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Abstract
Users want inference to be both fast and accurate, but quality often comes at
the cost of speed. The field has experimented with approximate inference algo-
rithms that make different speed-accuracy tradeoffs (for particular problems and
datasets). We aim to explore this space automatically, focusing here on the case of
agenda-based syntactic parsing [12]. Unfortunately, off-the-shelf reinforcement
learning techniques fail to learn good policies: the state space is simply too large
to explore naively. An attempt to counteract this by applying imitation learning
algorithms also fails: the “teacher” follows a far better policy than anything in our
learner’s policy space, free of the speed-accuracy tradeoff that arises when ora-
cle information is unavailable, and thus largely insensitive to the known reward
functfion. We propose a hybrid reinforcement/apprenticeship learning algorithm
that learns to speed up an initial policy, trading off accuracy for speed according
to various settings of a speed term in the loss function.

1 Introduction
The nominal goal of predictive inference is to achieve high accuracy. Unfortunately, high accuracy
often comes at the price of slow computation. In practice one wants a “reasonable” tradeoff between
accuracy and speed. But the definition of “reasonable” varies with the application. Our goal is to
optimize a system with respect to a user-specified speed/accuracy tradeoff, on a user-specified data
distribution. We formalize our problem in terms of learning priority functions for generic inference
algorithms (Section 2).

Much research in natural language processing (NLP) has been dedicated to finding speedups for ex-
act or approximate computation in a wide range of inference problems including sequence tagging,
constituent parsing, dependency parsing, and machine translation. Many of the speedup strategies in
the literature can be expressed as pruning or prioritization heuristics. Prioritization heuristics gov-
ern the order in which search actions are taken while pruning heuristics explicitly dictate whether
particular actions should be taken at all. Examples of prioritization include A∗ [13] and Hierar-
chical A∗ [19] heuristics, which, in the case of agenda-based parsing, prioritize parse actions so as
to reduce work while maintaining the guarantee that the most likely parse is found. Alternatively,
coarse-to-fine pruning [21], classifier-based pruning [23], [22] beam-width prediction [3], etc can
result in even faster inference if a small amount of search error can be tolerated.

Unfortunately, deciding which techniques to use for a specific setting can be difficult: it is im-
practical to “try everything.” In the same way that statistical learning has dramatically improved
the accuracy of NLP applications, we seek to develop statistical learning technology that can dra-
matically improve their speed while maintaining tolerable accuracy. By combining reinforcement
learning and imitation learning methods, we develop an algorithm that can successfully learn such
a tradeoff in the context of constituency parsing. Although this paper focuses on parsing, we ex-
pect the approach to transfer to prioritization in other agenda-based algorithms, such as machine
translation and residual belief propagation. We give a broader discussion of this setting in [8].
∗This material is based upon work supported by the National Science Foundation under Grant No. 0964681.
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2 Priority-based Inference
Inference algorithms in NLP (e.g. parsers, taggers, or translation systems) as well as more broadly
in artificial intelligence (e.g., planners) often rely on prioritized exploration. For concreteness, we
describe inference in the context of parsing, though it is well known that this setting captures all the
essential structure of a much larger family of “deductive inference” problems [12, 9].

2.1 Prioritized Parsing

Given a probabilistic context-free grammar, one approach to inferring the best parse tree for a given
sentence is to build the tree from the bottom up by dynamic programming, as in CKY [29]. When a
prospective constituent such as “NP from 3 to 8” is built, its Viterbi inside score is the log-probability
of the best known subparse that matches that description.1

A standard extension of the CKY algorithm [12] uses an agenda—a priority queue of constituents
built so far—to decide which constituent is most promising to extend next, as detailed in section 2.2
below. The success of the inference algorithm in terms of speed and accuracy hinge on its ability to
prioritize “good” actions before “bad” actions. In our context, a constituent is “good” if it somehow
leads to a high accuracy solution, quickly.

Running Example 1. Either CKY or an agenda-based parser that prioritizes by Viterbi inside score will
find the highest-scoring parse. This achieves a percentage accuracy of 93.3, given the very large grammar
and experimental conditions described in Section 6. However, the agenda-based parser is over an order of
magnitude faster than CKY (wall clock time) because it stops as soon as it finds a parse, without building
further constituents. With mild pruning according to Viterbi inside score, the accuracy remains 93.3 and the
speed triples. With more aggressive pruning, the accuracy drops to 92.0 and the speed triples again.

Our goal is to learn a prioritization function that satisfies this condition. In order to operationalize
this approach, we need to define the test-time objective function we wish to optimize; we choose a
simple linear interpolation of accuracy and speed:

quality = accuracy− λ× time (1)

where we can choose a λ that reflects our true preferences. The goal of λ is to encode “how much
more time am I willing to spend to achieve an additional unit of accuracy?” In this paper, we consider
a very simple notion of time: the number of constituents popped from/pushed into the agenda during
inference, halting inference as soon as the parser pops its first complete parse.

When considering how to optimize the expectation of Eq (1) over test data, several challenges
present themselves. First, this is a sequential decision process: the parsing decisions made at a
given time may affect both the availability and goodness of future decisions. Second, the parser’s
total runtime and accuracy on a sentence are unknown until parsing is complete, making this an
instance of delayed reward. These considerations lead us to formulate this problem as a Markov
Decision Process (MDP), a well-studied model of decision processes.

2.2 Inference as a Markov Decision Process

A Markov Decision Process (MDP) is a formalization of a memoryless search process. An MDP
consists of a state space S, an action space A, and a transition function T . An agent in an MDP
observes the current state s ∈ S and chooses an action a ∈ A. The environment responds by
transitioning to a state s′ ∈ S, sampled from the transition distribution T (s′ | s, a). The agent then
observes its new state and chooses a new action. An agent’s policy π describes how the (memory-
less) agent chooses an action based on its current state, where π is either a deterministic function of
the state (i.e., π(s) 7→ a) or a stochastic distribution over actions (i.e., π(a | s)).
For parsing, the state is the full current chart and agenda (and is astronomically large: roughly 1017

states for average sentences). The agent controls which item (constituent) to “pop” from the agenda.
The initial state has an agenda consisting of all single-word constituents, and an empty chart of
previously popped constituents. Possible actions correspond to items currently on the agenda. When
the agent chooses to pop item y, the environment deterministically adds y to the chart, combines y
as licensed by the grammar with adjacent items z in the chart, and places each resulting new item x

1E.g., the maximum log-probability of generating some tree whose fringe is the substring spanning words
(3,8], given that NP (noun phrase) is the root nonterminal. This is the total log-probability of rules in the tree.
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on the agenda. (Duplicates in the chart or agenda are merged: the one of highest Viterbi inside score
is kept.) The only stochasticity is the initial draw of a new sentence to be parsed.

We are interested in learning a deterministic policy that always pops the highest-priority available
action. Thus, learning a policy corresponds to learning a priority function. We define the priority
of action a in state s as the dot product of a feature vector φ(a, s) with the weight vector θ; our
features are described in Section 2.3. Formally, our policy is

πθ(s) = argmax
a

θ · φ(a, s) (2)

An admissible policy in the sense ofA∗ search [13] would guarantee that we always return the parse
of highest Viterbi inside score—but we do not require this, instead aiming to optimize Eq (1).

2.3 Features for Prioritized Parsing

We use the following simple features to prioritize a possible constituent. (1) Viterbi inside score; (2)
constituent touches start of sentence; (3) constituent touches end of sentence; (4) constituent length;
(5) constituent length

sentence length ; (6) log p(constituent label | prev. word POS tag) and log p(constituent label | next
word POS tag), where the part-of-speech (POS) tag of w is taken to be argmaxt p(w | t) under the
grammar; (7) 12 features indicating whether the constituent’s {preceding, following, initial} word
starts with an {uppercase, lowercase, number, symbol} character; (8) the 5 most positive and 5 most
negative punctuation features from [14], which consider the placement of punctuation marks within
the constituent.

The log-probability features (1), (6) are inspired by work on figures of merit for agenda-based pars-
ing [4], while case and punctuation patterns (7), (8) are inspired by structure-free parsing [14].

3 Reinforcement Learning

Reinforcement learning (RL) provides a generic solution to solving learning problems with delayed
reward [25]. The reward function takes a state of the world s and an agent’s chosen action a and
returns a real value r that indicates the “immediate reward” the agent receives for taking that action.
In general the reward function may be stochastic, but in our case, it is deterministic: r(s, a) ∈ R.
The reward function we consider is:

r(s, a) =

{
acc(a)− λ · time(s) if a is a full parse tree
0 otherwise (3)

Here, acc(a) measures the accuracy of the full parse tree popped by the action a (against a gold
standard) and time(s) is a user-defined measure of time. In words, when the parser completes
parsing, it receives reward given by Eq (1); at all other times, it receives no reward.

3.1 Boltzmann Exploration

At test time, the transition between states is deterministic: our policy always chooses the action a
that has highest priority in the current state s. However, during training, we promote exploration of
policy space by running with stochastic policies πθ(a | s). Thus, there is some chance of popping a
lower-priority action, to find out if it is useful and should be given higher-priority. In particular, we
use Boltzmann exploration to construct a stochastic policy with a Gibbs distribution. Our policy is:

πθ(a | s) =
1

Z(s)
exp

[
1

temp
θ · φ(a, s)

]
with Z(s) as the appropriate normalizing constant (4)

That is, the log-likelihood of action a at state s is an affine function of its priority. The temperature
temp controls the amount of exploration. As temp → 0, πθ approaches the deterministic policy
in Eq (2); as temp → ∞, πθ approaches the uniform distribution over available actions. During
training, temp can be decreased to shift from exploration to exploitation.

A trajectory τ is the complete sequence of state/action/reward triples from parsing a single sentence.
As is common, we denote τ = 〈s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT 〉, where: s0 is the starting state;
at is chosen by the agent by πθ(at | st); rt = r(st, at); and st+1 is drawn by the environment from
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T (st+1 | st, at), deterministically in our case. At a given temperature, the weight vector θ gives rise
to a distribution over trajectories and hence to an expected total reward:

R = Eτ∼πθ
[R(τ)] = Eτ∼πθ

[
T∑
t=0

rt

]
. (5)

where τ is a random trajectory chosen by policy πθ, and rt is the reward at step t of τ .

3.2 Policy Gradient

Given our features, we wish to find parameters that yield the highest possible expected reward. We
carry out this optimization using a stochastic gradient ascent algorithm known as policy gradient
[27, 26]. This operates by taking steps in the direction of∇θR:

∇θEτ [R(τ)] = Eτ [
∇θpθ(τ)

pθ(τ)
R(τ)] = Eτ

[
R(τ)∇θ log pθ(τ)

]
= Eτ

[
R(τ)

T∑
t=0

∇θ log π(at | st)
]

(6)

The expectation can be approximated by sampling trajectories. It also requires computing the gra-
dient of each policy decision, which, by Eq (4), is:

∇θ log πθ(at | st) =
1

temp

(
φ(at, st)−

∑
a′∈A

πθ(a
′ | st)φ(a′, st)

)
(7)

Combining Eq (6) and Eq (7) gives the form of the gradient with respect to a single trajectory. The
policy gradient algorithm samples one trajectory (or several) according to the current πθ, and then
takes a gradient step according to Eq (6). This increases the probability of actions on high-reward
trajectories more than actions on low-reward trajectories.

Running Example 2. The baseline system from Running Example 1 always returns the target parse (the
complete parse with maximum Viterbi inside score). This achieves an accuracy of 93.3 (percent recall) and
speed of 1.5 mpops (million pops) on training data. Unfortunately, running policy gradient from this starting
point degrades speed and accuracy. Training is not practically feasible: even the first pass over 100 training
sentences (sampling 5 trajectories per sentence) takes over a day.

3.3 Analysis
One might wonder why policy gradient performed so poorly on this problem. One hypothesis is that it is the
fault of stochastic gradient descent: the optimization problem was too hard or our step sizes were chosen poorly.
To address this, we attempted an experiment where we added a “cheating” feature to the model, which had a
value of one for constituents that should be in the final parse, and zero otherwise. Under almost every condition,
policy gradient was able to learn a near-optimal policy by placing high weight on this cheating feature.

An alternative hypothesis is overfitting to the training data. However, we were unable to achieve significantly
higher accuracy even when evaluating on our training data—indeed, even for a single train/test sentence.

The main difficulty with policy gradient is credit assignment: it has no way to determine which actions were
“responsible” for a trajectory’s reward. Without causal reasoning, we need to sample many trajectories in order
to distinguish which actions are reliably associated with higher-reward. This is a significant problem for us,
since the average trajectory length of an A∗0 parser on a 15 word sentence is about 30,000 steps, only about 40
of which (less than 0.15%) are actually needed to successfully complete the parse optimally.

3.4 Reward Shaping
A classic approach to attenuating the credit assignment problem when one has some knowledge about the
domain is reward shaping [10]. The goal of reward shaping is to heuristically associate portions of the total
reward with specific time steps, and to favor actions that are observed to be soon followed by a reward, on the
assumption that they caused that reward.

If speed is measured by the number of popped items and accuracy is measured by labeled constituent recall of
the first-popped complete parse (compared to the gold-standard parse), one natural way to shape rewards is to
give an immediate penalty for the time incurred in performing the action while giving an immediate positive
reward for actions that build constituents of the gold parse. Since only some of the correct constituents built
may actually make it into the returned tree, we can correct for having “incorrectly” rewarded the others by
penalizing the final action. Thus, the shaped reward:
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r̃(s, a) =

 1−∆(s, a)− λ if a pops a complete parse (causing the parser to halt and return a)
1− λ if a pops a labeled constituent that appears in the gold parse
−λ otherwise

(8)

λ is from Eq (1), penalizing the runtime of each step. 1 rewards a correct constituent. The correction ∆(s, a)
is the number of correct constituents popped into the chart of s that were not in the first-popped parse a. It is
easy to see that for any trajectory ending in a complete parse, the total shaped and unshaped rewards along a
trajectory are equal (i.e. r(τ) = r̃(τ)).

We now modify the total reward to use temporal discounting. Let 0 ≤ γ ≤ 1 be a discount factor. When
rewards are discounted over time, the policy gradient becomes

Eτ∼πθ [R̃γ(τ)] = Eτ∼πθ

[
T∑
t=0

(
T∑
t′=t

γt
′−tr̃t′

)
∇θ log πθ(at | st)

]
(9)

where r̃t′ = r̃(st′ , at′). When γ = 1, the gradient of the above turns out to be equivalent to Eq (6) [20, section
3.1], and therefore following the gradient is equivalent to policy gradient. When γ = 0, the parser gets only
immediate reward—and in general, a small γ assigns the credit for a local reward r̃t′ mainly to actions at at
closely preceding times.

This gradient step can now achieve some credit assignment. If an action is on a good trajectory but occurs after
most of the useful actions (pops of correct constituents), then it does not receive credit for those previously
occurring actions. However, if it occurs before useful actions, it still does receive credit because we do not
know (without additional simulation) whether it was a necessary step toward those actions.

Running Example 3. Reward shaping helps significantly, but not enough to be competitive. As the parser
speeds up, training is about 10 times faster than before. The best setting (γ = 0, λ = 10−6) achieves an
accuracy in the mid-70’s with only about 0.2 mpops. No settings were able to achieve higher accuracy.

4 Apprenticeship Learning

In reinforcement learning, an agent interacts with an environment and attempts to learn to maximize its reward
by repeating actions that led to high reward in the past. In apprenticeship learning, we assume access to a
collection of trajectories taken by an optimal policy and attempt to learn to mimic those trajectories. The
learner’s only goal is to behave like the teacher at every step: it does not have any notion of reward. In contrast,
the related task of inverse reinforcement learning/optimal control [17, 11] attempts to infer a reward function
from the teacher’s optimal behavior.

Many algorithms exist for apprenticeship learning. Some of them work by first executing inverse reinforcement
learning [11, 17] to induce a reward function and then feeding this reward function into an off-the-shelf rein-
forcement learning algorithm like policy gradient to learn an approximately optimal agent [1]. Alternatively,
one can directly learn to mimic an optimal demonstrator, without going through the side task of trying to induce
its reward function [7, 24].

4.1 Oracle Actions
With a teacher to help guide the learning process, we would like to explore more intelligently than Boltzmann
exploration, in particular, focusing on high-reward regions of policy space. We introduce oracle actions as a
guidance for areas to explore.

Ideally, oracle actions should lead to a maximum-reward tree. In training, we will identify oracle actions to be
those that build items in the maximum likelihood parse consistent with the gold parse. When multiple oracle
actions are available on the agenda, we will break ties according to the priority assigned by the current policy
(i.e., choose the oracle action that it currently likes best).

4.2 Apprenticeship Learning via Classification
Given a notion of oracle actions, a straightforward approach to policy learning is to simply train a classifier to
follow the oracle—a popular approach in incremental parsing [6, 5]. Indeed, this serves as the initial iteration
of the state-of-the-art apprenticeship learning algorithm, DAGGER [24].

We train a classifier as follows. Trajectories are generated by following oracle actions, breaking ties using the
initial policy (Viterbi inside score) when multiple oracle actions are available. These trajectories are incredibly

5



short (roughly double the number of words in the sentence). At each step in the trajectory, (st, at), a classi-
fication example is generated, where the action taken by the oracle (at) is considered the correct class and all
other available actions are considered incorrect. The classifier that we train on these examples is a maximum
entropy classifier, so it has exactly the same form as the Boltzmann exploration model (Eq (4)) but without the
temperature control. In fact, the gradient of this classifier (Eq (10)) is nearly identical to the policy gradient
(Eq (6)) except that τ is distributed differently and the total rewardR(τ) does not appear: instead of mimicking
high-reward trajectories we now try to mimic oracle trajectories.

Eτ∼π∗
[
T∑
t=0

(
φ(at, st)−

∑
a′∈A

πθ(a′ | st)φ(a′, st)

)]
(10)

where π∗ denotes the oracle policy so at is the oracle action. The potential benefit of the classifier-based
approach over policy gradient with shaped rewards is increased credit assignment. In policy gradient with
reward shaping, an action gets credit for all future reward (though no past reward). In the classifier-based
approach, it gets credit for exactly whether or not it builds an item that is in the true parse.

Running Example 4. The classifier-based approach performs only marginally better than policy gradient
with shaped rewards. The best accuracy we can obtain is 76.5 with 0.19 mpops.

To execute the DAGGER algorithm, we would continue in the next iteration by following the trajectories learned
by the classifier and generating new classification examples on those states. Unfortunately, this is not compu-
tationally feasible due to the poor quality of the policy learned in the first iteration. Attempting to follow
the learned policy essentially tries to build all possible constituents licensed by the grammar, which can be
prohibitively expensive. We will remedy this in section 5.

4.3 What’s Wrong With Apprenticeship Learning
An obvious practical issue with the classifier-based approach is that it trains the classifier only at states visited
by the oracle. This leads to the well-known problem that it is unable to learn to recover from past errors
[2, 28, 7, 24]. Even though our current feature set depends only on the action and not on the state, making
action scores independent of the current state, there is still an issue since the set of actions to choose from does
depend on the state. That is, the classifier is trained to discriminate only among the small set of agenda items
available on the oracle trajectory (which are always combinations of correct constituents). But the action sets
the parser faces at test time are much larger and more diverse.

An additional objection to classifiers is that not all errors are created equal. Some incorrect actions are more
expensive than others, if they create constituents that can be combined in many locally-attractive ways and
hence slow the parser down or result in errors. Our classification problem does not distinguish among incorrect
actions. The SEARN algorithm [7] would distinguish them by explicitly evaluating the future reward of each
possible action (instead of using a teacher) and incorporating this into the classification problem. But explicit
evaluation is computationally infeasible in our setting (at each time step, it must roll out a full future trajectory
for each possible action from the agenda). Policy gradient provides another approach by observing which
actions are good or bad across many random trajectories, but recall that we found it impractical as well. We do
not further address this problem in this paper, but in [8] we suggested explicit causality analysis.

A final issue has to do with the nature of the oracle. Recall that the oracle is “supposed to” choose optimal
actions for the given reward. Also recall that our oracle always picks correct constituents. There seems to be
a contradiction here: our oracle action selector ignores λ, the tradeoff between accuracy and speed, and only
focuses on accuracy. This happens because for any reasonable setting of λ, the optimal thing to do is always to
just build the correct tree without building any extra constituents. Only for very large values of λ is it optimal to
do anything else, and for such values of λ, the learned model will have hugely negative reward. This means that
under the apprenticeship learning setting, we are actually never going to be able to learn to trade off accuracy
and speed: as far as the oracle is concerned, you can have both! The tradeoff only appears because our model
cannot come remotely close to mimicking the oracle.

5 Oracle-Infused Policy Gradient
The failure of both standard reinforcement learning algorithms and standard apprenticeship learning algorithms
on our problem leads us to develop a new approach. We start with the policy gradient algorithm (Section 3.2)
and use ideas from apprenticeship learning to improve it. Our formulation preserves the reinforcement learning
flavor of our overall setting, which involves delayed reward for a known reward function.

Our approach is specifically designed for the non-deterministic nature of the agenda-based parsing setting [8]:
once some action a becomes available (appears on the agenda), it never goes away until it is taken. This makes
the notion of “interleaving” oracle actions with policy actions both feasible and sensible. Like policy gradient,
we draw trajectories from a policy and take gradient steps that favor actions with high reward under reward
shaping. Like SEARN and DAGGER, we begin by exploring the space around the optimal policy and slowly
explore out from there.
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To achieve this, we define the notion of an oracle-infused policy. Let π be an arbitrary policy and let δ ∈ [0, 1].
We define the oracle-infused policy π+

δ as follows:

π+
δ (a | s) = δπ∗(a | s) + (1− δ)π(a | s) (11)

In other words, when choosing an action, π+
δ explores the policy space with probability 1− δ (according to its

current model), but with probability δ, we force it to take an oracle action.

Our algorithm takes policy gradient steps with reward shaping (Eqs (9) and (7)), but with respect to trajectories
drawn from π+

δ rather than π. If δ = 0, it reduces to policy gradient, with reward shaping if γ < 1 and
immediate reward if γ = 0. For δ = 1, the γ = 0 case reduces to the classifier-based approach with π∗ (which
in turn breaks ties by choosing the best action under π).

Similar to DAGGER and SEARN, we do not stay at δ = 1, but wean our learner off the oracle supervision as
it starts to find a good policy π that imitates the classifier reasonably well. We use δ = 0.8epoch, where epoch
is the total number of passes made through the training set at that point (so δ = 0.80 = 1 on the initial pass).
Over time, δ → 0, so that eventually we are training the policy to do well on the same distribution of states
that it will pass through at test time (as in policy gradient). With intermediate values of δ (and γ ≈ 1), an
iteration behaves similarly to an iteration of SEARN, except that it “rolls out” the consequences of an action
chosen randomly from (11) instead of evaluating all possible actions in parallel.

Running Example 5. Oracle-infusion gives a competitive speed and accuracy tradeoff. A typical result is 91.2
with 0.68 mpops.

6 Experiments

All of our experiments (including those discussed earlier) are based on the Wall Street Journal portion of
the Penn Treebank [15]. We use a probabilistic context-free grammar with 370,396 rules—enough to make
the baseline system accurate but slow. We obtained it as a latent-variable grammar [16] using 5 split-merge
iterations [21] on sections 2–20 of the Treebank, reserving section 22 for learning the parameters of our policy.
All approaches to trading off speed and accuracy are trained on section 22; in particular, for the running example
and Section 6.2, the same 100 sentences of at most 15 words from that section were used for training and
test. We measure accuracy in terms of labeled recall (including preterminals) and measure speed in terms of
the number of pops from on the agenda. The limitation to relatively short sentences is purely for improved
efficiency at training time.

6.1 Baseline Approaches

Our baseline approaches trade off speed and accuracy not by learning to prioritize, but by varying the pruning
level ∆. A constituent is pruned if its Viterbi inside score is more than ∆ worse than that of some other
constituent that covers the same substring.

Our baselines are: (HA∗) a Hierarchical A∗ parser [18] with the same pruning threshold at each hierarchy
level; (A∗0) an A∗ parser with a 0 heuristic function plus pruning; (IDA∗0) an iterative deepening A∗ algorithm,
on which a failure to find any parse causes us to increase ∆ and try again with less aggressive pruning (note
that this is not the traditional meaning of IDA*); and (CTF) the default coarse-to-fine parser in the Berkeley
parser [21]. Several of these algorithms can make multiple passes, in which case the runtime (number of pops)
is assessed cumulatively.

6.2 Learned Prioritization Approaches Model # of pops Recall F1
A∗0 (no pruning) 1496080 93.34 93.19

D- 686641 56.35 58.74
I- 187403 76.48 76.92
D+ 1275292 84.17 83.38
I+ 682540 91.16 91.33

Figure 1: Performance on 100 sentences.

We explored four variants of our oracle-infused pol-
icy gradient with with λ = 10−6. Figure 1 shows
the result on the 100 training sentences. The “-” tests
are the degenerate case of δ = 1, or apprenticeship
learning (section 4.2), while the “+” tests use δ =
0.8epoch as recommended in section 5. Temperature
matters for the “+” tests and we use temp = 1. We
performed stochastic gradient descent for 25 passes
over the data, sampling 5 trajectories in a row for each sentence (when δ < 1 so that trajectories are random).

We can see that the classifier-based approaches “-” perform poorly: when training trajectories consist of only
oracle actions, learning is severely biased. Yet we saw in section 3.2 that without any help from the oracle
actions, we suffer from such large variance in the training trajectories that performance degrades rapidly and
learning does not converge even after days of training. Our “oracle-infused” compromise “+” uses some oracle
actions: after several passes through the data, the parser learns to make good decisions without help from the
oracle.
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Figure 2: Pareto frontiers: Our I+ parser at different values of λ, against the baselines at different
pruning levels.

The other axis of variation is that the “D” tests (delayed reward) use γ = 1, while the “I” tests (immediate
reward) use γ = 0. Note that I+ attempts a form of credit assignment and works better than D+.2 We were
not able to get better results with intermediate values of γ, presumably because this crudely assigns credit for
a reward (correct constituent) to the actions that closely preceded it, whereas in our agenda-based parser, the
causes of the reward (correct subconstituents) related actions may have happened much earlier [8].

6.3 Pareto Frontier
Our final evaluation is on the held-out test set (length-limited sentences from Section 23). A 5-split grammar
trained on section 2-21 is used. Given our previous results in Table 1, we only consider the I+ model: imme-
diate reward with oracle infusion. To investigate trading off speed and accuracy, we learn and then evaluate a
policy for each of several settings of the tradeoff parameter: λ. We train our policy using sentences of at most
15 words from Section 22 and evaluate the learned policy on the held out data (from Section 23). We measure
accuracy as labeled constituent recall and evaluate speed in terms of the number of pops (or pushes) performed
on the agenda.

Figure 2 shows the baselines at different pruning thresholds as well as the performance of our policies trained
using I+ for λ ∈ {10−3, 10−4, . . . , 10−8}, using agenda pops as the measure of time. I+ is about 3 times as
fast as unpruned A∗0 at the cost of about 1% drop in accuracy (F-score from 94.58 to 93.56). Thus, I+ achieves
the same accuracy as the pruned version of A∗0 while still being twice as fast. I+ also improves upon HA∗ and
IDA∗0 with respect to speed at 60% of the pops. I+ always does better than the coarse-to-fine parser (CTF) in
terms of both speed and accuracy, though using the number of agenda pops as our measure of speed puts both
of our hierarchical baselines at a disadvantage.

We also ran experiments using the number of agenda pushes as a more accurate measure of time, again sweeping
over settings of λ. Since our reward shaping was crafted with agenda pops in mind, perhaps it is not surprising
that learning performs relatively poorly in this setting. Still, we do manage to learn to trade off speed and
accuracy. With a 1% drop in recall (F-score from 94.58 to 93.54), we speed up from A∗0 by a factor of 4 (from
around 8 billion pushes to 2 billion). Note that known pruning methods could also be employed in conjunction
with learned prioritization.

7 Conclusions and Future Work

In this paper, we considered the application of both reinforcement learning and apprenticeship learning to
prioritize search in a way that is sensitive to a user-defined tradeoff between speed and accuracy. We found
that a novel oracle-infused variant of the policy gradient algorithm for reinforcement learning is effective for
learning a fast and accurate parser with only a simple set of features. In addition, we uncovered many properties
of this problem that separate it from more standard learning scenarios, and designed experiments to determine
the reasons off-the-shelf learning algorithms fail.

An important avenue for future work is to consider better credit assignment. We are also very interested in
designing richer feature sets, including “dynamic” features that depend on both the action and the state of the
chart and agenda. One role for dynamic features is to decide when to halt. The parser might decide to continue
working past the first complete parse, or give up (returning a partial or default parse) before any complete parse
is found.

2The D- and I- approaches are quite similar to each other. Both train on oracle trajectories where all actions
receive a reward of 1 − λ, and simply try to make these oracle actions probable. However, D- trains more
aggressively on long trajectories, since (9) implies that it weights a given training action by T − t + 1, the
number of future actions on that trajectory. The difference between D+ and I+ is more interesting because the
trajectory includes non-oracle actions as well.
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