in this experiment is similar to the one in IPPC’04 and IPPC’06: for each problem, planners
need to solve 1 run of 50 rounds in 20 minutes. For this experiment, the planners are allowed to per-
form internal simulations, for instance, a planner can spend 15 minutes solving rounds using internal
simulations and then use the computed policy to solve the required 50 rounds through MDPSIM in
the remaining 5 minutes. The memory cut-off is 3Gb.

For this experiment, we consider the following planners: depth-based SSiPP fort = 8 [1], trajectory-
based SSiPP forρ ∈ {1.0, 0.5, 0.25, 0.125}, LRTDP using3-look-ahead [1] and 12 different
parametrizations of UCT obtained by using the bias parameter c ∈ {1, 2, 4, 8} and the number
of samples per decisionw ∈ {10, 100, 1000}. The winners of IPPC’04, IPPC’06 and IPPC’08 are
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omitted since their performance on the triangle tireworld problems are strictly dominated by depth-
base SSiPP fort = 8. Table 2 shows the results of this experiment and due to spacelimitations we
show only the top 3 parametrizations of UCT: 1st(c = 4, w = 100); 2nd(c = 8, w = 100); and 3rd
(c = 2, w = 100).

All the four parametrizations of trajectory-based SSiPP outperform the other planners for problems
of size equal or greater than 45. Trajectory-based SSiPP using ρ = 0.5 is especially noteworthy
because it achieves the perfect score in all problems, i.e.,it reaches a goal state in all the 50 rounds
in all the 10 runs for all the problems. The same happens forρ = 0.125 and problems up to size
40. For larger problems, trajectory-based SSiPP usingρ = 0.125 reaches the 20 minutes time
cut-off before solving 50 rounds, however all the solved rounds successfully reach the goal. This
interesting behavior of trajectory-based SSiPP for the triangle tireworld can be explained by the
following theorem:
Theorem 5. For the triangle tireworld, trajectory-based SSiPP using an admissible heuristic never
falls in a dead-end forρ ∈ (0.5i+1, 0.5i] for i ∈ {1, 3, 5, . . . }.

Proof Sketch.The optimal policy for the triangle tireworld is to follow the longest path: move from
the initial locationl0 to the goal locationlG passing through locationlc, wherel0, lc andlG are the
vertices of the triangle formed by the problem’s map. The path from lc to lG is unique, i.e., there
is only one applicable move-car action for all the locationsin this path. Therefore all the decision
making to find the optimal policy happens between the locations l0 andlc. Each locationl′ in the
path froml0 to lc has either two or three applicable move-car actions and we refer to the set of
locationsl′ with three applicable move-car actions asN. Every locationl′ ∈ N is reachable from
l0 by applying an even number of move-car actions (Figure 2(a))and the three applicable move-car
actions inl′ are: (i) the optimal actionac, i.e., move the car towardslc; (ii) the actionaG that moves
the car towardslG; and (iii) the actionap that moves the car parallel to the shortest-path froml0 to
lG. The location reached byap does not have a spare tire, thereforeap is never selected by a greedy
choice over any admissible heuristic since it reaches a dead-end with probability0.5. The locations
reached by applying eitherac or aG have a spare tire and the greedy choice between them depends
on the admissible heuristic used, thusaG might be selected instead ofac. However, after applying
aG, only one move-car actiona is available and it reaches a location that does not have a spare
tire. Therefore, the greedy choice betweenac andaG considering two or more move-car actions is
optimal under any admissible heuristic: every sequence of actions〈aG, a, . . . 〉 reaches a dead-end
with probability at least0.5 and at least one sequence of actions starting withac has probability 0 to
reach a dead-end, e.g., the optimal solution.

Given ρ, we denote asLs,ρ the set of all locations corresponding to states inSs,ρ and asls the
location corresponding to the states. Thus,Ls,ρ contains all the locations reachable fromls using
up to m = ⌊log0.5 ρ⌋ + 1 move-car actions. Ifm is even andls ∈ N, then every location in
Ls,ρ ∩ N represents a state either inGs,ρ or at least two move-car actions away from any state
in Gs,ρ. Therefore the solution of the(s, ρ)-trajectory-based short-sighted SSP only chooses the
action ac to move the car. Also, sincem is even, every states used by SSiPP for generating
(s, ρ)-trajectory-based short-sighted SSPs hasls ∈ N. Therefore, for even values ofm, i.e., for
ρ ∈ (0.5i+1, 0.5i] andi ∈ {1, 3, 5, . . . }, trajectory-based SSiPP always chooses the actionsac to
move the car tolc, thus avoiding the all dead-ends.

6 Conclusion

In this paper, we introduced trajectory-based short-sighted SSPs, a new model to manage uncertainty
in probabilistic planning problems. This approach consists of pruning the state space based on the
most likely trajectory between states and defining artificial goal states that guide the solution towards
the original goals. We also defined a class of short-sighted models that includes depth-based and
trajectory-based short-sighted SSPs and proved that SSiPPalways terminates and is asymptotically
optimal for short-sighted models in this class.

We empirically compared trajectory-based SSiPP with depth-based SSiPP and other state-of-the-art
planners in the triangle tireworld. Trajectory-based SSiPP outperforms all the other planners and it
is the only planner able to scale up to problem number 60, a problem in which the optimal solution
contains approximately1070 states, under the IPPC evaluation methodology.
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